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Abstract Fast solutions for UWB electromagnetic 
induction (EMI) scattering from fundamental object 
shapes are of longstanding interest for sensing of metallic 
objects, e.g. underground unexploded ordnance (UXO) 
detection and discrimination. Researchers have recently 
developed the general formulation for an analytical 
solution for EMI scattering from a spheroid. The 
specialization based on Small Penetration Assumption 
(SPA) is designed to attack the high frequency difficulties 
that challenge many numerical techniques. This paper uses 
the new analytical techniques to explore scattering from 
spheroids and other objects, with excitation complicated 
by non-uniform fields. To perform the necessary 
decomposition of the transmitted primary field into 
spheroidal modes, we represent the transmitter by a set of 
magnetic dipoles, which dramatically increases efficiency. 
The performance of the SPA solution is evaluated by 
comparison with results from other numerical techniques 
and measured data. Comparison with measured data also 
indicates that EMI signals from some complicated objects 
can be approximated by those from spheroids with similar 
proportions, which is promising for applications requiring 
fast solutions, such as inversion processing.  

Keywords  spheroid, EMI, scattering, SPA, GEM-3, non-
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1. Introduction and review of spheroid solutions

In terms of their physical responses, some complicated but 
reasonably smooth, elongated objects can be approximated 
by a representative spheroid, when observed from some 
distance. The idea of approximate spheroid representation 
has been applied in fluid mechanics [1] and magnetic field 
analysis [2-4].  In the EMI frequency range (~ 10's of Hz 
up to ~ 100's of kHz) we are particularly attracted to the 
possibility, because in this band the smaller details of 
shape may not be important. 

A great deal of work has been done in electromagnetic 
scattering by spheroids and analytically shaped particles, 
with both exact [5,6] and approximate methods [7-10]. 
Physical optics approximations have been used to model 
large particle scattering [11,12]. For scattering from more 
than a single particle, addition theorems were employed 
[13,14].  The EMI problem we are studying here is 
different from the previously treated problems in that (1) 
the frequency is very low so that the field is magneto- 
quasistatic (2) the scatterer is metallic, with conductivity 
much higher than that of the surrounding media.  Tractable 
analytical and numerical solutions for the general EMI 
problem have not been available until recently [15-20].  
New analytical solutions for the secondary (scattered) field 
from prolate spheroids were presented in [15,16], 
including high frequency approximations, with 
specialization for the SPA readily extended to oblate cases 
as well [17].  For our applications here, we only pursue the 
prolate case.   

In the magneto-quasistatic EMI realm, only a scalar 
potential Ψ is usually required for the region surrounding a 

metallic scatterer.  The transmitted primary ( prψ )  and 

received secondary fields ( sψ ) can be expressed in that 
region as [16] 
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where (η,ξ,φ) are the standard spheroidal coordinates,  d
is the inter-focal distance, m

nP and m
nQ are Associated 

Legendre functions, Tpm(φ) is cos(mφ) for p = 0 and is 
sin(mφ) for p = 1.  The coefficients bpmn for the primary 
field are known (readily calculated), and the unknown 
Bpmn must be solved for.  

97ACES JOURNAL, VOL. 18, NO. 4, NOVEMBER 2003

1054-4887 © 2003 ACES



For high induction numbers (small skin depth) cases, one 
can derive relations reminiscent of impedance boundary 
conditions to treat the effects of internal fields.  Different 
approaches to this are possible, the most general involving 
use of the magnetic field divergence equation and the 
normal field components and derivatives, e.g. [18,20] in 
the numerical realm.  Alternatively, for analytical solution, 
all higher order terms are neglected in the governing 
double curl equation in [16], mostly involving tangential 
gradients inside the object.  Then to derive an applicable 
gradient condition just below the scatterer's surface, the 
tangential field components are assumed to have 
functional dependencies as in a 1-D frequency domain 
solution with respect to the normal component, i.e. ~ 
exp{iαnkn}, where k is the equivalent of wave number, 
here equal to iωσµ  for angular frequency, electrical 

conductivity, and magnetic permeabilities ω, σ, and µ,
respectively.  In the specific case of the spheroids, αn is 
unity for the azimuthal component and can be solved for 
analytically for the angular component Hη. With these 
approximations, one can solve a simple algebraic system 
for the unknown Bpmn, corresponding only to an exterior 
problem in the scalar potential, with no expressions 
involving the problematical spheroidal wave functions in 
the object interior. The resulting spheroid solutions for a 
spatially uniform primary field indicate that the SPA may 
produce accurate results over the entire EMI broadband, in 
particular where magnetic permeability µ  is high, as for 

steel, whether skin depth is small or not. See [15,16,23] for 
more details. 
             

2. Fast Decomposition of the primary field into 
spheroidal modes 

To solve the EMI scattering problem for a spheroid using 
our algorithm, the key task is to decompose the known 

primary field Ψpr into spheroidal modes (i.e. find pmnb  in 

(1)).  This is easily done for a uniform field, but otherwise 
may require new analytical expressions or numerical 
computation.  In our approach, one multiplies both sides of 

(1) by Tpm(φ) ( )m
nP η  and then integrates, using 

established orthogonality relations for the Legendre 
functions to obtain   
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where 1α =  for 0, 1m p≥ = or 1, 0m p≥ = , and 

2α =  for 0, 0m p= = . 0ξ ξ=  is the surface of the 

spheroid. At some distance away from the sensor head, 
the excitation field produced by most EMI transmitters can 
be approximated using dipole sources.  For a magnetic 
dipole with dipole moment ( , , )x y zm m m=m  at location 

0 0 0( , , )x y z=0R , the potential and magnetic field will be 

[21]
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At this point the potential ψ can be translated into 
spheroidal coordinates and be decomposed according to 
(2), through numerical integration. 

Lab measurements were obtained using the Geophex 
GEM-3 broadband EMI sensor [22]. The sensor head 
contains two transmitting current loops with radii 
approximately 20cm and 10cm.  The current in the inner 
loop is about half of that in the outer loop and it flows in 
the opposite direction, so that the primary field at the 
receiver in the head center is near zero. The primary field 
near the sensor is complicated and cannot be calculated 
analytically, so at any point of interest H must be 
calculated according to the Biot-Savart Law [21].  The 
potential can then be computed by integration of the 
magnetic field along an arbitrary path.  After the values of 
potential on the spheroid surface are obtained, the field can 
be decomposed into spheroidal modes according to (2). 

For a complicated prψ  such as that in the GEM-3 near 
field, decomposition requires numerical integration in 
several steps, which are too time consuming for our 
inversion calculations when the potential is computed as 
described above.  Therefore we approximate the actual 
source by a superposition of some basic fictitious sources 
(i.e. point magnetic charges or dipoles), whose potential 
and magnetic field can be specified analytically. In 
keeping with the geometry of the GEM-3 sensor, the 
sources are distributed with azimuthal symmetry.   The 
sensor produces fields like a magnetic dipole in the far 
field, and the magnetic field direction near the sensor is 
mainly perpendicular to its broad surfaces.  Therefore we 
distribute the magnetic dipole sources only on the sensor 
surface, such that the dipoles only have a component 
perpendicular to the sensor head. The source distribution 
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contains 1M  at ( )s 0,0,0=1R , and iM  at 

( )sij cos( ), sin( ),0i j i j=R ρ θ ρ θ for 2,3, Mi N= � ,

1, 2,3, ij N= � , where iM are magnitudes of point 

dipoles and NM and Ni are the number of rings and number 
of sources in each ring, respectively (Figure 1).  The basic 
idea is to distribute the dipoles symmetrically, with 
different numbers at different radii. The magnetic field at 

position R will be 
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and 1 1N = , subscripts “s” and “z” refer to source and z 
component. 
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Figure 1. a) Set  of dipole sources (X's); the two solid lines 
are the inner and outer current loop of the GEM-3 sensor.   
b) Control surface (I) employed to determine dipole 
sources and the testing surface (II) used for evaluating the 
accuracy of the field from these sources. 

For given magnetic field at control points (on the control 
surface in Figure 1 b), a mean least square was employed 
to determine Mi, i.e. by minimizing the difference between 

the primary magnetic field determined by the fully detailed 
representation of the sensor loops and that obtained from 
the set of dipole sources. Then the transmitted potential of 
GEM-3 can be approximated by Figure 2 
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and decomposed according to (2) 

3. Results and discussion 

3.1 Accuracy of SPA results 

The accuracy of spheroidal SPA solutions under a uniform 
primary field has been well studied [16,23]. As we will 
show below, the field from the GEM-3 sensor can be 
accurately represented by a set of point dipoles. So we 
begin here by studying the performance of SPA algorithm 
for objects under the non-uniform fields from dipole 
sources.  Figure 2 shows results for a spherical object and 
for a 1x4 prolate spheroid, where the induction number 

k a aωµσ= .
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Figure 2. Scattered field from the sphere and 1x4 spheroid 
under dipole excitation.  
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Figure 3 Comparison of SPA (markers) and MAS (lines) values ( s
zH ) for a prolate spheroid (a=4cm, b=24cm) in a 5x5 

grid of sensor locations. 64 10σ = × , 100rµ = , 0 0 0x y= = , 0 0 030 , 0, / 4z cm φ θ π= − = = .

Results are compared with those from a verified and 
complete numerical approach, namely the MAS-TSA 
algorithm [20] and are displayed in terms of received 
components in phase with the primary field (real 
component) and those in phase quadrature with it 
(imaginary component).  The radius of the sphere is 10cm, 
the dipole is 15cm away from its center, and the scattered 
field was determined at the same position as the dipole 
transmitter. Similarly, the 1x4 prolate spheroid has the 
same diameter but greater length (a=10cm, b=40cm), and 

the dipole is at position (0,0,60cm). Although the field 
around the target is non-uniform, the SPA result still 
works very well over a wide frequency range. 

To test the accuracy of SPA results for more general cases, 
we consider a real EMI sensor (GEM-3 developed by 
Geophex, Ltd.); center of the sensor is moved over a 5x5 
grid on a surface above the target. The total size of the grid 
is 50cm by 50cm. A global coordinate system (x, y, z) on 
the grid has its origin at the center and z axis perpendicular 
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to the surface. The target center is at (x0, y0, z0) = (0, 0, z0)
in the global system, with units in centimeters. The 

orientation is described by 0θ  (the angle with z axis) and 

0φ (angle with x axis of the grid). At each grid point the 

data were calculated for 17 frequencies (distributed from 
30Hz to 47,970Hz), for both real and imaginary 
components. An example is shown in Figure 3, with MAS 
results as reference [20]. Results indicate that the SPA 
routine is generally reliable in the frequency range studied, 
for non-uniform source fields, at least for these smooth 
and regular target shapes. 

3.2 Representing the GEM-3 field with magnetic 
dipoles 

Next we test the accuracy of the GEM-3 primary field 
represented by point dipoles. The "exact" magnetic field 
on the control and testing surfaces was calculated from 
direct integration around the current loops [21,22], and 
field values on the control surface were employed to 
determine point dipoles needed to represent the overall 
source field. Then the approximate transmitted field was 
compared on testing surface with that calculated from 
direct integration. For this example we choose the control 
surfaces at z = 10 cm and x = 30cm (they are in fact only 
lines because of the symmetry properties). The testing 
surfaces are at z = 15 cm and x = 45 cm. As described 
above, we distribute the dipole of sources in several rings. 
The first dipole is at the center, then the ith (for 2i ≥ )

ring has radius of  
M

1
20

1i

i
cm

N

−= ×
−

ρ , where MN is the 

total number of rings of sources, the number of sources in 
the ith ring is 2i . Figure 4 shows the comparison of 
approximated field with the "exact" one (namely 
calculated directly from current loops) on the testing 
surfaces. The approximated field converges to the exact 
one as the number of sources increases. For this case, 6 or 
8 rings of dipole sources is sufficient to describe the field 
outside of the testing surface. 

3.3 Representing complicated objects with 
spheroids

For EMI sensing, an arbitrary scatterer can be 
approximated by one or a few magnetic dipoles when 
viewed in the far field. However, this approximation 
becomes less accurate as the sensor gets closer, and in 
much UXO sensing we must operate in the very near field. 
Over most of the near field, a prolate spheroid of finite 
extent may be a better representative of the object than a 
small number of infinitesimal dipoles.  To investigate the 
applicability of spheroidal representations for more 

irregular objects, we consider the response of a jagged, 
non-BOR piece of elongated metal scrap (Figure 5).  This 
ordnance fragment was collected at a UXO cleanup test 
site.  Note that the target geometry is complicated, with 
jagged appurtenances and different profiles in different 
rotations about its long axis. 

Figure 6 shows the comparison between measured GEM-3 
data from the  piece of ordnance scrap and simulation for a 
best-fit prolate spheroid. The distance between the object 
center and the sensor is 10 cm, approximately the same as 
the target length. Despite the irregularities and asymmetry 
of the target, it produces an EMI signature similar to that 
of a prolate spheroid with approximately the same overall 
proportions.  The object’s lack of rotational symmetry has 
some effect on the signature in the orientation transverse to 
the primary field, but strikingly little.   These results 
encourage further exploration of equivalent spheroid use 
for UXO discrimination.  The scheme would rest on the 
assumption that one can find a sufficiently equivalent 
spheroid for UXO of interest and apply this equivalence in 
model-based inversion algorithms. For given measured 
EMI data, one would identify a spheroid that produces 
similar EMI signals by doing inversion or optimization, 
given that we have fast algorithm for calculating the 
forward EMI solution from spheroids.  We expect that the 
scale and proportions of the spheroid will reflect the 
geometrical information of the measured object.  One can 
also calculate derivatives of the forward problem solution 
analytically, for use in Jacobians required for inversion 
processing. 

Pursuing this, Figure 7 shows an example real UXO, 
composed of a main body (magnetic), a copper band, and 
fins and tail with different steel.  With the UXO beneath 
the measurement grid as shown in Figure 7, its EMI 
responses were measured along X and Y axis (9 points 
along each line) using the GEM-3 sensor and a 
representative spheroid was found by fitting the measured 
data. The EMI data from the representative spheroid are 
shown in Figure 8. The first 9 figures (the first and second 
lines) are data along X axis (y=z=0), and the second 9 
figures are data along Y axis (x=z=0). Comparison with 
the measurement data shows that even for this complicated 
composite object, over an array of viewing angles by the 
sensor, it was still possible to find a representative 
spheroid which produces similar EMI response. One 
should note that this is a cooperative case because the steel 
part is much larger than other parts, and is close to the 
sensor, so that it dominates the response.   In other 
orientations in which different sensor positions highlight 
the tail of the UXO, we expect more difficulty in matching 
it with a single spheroid. See [24] regarding other 
treatments of this same target. Overall, the very good fit 
observed here may not always be obtained for general 
composites in highly non-symmetric targets. 
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Figure 4.  Convergence of the approximate field from the transmitter to the exact one, over the testing surfaces.  

                 

Figure 5. Piece of ordnance scrap on which measurements 
were performed, with length about 10 cm, width in one 
transverse direction 3~4 cm and about 2cm in the other. 
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Figure 6. Comparison of the measured EMI signal from 
the fragment in Figure 5 (lines) with that calculated for a 
prolate spheroid with a = 1.25 cm, b = 5 cm, 

62.6 10σ = × (S/m), 
0

36µ µ= (dots).  Different line types 

are for measurements from different views (i.e. up and 
down for the axial case, and four 90o rotations about the 
axis for the transverse case). 
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Figure 7.  UXO 28 cm in length and about 8.3 cm in 
diameter at its widest point. Measurements are along X 
and Y axis, which is on a surface 22cm above the target. 

-1 103
-8 102
-6 102
-4 102
-2 102
0 100
2 102
4 102

10 100 1000 104 105

f(Hz)

(-40,0,0)

Imaginary

Real
-3 103
-2 103
-2 103
-1 103
-5 102
0 100
5 102
1 103

10 100 1000 104 105

f(Hz)

(-30,0,0)

Imaginary

Real
-4 103

-3 103

-2 103

-1 103

0 100

1 103

10 100 1000 104 105

f(Hz)

(-20,0,0)

Imaginary

Real
-4 103

-3 103

-2 103

-1 103

0 100

1 103

2 103

10 100 1000 104 105

f(Hz)

(-10,0,0)

Imaginary

Real
-5 103
-4 103
-3 103
-2 103
-1 103
0 100
1 103
2 103

10 100 1000 104 105

f(Hz)

(0,0,0)

Imaginary

Real

-5 103
-4 103
-3 103
-2 103
-1 103
0 100
1 103
2 103

10 100 1000 104 105

f(Hz)

(10,0,0)

Imaginary

Real
-4 103

-3 103

-2 103

-1 103

0 100

1 103

10 100 1000 104 105

f(Hz)

(20,0,0)

Imaginary

Real
-4 102

-3 102

-2 102

-1 102

0 100

1 102

10 100 1000 104 105

f(Hz)

(30,0,0)

Imaginary

Real

-1 103
-8 102
-6 102
-4 102
-2 102
0 100
2 102
4 102

10 100 1000 104 105

f(Hz)

(40,0,0)

Imaginary

Real

-1 102

-5 101

0 100

5 101

1 102

10 100 1000 104 105

f(Hz)

(0,-40,0)

Imaginary

Real

-4 102

-3 102

-2 102

-1 102

0 100

1 102

2 102

10 100 1000 104 105

f(Hz)

(0,-30,0)

Imaginary

Real

-2 103

-1 103

-5 102

0 100

5 102

10 100 1000 104 105

f(Hz)

(0,-20,0)

Imaginary

Real
-3 103

-2 103

-1 103

0 100

1 103

2 103

10 100 1000 104 105

f(Hz)

(0,-10,0)

Imaginary

Real
-5 103
-4 103
-3 103
-2 103
-1 103
0 100
1 103
2 103

10 100 1000 104 105

f(Hz)

(0,0,0)

Imaginary

Real

-3 103
-3 103
-2 103
-2 103
-1 103
-5 102
0 100
5 102
1 103

10 100 1000 104 105

f(Hz)

(0,10,0)

Imaginary

Real
-1 103
-1 103
-8 102
-6 102
-4 102
-2 102
0 100
2 102
4 102

10 100 1000 104 105

f(Hz)

(0,20,0)

Imaginary

Real
-3 102
-3 102
-2 102
-2 102
-1 102
-5 101
0 100
5 101
1 102

10 100 1000 104 105

f(Hz)

(0,30,0)

Imaginary

Real
-1 102
-8 101
-6 101
-4 101
-2 101
0 100
2 101
4 101

10 100 1000 104 105

f(Hz)

(0,40,0)

Imaginary

Real

Figure 8.   Scattered field zH (in ppm) of UXO (markers) and its representative spheroid ( 2.2 , 14a cm b cm= = )

along X and Y axis. 64 10σ = × , 227rµ = , 0 3.8x cm= , 0 0.93y cm= −  , 0 22z cm= −  , 0 0φ = 0 / 2θ π= .
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4. Concluding Discussion 

The results presented here contribute to the computational 
capabilities necessary for inversion of EMI measurements, 
in applications such as discrimination of UXO from scrap 
[25-27]. To approach that problem, we must be able to 
model both targets of interest as well as clutter. With great 
economy, the formulations above represent the primary 
field from a real sensor, using distributions of magnetic 
dipoles. This source construction is particularly beneficial 
because one can readily decompose the primary field from 
each contributing source into spheroidal components. For 
each of these, in turn, fast analytical solutions can be 
obtained, for steel objects. Comparison of EMI 
measurements and simulations suggests that even some 
rather irregular scatterers may be represented well by 
spheroidal shapes. Some limitations of the SPA type 
formulations can appear at low frequencies, especially for 
objects with low permeability [20,23]. Ultimately, this 
problem can be overcome by using the emerging full 
analytical spheroid solution, as opposed to the SPA [28, 
29].  While a great many targets of interest can be 
idealized as bodies of revolution, future work should 
attack similar development of solutions for ellipsoidal 
shapes. With three different principal axis dimensions and 
correspondingly different directional scattering, they 
would provide the most flexible tool for inversion 
calculations. 
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