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Abstract:  A preliminary study of p-refinement 
with vector finite elements is reported.  Results 
suggest that improved accuracy can be obtained 
from representations employing a mixture of 
polynomial orders instead of a uniform 
polynomial order.  Results also suggest that it 
might be possible to jump directly from the local 
error in a p=0 expansion to a final representation 
employing 5 or more polynomial orders.  In 
addition, a new set of hierarchical curl-
conforming vector basis functions is proposed. 
 
 
Introduction 
 
Over the years, there have been many extensions 
and variations on the classical scalar finite 
element method.  The recent introduction of 
vector finite elements (edge elements) has created 
the opportunity for an analogous development of 
the vector finite element method.  One aspect of 
finite elements is the possibility of adaptive 
refinement of the finite element mesh, such as the 
h-refinement process where portions of the mesh 
are refined to achieve smaller cells and higher 
accuracy where required, and the p-refinement 
strategy, where the polynomial order of the 
representation is selectively increased throughout 
portions of the mesh [1-3].  Based on work in 
scalar finite element analysis, it is generally 
thought that improved convergence can be 
obtained with one of these refinement schemes or 
a mixture of h-refinement and p-refinement 
strategies.   
 
This article considers the benefits of a p-
refinement approach for vector finite elements.  
Texts such as those by Akin [1] and Zienkiewicz 

and Taylor [2] discuss p-refinement for scalar 
finite element applications.  The use of vector 
finite elements, however, is relatively new, and 
very little has been done to study adaptive 
methods.  Salazar-Palma et al. have explored h-
refinement with vector finite elements [3], and 
several commercial packages (Ansoft’s High 
Frequency Structure Simulator, for one [4]) 
employ h-refinement with vector elements.  
Although p-refinement has not been widely 
considered for the vector case, most aspects of p-
refinement for the vector formulation are similar 
to the scalar formulation.  One major difference 
between the scalar and vector formulations is the 
basis set, which is correspondingly scalar or 
vector.   
 
 
Basis functions 
 
The present investigation considers two-
dimensional formulations based on the curl-curl 
form of the vector Helmholtz equation.  A space 
of vector basis functions suitable for use with the 
vector Helmholtz equation was introduced by 
Nedelec in 1980 [5].  These functions maintain 
tangential cell-to-cell continuity and are known as 
curl conforming.  Nedelec’s mixed-order basis 
reduces the number of null valued eigensolutions 
of the curl-curl operator, which are physically 
meaningless in a source-free region, and therefore 
improves computational efficiency [6].  Vector 
basis functions consistent with Nedelec’s spaces 
have been developed [3, 7].  A goal of the present 
study was to investigate p-refinement approaches 
using functions from Nedelec’s curl-conforming 
space.   
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In practice, p-refinement techniques often 
incorporate hierarchical basis sets, where the 
functions comprising order p contain all functions 
of lower polynomial order.  In this manner, p-
refinement can be carried out by simply adding a 
few additional functions during each pass rather 
than changing the entire set.  Several hierarchical 
vector basis sets have been proposed.  Webb and 
Forghani [8] proposed vector functions for 
tetrahedral cells that can easily be adapted to 
triangular cells.  They actually only presented 
functions for the lowest two orders (p=0 and p=1 
in our notation).  Wang [9] proposed different 
vector basis functions based on orthogonal 
polynomials which may offer improved linear 
independence.  Carrie and Webb [10] proposed a 
third variety of vector functions for triangles 
based on Jacobi polynomials.  The preceding 
functions do not appear consistent with Nedelec’s 
spaces.  More recently, several authors proposed 
alternative sets for tetrahedral cells that do appear 
to be consistent with Nedelec’s spaces [11-14].  
For completeness, Appendix A summarizes a set 
of hierarchical functions for triangular cells 
ranging up to polynomial order 4.5. 
 
Although a practical p-refinement implementation 
would employ hierarchical bases, for the present 
investigation we used the interpolatory vector 
bases of [7] rather than a hierarchical set.  The 
triangular-cell curl-conforming bases of [7], at a 
given order, provide a representation that is 
equivalent to that of the hierarchical functions of 
Appendix A.  (In infinite precision arithmetic, the 
results would be identical.)  It is also apparent that 
a useful implementation of p-refinement would 
necessarily employ a large dynamic range of basis 
orders.  In the following, results are presented 
based on a mixture of up to 5 different 
polynomial orders within the same finite element 
mesh. 
 
An additional feature of a p-refinement technique 
is the definition of transition elements, to smooth 
transition between two regions of different 
polynomial order.  The basis functions employed 
in this study [7] are each associated with an edge 
or a patch within the mesh.  The patch functions 
are entirely local to one triangular cell, and 
contribute no tangential component to any of the 
cell edges.  The tangential continuity of the 
expansion is ensured by using the same order 
basis for those functions interpolatory on both 
sides of a given edge and assigning the same 

coefficients to these functions.  Thus, these two 
edge functions may be considered a single edge 
function which spans both patches common to 
that edge.  Consequently, a transition element is 
formed when the polynomial order of the 
functions associated with different edges of the 
same triangular patch differ.  To transition from 
order p to order q, the basis functions associated 
with one edge of a triangle may be of order p, 
while those of another edge are of order q.  (We 
generally constrain the method to no more than 
two different orders per patch.) 
 
At any stage of the refinement process, a 
polynomial order is assigned to each edge within 
the mesh.  (A patch order may also be defined as 
the average of the orders of each of the three 
edges associated with that patch, rounded up to 
the next integer.)  The goal of the optimization 
scheme is therefore to determine the order of each 
edge for the optimal distribution of unknowns 
throughout the mesh.  A more detailed 
presentation and derivation of the formulation 
used in this study is presented in reference [15]. 
 
 
Formulation 
 
To investigate the potential advantages of p-
refinement, we first wish to determine whether it 
is possible to obtain a better accuracy/efficiency 
trade-off using a mixture of basis orders 
throughout a mesh than it is with a single order.  
As a canonical problem of interest, we consider 
the two-dimensional resonant cavity application 
for the transverse electric (TE) polarization.  The 
vector Helmholtz equation for this situation is 
 
 ∇ × ∇ × E = k

2
 E  (1) 

 
For a cavity with perfect electric (PEC) walls, the 
tangential component of the electric field must 
vanish on the walls.  A weak formulation of the 
problem is constructed as delineated in Chapter 9 
of [6], and we refer the readers to that text for the 
details.  In the following, we consider two 
specific cavities to illustrate our investigation.  
The first geometry is a square cavity partially 
loaded with a dielectric slab with εr=10.  The 
second structure is a circular cavity with a septum 
to the center. These examples both possess an 
exact analytical solution against which to measure 
the error in a numerical result for the dominant 
resonant frequency.  In addition, the modal 
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solutions of both of these problems have regions 
of high variation as well as regions of low 
variation  (Figure 1).  The modes of the dielectric-
loaded square cavity have relatively high 
variation within the dielectric, while the circular 
cavity has a singularity at the tip of the septum, 
and therefore has a large variation in the vicinity 
of the tip. 
 
The dielectric-loaded square cavity was studied 
with three meshes, labeled A, B, and C, having 
37, 74 and 158 patches, respectively.  The circular 
cavity was studied with three meshes, labeled D, 
E and F, having 36, 66 and 128 patches, 
respectively.  In each case, the patch size was 
relatively uniform throughout the mesh, but the 
meshes are unstructured.  Meshes A and D are 
shown in Figure 2.  For the circular cavity, 
parabolic curvilinear cells were used along the 
boundary. 
 
 
First phase of the study 
 
In the first part of our investigation, we attempted 
to determine whether a mixture of polynomial 
orders throughout the mesh offered better 
accuracy for a given number of unknowns than a 
representation with a uniform polynomial order.  
To study this issue, we developed an iterative 
optimization algorithm that locally adjusted the 
polynomial order (both up and down) while 
holding the total number of unknowns fixed.  The 
iterative optimization method used in this study 
was based on three assumptions: 
 
(1)   The normal discontinuity in the D-field at 

cell edges is proportional to the local 
error.  (The normal discontinuity is zero 
in the true solution.) 

(2)   It is optimal for the error to be uniformly 
distributed throughout the mesh as 
opposed to localized. 

(3)   A localized increase in the number of 
unknowns will improve the localized 
solution, decreasing the localized error. 

 
The optimization routine attempts to minimize the 
standard deviation of the normal discontinuities 
throughout the mesh for a given number of 
unknowns.  The program first calculates the 
statistical quantities of interest for the initial 
distribution of unknowns and attempts to improve 
the uniformity by increasing the number of 

unknowns in highly discontinuous regions and 
decreasing the number of unknowns in regions 
with relatively low discontinuities.  It was found 
that the actual limits by which the “high” and 
“low” discontinuities are defined affect the 
convergence rate of the optimized solution but not 
the final solution (if they are picked within 
reason, of course).  These quantities were picked 
somewhat arbitrarily and will not be discussed 
here. 
 
 
 

 
 

 
 
Figure 1.  The dominant modes in the square and 
circular cavities. 
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Figure 2.  The coarsest meshes for the square and 
circular cavities. 
 
 
 
The reallocation of unknowns is repeated until the 
program can no longer decrease the standard 
deviation of the discontinuities in the mesh.  This 
final distribution of unknowns is then regarded as 
the optimal distribution of unknowns and the 
error associated with this distribution of 
unknowns (the error in the dominant resonant 
wavenumber) is used in a plot of error versus 
number of unknowns.  There is, of course, no 
guarantee that the result is actually optimal. 
 

Second phase of the study 
 
The first phase of the study investigated whether a 
more accurate solution was possible with a fixed 
number of unknowns.  In the second phase of the 
study, we attempted to determine if one could 
efficiently realize a nearly optimal distribution of 
unknowns, while avoiding the cumbersome 
optimization process used in phase 1.   
 
As a first step in the approach, we solve the 
problem using a uniform zero-order 
representation throughout the mesh.  We then 
determine the normal discontinuity (in the D-
field) produced at each edge in the mesh by that 
zero-order representation.  The second step is to 
use that error distribution to immediately assign a 
“final” polynomial order to each edge in the 
mesh.   
 
The ambiguity of such an approach is in how 
many orders and how many edges of each order 
to assign, since the process is constrained by the 
total number of unknowns desired.  For this study, 
we cheated — we used the results of the earlier 
iterative optimization procedure to determine the 
number of orders and percentage of each order to 
use.  In other words, if for a particular mesh the 
iterative method determined (after many passes) 
that 15% of the edges were assigned polynomial 
order 4, then 15% of the edges were assigned that 
order in the single step algorithm.  However, in 
the single step procedure the edges chosen for 
refinement were selected based solely upon the 
extent of the zero-order normal discontinuity at 
that edge.  Thus, the procedure is not a complete 
p-refinement algorithm at this point, and our 
specific approach is not practical for 
implementation.  Data presented below suggest, 
however, that an efficient algorithm for 
distributing the unknowns among several orders is 
possible.  The second phase of the study, while 
not a self contained single step p-refinement 
capability, does provide insight into the accuracy 
possible with relatively little computational effort. 
 
 
Results 
 
Figures 3-8 show the percent error in the 
dominant cavity resonant frequency determined 
by various methods versus number of unknowns.  
Each figure depicts the “homogeneous order 
solution,” the error obtained using a p=0 
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representation, a p=1 representation, etc., 
throughout the entire mesh.   
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Figure 3.  Error Versus Unknowns for Square 
Cavity, Mesh A, Iterative and One Step Methods. 
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Figure 4.  Error Versus Unknowns for Square 
Cavity, Mesh B, Iterative and One Step Methods. 
 
Each figure also shows the error produced by the 
iterative optimization process, which employed a 
mixture of various polynomial orders throughout 
the mesh.  The iterative process attempted to 
minimize the standard deviation of the normal 
discontinuity within the dominant mode.  For 
most of the data, the iterative process produced 
better accuracy for a given number of unknowns 
(using a mixture of polynomial orders) than the 
homogeneous solution (a single polynomial 
order). 

 
Figures 3-8 also show the “one step” solution 
obtained by jumping from the zero-order result 
directly to the final distribution of unknowns.   
The one step solution is usually as good (and 
occasionally better) than that produced by the 
gradual iterative process.  This suggests that the 
local error associated with the zero-order solution 
is a meaningful predictor for the distribution of 
unknowns in the final result. 
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Figure 5.  Error Versus Unknowns for Square 
Cavity, Mesh C, Iterative and One Step Methods. 
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Figure 6.  Error Versus Unknowns for Circular 
Cavity, Mesh D, Iterative and One Step Methods. 
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Figure 7.  Error Versus Unknowns for Circular 
Cavity, Mesh E, Iterative and One Step Methods. 
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Figure 8.  Error Versus Unknowns for Circular 
Cavity, Mesh F, Iterative and One Step Methods. 
 
 
For Figures 3-5, representing the square cavity, 
the optimal distribution of unknowns tended to be 
that with a single order throughout the air-filled 
part of the cavity and a higher order throughout 
the dielectric part.  The error curves tend to 
zigzag up and down as the number of unknowns 
is increased, due to the fact that a single order in 
the air filled part of the cavity and a higher order 
throughout the dielectric part can only be 
achieved for specific numbers of unknowns.  
When the algorithm is forced to optimize to a 
number of unknowns for which this distribution is 
not possible, it is less efficient.  In contrast, the 
error curves in Figures 6-8 for the circular cavity 

show a more uniform behavior.  Figure 9 
illustrates the distribution of degrees of freedom 
for mesh F, when optimized for 1000 unknowns. 
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Figure 9.  Distribution of degrees of freedom for 
mesh F when optimized at 1000 unknowns. 
 
 
As an initial step in developing a control 
algorithm for p-refinement, we present several 
plots showing the distribution of polynomial order 
associated with a given number of unknowns.  
Figures 10 and 11 show the transition profiles for 
the square dielectric-loaded cavity (Mesh B) and 
the circular cavity with a baffle (Mesh E), 
respectively.  The transition profiles show the 
percentage of the total number of unknowns 
assigned to each polynomial order for a given 
number of unknowns.  These data are produced 
using the iterative optimization process.  The 
number of unknowns is normalized to the number 
of unknowns in the homogeneous zero order case. 
For example, a normalized number of unknowns 
of “3” corresponds to three times as many 
unknowns as in the zero order homogeneous case. 
 
Figures 12 and 13 show the percentage of edges 
of each polynomial order in terms of a “transition 
point.”  The local error (discontinuity in D-field) 
level is organized into a list by edges; the 
transition point is the position in that list where 
the transition between orders is assigned.  The 
unknowns in the one step method are assigned 
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directly by the ordered list of discontinuities.  For 
example, mesh A has 37 edges.  If it is 
determined that there are to be 30 zero order 
edges and 7 first order edges after refinement, the 
0/1 normalized transition point would be 30 / 37 = 
0.81.   
 
 

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

UNKNOWNS (normalized)

P
er

ce
nt

 o
f e

dg
es

Square with Dielectric Loading, Mesh B (medium)

Order 0
Order 1
Order 2
Order 3

 
 
Figure 10.  Transition Profile for Square Cavity, 
Mesh B. 
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Figure 11.  Transition Profile for Circular Cavity, 
Mesh E. 
 
 
Because the unknowns in the one step method are 
assigned directly by the ordered list of 
discontinuities, the normalized transition point 
also corresponds to the percentage of edges to 
which each order is assigned.  The 1/2 transition 
point corresponds to the percentage of edges with 

order less than two in the optimized distribution 
of unknowns.  Thus, the difference between the 
1/2 transition point and the 0/1 transition point is 
the percentage of edges with order one in the 
optimized distribution.  Thus, the bar graphs show 
the percentage of edges assigned to each order.  
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Figure 12.  Comparison of Transition Profiles for 
the Square Cavity, Meshes A, B and C. 
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Figure 13.  Comparison of Transition Profiles for 
the Circular Cavity, Meshes D, E and F. 
 
 
It appears from Figure 12 that the normalized 
transition points of the different meshes for the 
square dielectric-loaded cavity occur at roughly 
the same point.  Figure 13 suggests that the 
normalized transition points of the different 
meshes of the circular cavity also occur at roughly 
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the same point.  This would indicate that the 
optimal normalized transition points are not 
strongly dependent on the number of patches or 
their arrangement.  The transition points of the 
circular cavity do not, however, occur at the same 
points as those for the square cavity.  Thus, there 
are other variables that do change these profiles.  
The similarity of Figures 12 and 13 suggest that it 
might be possible to develop an algorithm to 
assign transition points, leading to an efficient 
implementation of the one step p-refinement 
procedure, applicable to a wider range of 
problems than those considered here.  Additional 
research is required to determine an efficient 
strategy for assigning transition points.   
 
 
Conclusions 
 
Aspects of p-refinement for vector finite elements 
have been investigated for two-dimensional 
cavity applications.  Data suggest that 
representations with mixed polynomial orders 
offer better accuracy than those with a uniform 
polynomial order throughout the mesh.  A one 
step p-refinement strategy is studied where the 
final polynomial order is assigned based on the 
normal field discontinuity in the zero-order 
solution.  Results suggest that the zero-order 
result gives meaningful information about the 
regions to refine, and implies that  such a strategy 
can provide a better accuracy-versus-efficiency 
trade off than methods based on a uniform 
polynomial order. 
 
Two further studies would prove of immediate 
benefit.  First, a study detailing the sensitivity of 
the error versus unknown curves to perturbations 
of the transition points would give an indication 
of to what accuracy the transition points must be 
found in order to reap the gains of a one step p-
refinement method.  The fact that the error trends 
for the one step solutions did not differ 
appreciably from those of the iterative method 
suggests that there may be significant freedom in 
choosing these transition points. 
 
A second route of further study would be to 
attempt to correlate these optimized transition 
points to factors in the order zero results, such as 
the standard deviation of the discontinuities in the 

order zero solution.  If these other factors could 
be identified, it would be possible to implement 
an efficient one step p-refinement scheme.    
 
 
Appendix A:  A set of hierarchical vector basis 
functions for triangles 
 
A set of proposed hierarchical functions for 
triangular cells is presented in Table 1.  These are 
defined in terms of simplex coordinates (L1, L2, 
L3) [6].  The lower-order members of this set are 
similar to the Webb and Forghani functions [8], 
but have been modified to satisfy the Nedelec 
conditions [5].  Functions have been included up 
to order 4/5.  For source-free regions, the intent is 
to use the entire set up to mixed order 0/1, mixed 
order 1/2, mixed order 2/3, and so on.  In other 
words, a refinement would involve increasing the 
order from 1/2 to 2/3, not from mixed 1/2 to 
complete 2.  In each case the highest-order 
members of a given mixed group satisfy the 
Nedelec conditions. 
 
In Table 1, functions of degrees 3 and 4 are 
constructed using polynomial products such as 
(3L1 – L2) (L1 – L2) (L1 – 3L2) in order to enhance 
the linear independence of the functions.  There 
are a number of ways of constructing such 
functions, and it can be argued that (L1 – L2)

3
 is 

an equally valid way of expressing an equivalent 
degree of freedom, although possibly not as 
linearly independent — consider, for instance, the 
similarity in the shapes of (L1 – L2)

2
 and (L1 – 

L2)
4
.  Other specific products could be used. 

 
The vector basis set reported in Table 1 appears to 
be equivalent to the sets of functions recently 
reported by Savage [11], Andersen and Volakis 
[12-13], and Webb [14], if those sets are 
converted in a fairly obvious manner to triangular 
cells.  This equivalence implies that an 
appropriate combination of any of these sets of 
functions conform to Nedelec’s curl-conforming 
spaces.  However, the specific elements of each 
set are different and parameters such as the 
associated matrix condition numbers may be 
different as a consequence. 
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Table 1 

Proposed Hierarchal Vector Bases 

 

mixed order 0/1: L2 ∇L3 – L3 ∇L2 3 edge-based functions 

 L3 ∇L1 – L1 ∇L3  

 L1 ∇L2 – L2 ∇L1 total degrees of freedom = 3 

   

complete order 1: ∇(L1 L2) 3 edge-based functions 

 ∇(L1 L3)  

 ∇(L2 L3) total degrees of freedom = 6 

   

mixed order 1/2: L1 (L2 ∇L3 – L3 ∇L2) 2 cell-based functions 

 L2 (L3 ∇L1 – L1 ∇L3) total degrees of freedom = 8 

   

complete order 2: ∇{L1 L2 (L1 – L2)} 3 edge-based functions 

 ∇{L1 L3 (L1 – L3)} 1 cell-based function 

 ∇{L2 L3 (L2 – L3)}  

 ∇{L1 L2 L3} total degrees of freedom = 12 

   

mixed-order 2/3: L1 L2 (L2 ∇L3 – L3 ∇L2) 3 cell-based functions 

 L1 L3 (L2 ∇L3 – L3 ∇L2)  

 L2 L3 (L3 ∇L1 – L1 ∇L3) total degrees of freedom = 15 

   

complete order 3: ∇{L1 L2 (2L1 – L2) (L1 – 2L2)} 3 edge-based functions, 

 ∇{L1 L3 (2L1 – L3) (L1 – 2L3)} 2 cell-based functions 

 ∇{L2 L3 (2L2 – L3) (L2 – 2L3)}  

 ∇{L1 L2 L3 (L1 – L2)}  

 ∇{L1 L2 L3 (L1 – L3)} total degrees of freedom = 20 

   

mixed-order 3/4: L1 L2 (L1 – L2) (L2 ∇L3 – L3 ∇L2) 4 cell-based functions 

 L1 L3 (L1 – L3) (L2 ∇L3 – L3 ∇L2)  

 L2 L3 (L2 – L3) (L3 ∇L1 – L1 ∇L3)  

 L1 L2 L3 (L3 ∇L1 – L1 ∇L3) total degrees of freedom = 24 
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Table 1, cont. 

Proposed Hierarchal Vector Bases 

 

complete order 4: ∇{L1 L2 (3L1 – L2) (L1 – L2) (L1 – 3L2)} 3 edge-based functions, 

 ∇{L1 L3 (3L1 – L3) (L1 – L3) (L1 – 3L3)} 3 cell-based functions 

 ∇{L2 L3 (3L2 – L3) (L2 – L3) (L2 – 3L3)}  

 ∇{L1 L2 L3 (2L1 – L2) (L1 – 2L2)}  

 ∇{L1 L2 L3 (2L1 – L3) (L1 – 2L3)}  

 ∇{L1 L2 L3 (2L2 – L3) (L2 – 2L3)} total degrees of freedom = 30 

   

mixed-order 4/5: L1L2(2L1 – L2)(L1 – 2L2)(L2∇L3 – 

L3∇L2) 

5 cell-based functions 

 L1L3(2L1 – L3)(L1 – 2L3)(L2∇L3 – 

L3∇L2) 

 

 L2L3(2L2 – L3)(L2 – 2L3)(L3∇L1 – 

L1∇L3) 

 

 L1 L2 L3 (L1 – L2) (L3∇L1 – L1∇L3)  

 L1 L2 L3 (L1 – L3) (L3∇L1 – L1∇L3) total degrees of freedom = 35 
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Abstract: This paper analyzes the limits of applicability 
of the time domain surface impedance concept. 
Numerical results obtained by the boundary element 
formulation employing time domain surface impedance 
boundary conditions (SIBCs) of different orders of 
approximation are compared with experimental data and 
numerical results obtained using the finite element 
method. An analytical formula for evaluation of the error 
due to application of the various SIBCs is proposed. 
 
Keywords: Time Domain Solution, Surface Impedance 
Boundary Conditions, BEM method. 
 
 

1. Introduction 
 

Transient analysis of skin effect eddy current 
problems is of significant interest in practice. There are 
two basic approaches to solve transient problems: (1) by 
obtaining the solution in the frequency domain for the 
time-harmonic exciting source and using inverse Fourier 
transform techniques to calculate the required transient 
data and (2) by formulating the problem directly in the 
time domain. In [1, 2] the arguments in favor of the 
second method are discussed. However, time domain 
techniques remain computationally expensive in most 
cases. The problem is simplified if the electromagnetic 
penetration depth in the conducting body is so short that 
the variation of the field in the direction tangential to the 
body’s surface is much less than the field variation in the 
normal direction, so that the complete equation of the 
electromagnetic field diffusion into the body can be 
replaced by a one-dimensional equation in the direction 
normal to the surface of the body. The solution of the 
reduced equation can be then used to derive the so-called 
surface impedance boundary conditions (SIBC) involving 
only the external fields imposed at the outer surface to 
simulate the material properties of the body and thereby 
to convert a two (or more) media problem into a one 
medium problem. 

Existence of such conditions follows directly from 
Snell’s law of refraction: if the electromagnetic wave 
propagates from a low-conductive medium to a high-

conductive medium, the reflection angle is about 90 
degrees and it practically does not depend on the incident 
angle. Suppose the conducting region is so large that the 
wave attenuates completely inside the region. Then the 
electromagnetic field distribution in the conductor’s skin 
layer can be described as a damped plane wave 
propagating into the depth of the conductor, normal to its 
surface. In other words, the behavior of the 
electromagnetic field in the conducting region may be 
assumed known a priori. The electromagnetic field is 
continuous across the real conductor’s surface so the 
intrinsic impedance of the wave remains the same at the 
interface. Therefore, the ratio yx HE  at the xy-plane of 

the dielectric/conductor interface is assumed to be equal 
to the intrinsic impedance of the plane wave propagating 
in the homogeneous conducting body in the positive z-
direction: 
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where ω is the angular frequency of the field source, δ is 
the electromagnetic penetration depth, and σ, ε  and µ 
are the electrical conductivity, permittivity and magnetic 
permeability of the body, respectively.  

The SIBC for planar surfaces can be applied as long as 
the smallest radius of curvature of the surface is much 
larger than the wavelength inside the conductor. 
Leontovich developed the SIBC with a first order 
correction term that accounted for the curvature of the 
interface [3]. However, usually only the simplified form 
(1) of his condition is quoted so the SIBC for the planar 
surface is also called Leontovich’s condition. A further 
correction has been introduced by Mitzner [4], who 
developed the conditions, now known by his name, for 
any smooth surface of a conducting body. The Mitzner’s 
SIBC is written in the form: 
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where xd  and yd  are the local radii of curvature of the 

coordinate lines. More information about origins of the 
surface impedance concept can be found in [5-7]. 
 Note that the condition (2) includes the term 

containing 2δ  whereas the condition (1) contains δ only. 
It is natural to expect that the SIBC of the approximation 
order exceeding the order of the Mitzner’s approximation 

should include terms containing 3δ  and higher. The way 
to obtain these terms was suggested by Rytov [8] more 
than sixty years ago. He applied the perturbation method 
and used the following time-harmonic solution of the 
one-dimensional equation of the magnetic field diffusion 
into a perfect conductor as an initial approximation 
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where 
0=z

yH is the tangential magnetic field at the 

surface of the body. By substituting the solution into 
Maxwell's equations for the conducting region, Rytov 
derived the boundary conditions at the planar surface of a 
highly conducting body in the following form of 
asymptotic expansions in the skin depth taken as a small 
parameter 
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The main advantage of the expression in (3) is that the 
variation of the magnetic field in the direction tangential 
to the body surface is taken into account under the 
concept of the surface impedance based on the solution 
of the reduced 1-D problem in the direction normal to the 
body surface. The generality of the condition (3) is not 
appreciated since only the SIBC of lower order of 
approximation were used until recently. 
 The SIBC concepts can also be used in transient 
problems, when, for instance, the duration of the incident 
pulse is so short that the field has no time to diffuse 
deeply into the body and remains concentrated in the thin 
layer near the body surface. The simplest SIBC in the 
time domain is obtained directly from (1) by using the 
inverse Laplace transformation and written in the form of 
the convolution with respect to time: 
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Although condition (4) is mostly applied in analysis of 
high-frequency problems using the finite difference time 
domain method [9-11], it was also used in combination 
with the finite element method [12] and the boundary 
integral equation method [13-15].  
 Following the perturbation approach proposed by 
Rytov, the following time domain SIBC of high order of 
approximation has been developed [16]: 
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Here * denotes a time domain convolution product )(tU  

is the unit step function and time-dependent functions kT̂  

are defined as follows: 
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where ( )tU ′  is the delta function. 

In some cases it is more convenient to use another SIBC 
relating normal and tangential components of the 
magnetic field on the conductor’s surface: 
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( ) ( ) ,2121
1

−−= ttT πσµ   ( ) ( ) ( ),2 σµtUtT =  

( ) .212133
3 tT

−= µπσ          (6b) 
 
Although conditions (5) and (6) allow for such effects as 
curvature of the surface and variation of the field in the 
tangential direction, the SIBC (4) of lowest 
(Leontovich’s) order of approximation only has been 
used until now in the time domain calculations (current 
situation in frequency domain analysis is better: 
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Mitzner’s SIBC (2) is widely used). The matter has 
uncertain limits of applicability of the surface impedance 
concept. Indeed, under definition the surface impedance 
boundary conditions can be used when the skin depth δ  
is much less than characteristic size D of the conductor’s 
surface: 

 
 D<<δ ; ( )condsourceyx RRddD ,,,min=    (7) 

 
where sourceR and condR  are the distances to the source 

and or neighboring conductor (if the system of 
conductors is considered), respectively. Condition (7) is 
usually used to check applicability of the concept. But it 
does give us neither an approximation error due to 
application of SIBC nor the rule which SIBC (for 
example, (4) or (5)) should be used in a given problem. 
In addition, SIBCs have been originally derived for 
smooth surfaces whereas real geometries include corners 
and edges. Although rigorous and practical technique to 
extend the concept to this kind of problems has not been 
developed so far, in practice, SIBCs are frequently 
applied to all kinds of bodies supposing that the errors 
due to singularities near edges are local.  The situation is 
worse in the time domain due to lack of accurate 
mathematical definition for the skin depth in the transient 
case. Thus detailed validation of the SIBCs is of great 
importance for the concept. This problem has been 
frequently considered in the past [17-19], but almost all 
reported works are focused on the frequency domain 
SIBCs of low order of approximation. According to our 
knowledge, time domain SIBCs of high orders have not 
been validated using experimental methods so far. In the 
present paper limits of applicability of the low-frequency 
high order time domain SIBCs for homogeneous 
conductors are investigated by using experimental and 
numerical techniques. 
 
 

2. Statement of Transient Problem 
 

Consider a pair of identical long parallel aluminum 

( ( ) 171082.3 −Ω×= mσ ) conductors of circular cross 

section of the radius D equal to 30 mm. Distance between 
centers of the conductors is equal to 120 mm. Conductors 
are connected in series and the circuit is fed by a dc 
voltage source that provides equal and oppositely 
directed currents )(1 tI  and )(2 tI  flowing through the 

conductors: 
 

       )()( 21 tItI −= .       (8) 

 
The duration of the source current has been chosen so 
that  
 

       2Dσµτ <<         (9) 

 
where τ  is the pulse duration. Clearly, (9) is time 
domain analog of (7).  
 
 
3. Boundary Element Formulation Employing Time 

Domain SIBC 
 
Presence of condition (9) enables the surface 

impedance concept being applied. It is natural to consider 
the problem as two-dimensional in the plane of cross 
sections of the conductors. The magnetic scalar potential 
in free space can be introduced as follows: 
 

       φ∇−= filHH
rr

      (10) 

 

where ∑ =
=

N

i

fil
i

fil HH
1

rr
 and fil

iH
r

  is the magnetic field 

created by a filamentary conductor carrying the current 

iI  and placed at position ir
r

 and it is expressed by the 

Biot-Savart law as 
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Hence in free space the governing equation is 
 

02 =∇ φ         (12) 

 
and application of the boundary element method yields 
the following set of integral equations over the contours 
of cross sections of conductors: 
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( )HHnn fil
rrvr
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Here iL  is the contour of the cross section of the 

conductor i, s=s(x,y) is the coordinate directed along the 
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contour of the conductor’s cross section, n
r

 is the normal 
unit vector directed inside a conductor, c is the 
coefficient depending on the shape of the contour. G and 
K are the fundamental solutions of the two-dimensional 
Laplace and diffusion equations, respectively [20]: 
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with Ft  the final time of analysis. 

Solution of (13)-(16) yields distributions of φ , 

)( Hn
rr

× , )( Hn
rr

⋅  and nHn
rrr

∂×∂ )( over the contour of the 

conductor’s cross sections. Hence, for our problem, ne 
being the number of elements in which the contour of 
each conductor is discretized, the system to be solved is a 
square system of dimension 5·2ne. However, the number 
of unknowns can be reduced by application of SIBC (6) 
that in our 2-D case is written in the form: 
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SIBC (18) can be used instead of integral equations (14)-
(15) so the BEM-SIBC formulation consists of equations 
(13), (16) and (18) and can be solved with respect to φ , 

)( Hn
rr

× , )( Hn
rr

⋅ . If ne is the total number of nodes, 3 

linear systems of ne equations and ne unknowns must be 
solved in order to calculate the scalar potential over the 
nodes.  

 
 

4. Experimental Setup 
 

The experimental set-up is described in Fig. 1. The 
transient is obtained closing a circuit breaker so that the 
resulting source current is exponential (see Figure 2). 
Commercial magnetoresistive sensors (Philips KMZ10A) 
of nominal sensitivity S = 80 mV/(kA/m) lie over the 
conductors, as described in Fig. 1. Sensor No 1 is in 
position (-121 mm, 54.2 mm), sensor No. 2 is in position 
(-73 mm, 54.2 mm) and sensor No. 3 is in position (-25 
mm, 54.6 mm). Measurement standard uncertainty of the 
positions has been estimated 0.5 mm. Sensors are 
oriented with their sensitivity axis parallel to x-axis. Six 
low drift, high accuracy instrument amplifiers (INA 128, 

Burr Brown) have been employed in order to process and 
amplify the signals generated by each magnetoresistive 
sensor. The output signals are sampled and acquired by 
an 8 channels data acquisition system, with 12-bit 
resolution and 32 ksamples/s rate for each channel 
 

 

 

 
 
 

5. Comparison of Numerical and Experimental 
Results 

 
In this section the experimental data together with 

numerical results obtained using BEM formulation 
employing SIBCs of different orders of approximation 
and commercial finite element software [21] are 
presented. Figures 3, 4 and 5 give the magnetic fields at 
the position of sensors 1, 2 and 3, respectively. Figures 
6,7 and 8 report the difference between calculated and 
measured fields. 

In Figures 9, 10 and 11 distributions of the tangential 
magnetic field over the surface of the conductor obtained 
using PEC, Leontovich’s, Mitzner’s and Rytov’s 
boundary conditions are compared with data obtained 
using commercial FEM software. BEM code uses 80 
nodes per conductor, numbered starting from A along s, 
and constant elements. From the results shown in Figures 

120 mm 

60 mm 

I1 (t) 

x 

y 

3 2 1 

I2 

Magnetic sensors 

60 mm 

Fig. 1. Experimental set-up. 

A 
s 

Fig. 2. Current waveform I1(t). 

79Barmada, et al.: Use of Surface Impedance Boundary Conditions in Time Domain Problems



3-11 it can be concluded that the SIBC formulation 
allows an efficient and accurate simulation of the test 
case. The hypothesis of perfect electric conductor gives 
definitely worse results. Increasing the order of the SIBC 
formulation, numerical results are closer and to the FEM 
solution and to the experimental measurements, 
considering uncertainty in the latter. However, it is 
unclear a priori, until which times BEM-SIBC 
formulation may be used. For this purpose an analytical 
formula giving approximate limit of applicability of the 
surface impedance concept is derived in the next Section. 
Note that the error (difference between results obtained 
using BEM-SIBC and FEM) is higher in Figures 9-11 
than in Figures 3-8. It occurs because the field in free 
space has been calculated by performing integration of 
the scalar potential over the surface of the conductors that 
reduces computational error. 

 

 
Fig. 3 The magnetic field near the sensor No. 1. 

 
Fig. 4 The magnetic field near the sensor No. 2. 

 
Fig. 5  The magnetic field near the sensor No. 3. 

 
Fig. 6 Difference between computed and measured 

fields in the case of sensor No. 1. 

 
Fig. 7 Difference between computed and measured 

fields in the case of sensor No. 2. 
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Fig. 8 Difference between computed and measured 

fields in the case of sensor No. 3. 
 

 
Fig. 9 Distribution of the tangential magnetic field over 

the conductor’s surface at 0.006 s. 

 
Fig. 10 Distribution of the tangential magnetic field over 

the conductor’s surface at 0.012 s. 

 

 
Fig. 11 Distribution of the tangential magnetic field over 

the conductor’s surface at 0.025  s. 
 
 

6. Conditions of Applicability 
 
Since the surface impedance approach gives the 

solution in the form of asymptotic expansions, a natural 
question is limits of their applicability. Basic condition 
giving an error of approximation of the surface 
impedance boundary condition is derived from (9) and 
written in the form: 

 

     [ ] 1)(
2/2 <<=

kk Dp σµτ     (19) 

 
where values of k equal to 1,2,3 correspond to PEC-limit, 
Leontovich’s SIBC, Mitzner’s SIBC and Rytov’s SIBC 
respectively. Small parameter p is combination of two 
values, τ  and D. In our experimental setup the duration 
τ  of the pulse may vary whereas the conductor’s radius 
D is constant. Thus condition (19) can be represented in 
the form: 
 

   2/kk
k ταε = , 2/12 )( −= Dσµα  ,   k=1,2,3  (20) 

 
where kε  is the error of approximation k. Figure 10 

shows distribution of the errors corresponding to PEC-
limit, Leontovich’s, Mitzner’s and Rytov’s 
approximations. For example, application of Leontoivh’s 
SIBC for simulations with the pulse duration equal to 
0.0065 s leads to the 10% error. Use of Rytov’s SIBC 
allows to perform simulations for longer pulse of the 
duration equal to 0.021 s with the same error.  
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Fig. 12.   The approximation error as a function of the 
pulse duration. 

 
Note that the disagreement between results obtained 

using the SIBCs and measured data is actually less than 
the error predicted by the formula (20) since it does not 
take into account such effects as symmetry of the 
problem, shape of the pulse and the proximity effect. 
Nevertheless, (20) gives quick evaluation of the 
applicability of the surface impedance concept for a 
given problem and can be used for selection of the 
approximation order. 

 
 

7. Conclusions 
 

Experimental and numerical verification of the time 
domain surface impedance concept has been performed 
by simulation and measurement of the transient 
electromagnetic field around a system of two long 
parallel conductors with oppositely directed currents. The 
time domain surface impedance boundary conditions of 
different orders of approximation have been coupled with 
the boundary element code based on the fundamental 
solution in free space (the Laplace equation). The results 
have been compared with measured data and numerical 
results obtained using the boundary element code 
employing the fundamental solutions of the Laplace and 
diffusion equations. A formula for quick evaluation of 
applicability of the surface impedance concept for a 
given problem has been proposed and analyzed.  
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ABSTRACT 
 

In this paper, a new method is presented for analyzing 
the transient electromagnetic response from a 
three-dimensional (3-D) perfectly electric conducting 
body using the time-domain electric field integral 
equation (TD-EFIE). Instead of the conventional 
marching-on in time (MOT) technique, the solution 
method in this paper is based on the Galerkin’s method 
that involves separate spatial and temporal testing 
procedure. Triangular patch basis functions are used for 
spatial expansion and testing functions for arbitrarily 
shaped 3-D structures. The time-domain unknown 
coefficient is approximated as an orthonormal basis 
function set that is derived from the Laguerre functions. 
These basis functions are also used as the temporal 
testing. With the representation of the derivative of the 
time-domain coefficient in an analytic form, the time 
derivative of the vector potential in the TD-EFIE can be 
handled analytically. We also propose an alternative 
formulation to solve the differential form of the 
TD-EFIE. Two methods presented in this paper result in 
very accurate and stable transient responses from 
conducting objects. Detailed mathematical steps are 
included and representative numerical results are 
presented and compared. 
 
I. INTRODUCTION 

For a time-domain integral equation formulation, the 
MOT method is usually employed [1]. A serious 
drawback of this algorithm is the occurrence of late-time 
instabilities in the form of high frequency oscillation. 
Several MOT formulations have been presented for the 
solution of the TD-EFIE to calculate the electromagnetic 
scattering from arbitrarily shaped three-dimensional 
structures using triangular patch modeling technique. An 
explicit solution has been presented by differentiating 
the TD-EFIE and using second order finite difference 
[2]. But the results become unstable for late times. Its 
late time oscillations could be eliminated by 
approximating the average value of the current [3]. In 
addition, to overcome this, a backward finite difference 
approximation for the magnetic vector potential term has 

been presented for the explicit technique [4]. Recently 
an implicit scheme has been proposed to improve the 
stability problem [5]-[8], in addition matrix pencil is 
used in [9] to extrapolate the late time data. Even though 
employing an implicit technique, the accuracy and 
stability are dependent on the choice of the time step. 

In this paper, we present a new technique to obtain 
accurate and stable responses of the TD-EFIE for 
arbitrarily shaped 3-D conducting objects using the 
associate Laguerre polynomials as temporal basis 
functions. The associate Laguerre series is defined only 
over the interval from zero to infinity and, hence, are 
considered to be more suited for the transient problem, 
as they naturally enforce causality [10], [11]. Using the 
associate Laguerre polynomials, we construct a set of 
orthogonal basis functions. Transient quantities that are 
functions of time can be spanned in terms of these 
orthogonal basis functions. The temporal basis functions 
used in this work are completely convergent to zero as 
time increases to infinity. Therefore, transient response 
spanned by these basis functions is also convergent to 
zero as time progresses. Using the Galerkin’s method, 
we introduce a temporal testing procedure, which is 
similar to the spatial testing procedure of the method of 
moments (MoM). By applying the temporal testing 
procedure to the TD-EFIE, we can eliminate the 
numerical instabilities. Instead of the MOT procedure, 
we employ a marching-on in-degree manner as 
increasing the degree of temporal testing functions. 
Therefore, we can obtain the unknown coefficients by 
solving a matrix equation recursively with a finite 
number of basis functions. The minimum degree or 
number of basis functions is dependent on the time 
duration and the frequency bandwidth product of an 
incident wave. We also propose an alternative 
formulation to solve the differential form of TD-EFIE, 
which has been used in [2]. 

This paper is organized as follows. In the next section, 
we describe the general TD-EFIE and set up a matrix 
equation by applying MoM with spatial and temporal 
testing procedure. In section III, an alternative technique 

1054-4887 © 2004 ACES

84 ACES JOURNAL, VOL. 19, NO. 2, JULY 2004

mailto:ychung05@mailbox.syr.edu
mailto:myuan@syr.edu


for TD-EFIE formulation is presented. In section IV, we 
discuss some numerical results. Finally, some 
conclusions based on this work are presented in section 
V. 

 
II. FORMULATION 
In this section we discuss the TD-EFIE and derive a 
matrix equation to obtain induced currents on the 
conducting scatterer. Let S denote the surface of a closed 
or open conducting body illuminated by a transient 
electromagnetic wave. Since the total tangential electric 
field is zero on the surface for all times, we have 
                        (1) i s

tan
( , ) ( , ) 0, ,t t r+ =⎡ ⎤⎣ ⎦E r E r S∈

where Ei is the incident field and ES is the scattered field 
due to the induced current J. The subscript ‘tan’ denotes 
the tangential component. The scattered field is 

             s ( , ) ( , ) ( , ),t t Φ t
t

∂
= − −∇

∂
E r A r r                        (2) 

where  and  are the magnetic vector and the 
electric scalar potential given by, respectively, 
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In (3) and (4), R ′= −r r  represents the distance 
between the arbitrarily located observation point r and 
the source point , ′r /t R cτ = −  is the retarded time, 
µ and ε are permeability and permittivity of the space, 
and is the velocity of propagation of the 
electromagnetic wave in that space. The electric surface 
charge density is related to the surface current density 

 by the equation of continuity 

c

q
J

                    ( , ) ( , )t q
t

∂
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J r r t .                       (5) 

Combining (1) and (2) gives 
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Equation (6) with (3) and (4) constitutes a TD-EFIE 
from which the unknown current  may be determined. J
 
1. SPATIAL TESTING PROCEDURE 

The surface of the structure to be analyzed is 
approximated by planar triangular patches. As in [12], 
we define the vector basis function associated with the 
n-th common edge as  
                                                (7-1) ( ) ( ) ( )n n n

+ −= +f r f r f r
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nn
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                      (7-2) 

where  and nl nA±  are the length of the edge and the area 

of triangle nT ± . n

±ρ  is the position vector defined with 

respect to the free vertex of . The electric current J  
on the scattering structure may be approximated in terms 
of the vector basis function as 

nT ±

                                                (8) 
1

( , ) ( ) ( ),
N

n n
n

t J t
=

= ∑J r f r

where  represents the number of common edges, 
discounting the boundary edges in the triangulated 
model of the conducting object. When (8) is used in (6), 
we meet a time integral term from the relation (4) and 
(5). For convenience to avoid this problem and to handle 
the time derivative of a vector potential analytically, we 
introduce a new source vector  defined by 

N

( , )te r

                          ( , ) ( , ),t
t

∂
=
∂

J r e r t                            (9) 

where the relation between this source vector and charge 
density is given as 
                        ( , ) ( , )q t t= −∇ ⋅r e r .                         (10) 
By using (8) and (9), we may express  

                      .                        (11) 
1

( , ) ( ) ( )
N

n n
n

t e t
=

= ∑e r f r

We now solve (6) by applying Galerkin’s method in 
the MoM context and hence the testing functions are 
same as the expansion functions. By choosing the spatial 
expansion function  also as the spatial testing 
functions, we have from (6) 

( )mf r

   
i

( ), ( , ) ( ), ( , )

( ), ( , ) ,

m m

m

t Φ t
t

t

∂
< > + < ∇ >

∂

=< >

f r A r f r r

f r E r

         (12) 

where 1, 2, , .m N= The next step in the MoM 
procedure is to substitute the unknown expansion 
functions defined in (11) into (12). In computing the 
inner product integrals in (12), we assume that the 
unknown quantity does not appreciably change within a 
triangle patch so that 

    ,
pq

pq pq cpmn
mn mn m n

R R
t t R

c c
τ τ= − → = − = −r r cq         (13) 

where  and  are + or -.  is the position vector of 

the center in triangle 

p q c

m

±r

nT ± . With the assumption (13) and 
using (3), (4), and (9)-(11), (12) can be written as 
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2

2
1 ,

( ) ( ) ( ),
pqN

pq pq pqmn
mn n mn n mn m

n p q

d b
a e e V t

dt
µ τ τ

ε=

+ =
⎡ ⎤
⎢ ⎥⎣ ⎦

∑∑                

                                                             (14) 

1

0
0

1
( ) ( )

2
,

i

i i k
k

d
t f t dt f f

d t
φ

−
∞

=

= + ∑          

1, 2, , ,m = N
where 

       
1 ( )

( )
4

q
pq p n
mn mS S

a d
Rπ

′
′= ⋅∫ ∫

f r
f r S dS                       (15) 

   
1 (

( )
4

q
pq p n

mn mS S
b d

Rπ

′ ′∇ ⋅ ′= ∇ ⋅∫ ∫
f r

f r
)

S dS                    (16) 

               .                        (17) i( ) ( ) ( , )m mS
V t t dS= ⋅∫ f r E r

The integrals (15)-(17) may be evaluated by the method 
described in [12] and [13]. 
 
2. TEMPORAL BASIS FUNCTIONS 

Consider the set of functions [14], 

( ) ( ), 0 , 0, 1, 2,
!

t j
j t

j j

e d
L t t e t j

j dt
−= ≤ < ∞ = .      (18) 

These are the Laguerre functions of degree . They are 
causal, i.e., exist for . They can be computed in a 
stable fashion recursively through 

j
0t ≥

0 ( ) 1L t =                                     (19-1) 

1( ) 1L t t= −                                (19-2) 

[ ]1

1
( ) (2 1 ) ( ) ( 1) ( )j jL t j t L t j L t

j −= − − − − 2j ≥

j

2j− , .                                                                                                                            

(19-3) 
The Laguerre functions are orthogonal as 

      .                   (20) 
0

1,
( ) ( )

0,
t

i j ij

i j
e L t L t dt

i j
δ

∞ −
=

= =
≠

⎧
⎨
⎩

∫
An orthonormal basis function set can be derived from 
the Laguerre function through the representation 
                              .                          (21) / 2( ) ( )t

j t e L tφ −=

These functions can approximate a causal response quite 
well. A causal electromagnetic response function ( )f t  
at a particular location in space for  can be 
expanded using (21) as  

0t ≥

                            .                          (22) 
0

( ) ( )j j
j

f t f tφ
∞

=

= ∑
By multiplying a function ( )f t  with (21) and 
integrating from zero to infinity, which we call a 
Laguerre transform here, we get 

                           .                          (23) 
0

( ) ( )i t f t dt fφ
∞

=∫ i

In obtaining (23), the orthogonal relation (20) was used. 
Also, we can obtain the result of the Laguerre transform 
for the derivative of the function ( )f t  as 

         ∫                      (24) 

where (0) 0f =  was assumed and  was used. 
Using a similar relation between (22) and (23), we can 
expand the derivative of the function 

( ) 0iφ ∞ =

( )f t  using (24) as 

        
1

0 0

1
( ) ( )

2

j

j k j
j k

d
f t f f t

d t
φ

∞ −

= =

= +⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ .                   (25) 

Similarly, if we assume , the result of 
expanding the second derivative of the function 

' (0) 0f =
( )f t  

can be obtained as 

     
2 1

2
0 0

1
( ) ( ) ( )

4

j

j k
j k

d
f t f j k f t

d t
φ

∞ −

= =

= + −⎡⎛ ⎞⎤
⎜ ⎟⎢ ⎥⎣⎝ ⎠⎦

∑ ∑ j .  (26) 

 
3. TEMPORAL TESTING PROCEDURE 

The transient coefficient introduced in (11) can be 
expanded as  

                                                    (27) ,
0

( ) ( ),n n j j
j

e t e stφ
∞

=

= ∑
where s  is a scaling factor. By controlling this factor s , 
the support provided by the expansion can be increased 
or decreased. Using (26), therefore, the expression of 
expanding the second derivative of the coefficient is 
given as 

2 1
2

, ,2
0 0

1
( ) ( ) ( )

4

j

n n j n k j
j k

e t s e j k e st
dt

φ
∞ −

= =

= + −⎡ ⎤
⎢ ⎥⎣ ⎦

∑ ∑ 
d

.     (28) 

Substituting (27) and (28) into (14) and taking a 
temporal testing with ( )i stφ , which is the Laguerre 
transform defined in (23), we have 

2

,

,
1

1 , 0 2

,
0

4

( )

,

pq
pq mn
mn n j pqN

mn
ij m i

j
n p q j pq

mn n k
k

s b
a e

R
I s V

c
s a j k e

µ
ε

µ

∞

−
= =

=

+ +

=

−

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥ ⎛ ⎞⎝ ⎠⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎝
⎢ ⎥⎣ ⎦

∑∑∑
∑ ⎠

 

(29) 
where 

0
( ) ( );

pq pq

mn mn
ij i j

R R
I s st st s

c c
φ φ

∞

= −
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ d st

st

           (30) 

                 .                       (31) , 0
( ) ( ) ( )m i i mV st V t dφ

∞

= ∫
Now, we consider the integral defined in (30). For 
simplicity, we rewrite (30) as 

             
0

( ) ( ) ( )ij i jI y x x yφ φ
∞

= −∫ dx .                       (32) 

Through the following change of variable z x y= −  in 
(32), we have 
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       / 2( ) ( ) ( )y z

ij i jy
I y e e L z y L z dz

∞− −

−
= +∫ .                   (33) 

Using the formula (8.971) and (8.974) in [15], we obtain 

   [ ]1

0

( ) ( ) ( ) ( )
i

i k i k i k

k

L z y L z L y L y− − −
=

+ = −∑ .               (34) 

Substituting (34) into (33), we obtain 

[ ]/ 2

1

0

( ) ( ) ( ) ( ) ( ) .
i

y z

ij i k i k k jy
k

I y e L y L y e L z L z dz
∞− −

− − − −
=

= −∑ ∫
 (35) 

Because the Laguerre function is defined for 0z ≥ , the 
lower limit of the integral in (35) may be changed from 

y−  to zero, and the integral can be computed easily 

using (20). Finally, we have 

 
[ ]/ 2

1
( ) ( ) ,

( )
0,

.
y

i j i j

ij

e L y L y j i
I y

j i

−

− − −− ≤
=

>

⎧
⎨
⎩

           (36) 

We note that 0
ij

I =  when j i> . Therefore we can 

write the upper limit for the summation symbol as i  
instead of ∞  in (29). In this result, moving the terms 

including 
,n j

e , which is for j i< , to the right-hand side, 

we obtain 

        

2

,

1 ,

21

, ,

1 , 0

4

4

pq pqN
pq mn mn

mn n i ii

n p q

pq pqN i
pq mn mn

m i mn n j ij

n p q j

s b R
a e I s

c

s b R
V a e I s

c

µ
ε

µ
ε

=

−

= =

+ =

− +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑

∑∑∑
 

        
1

2

,

1 , 0 0

( )
pqN i j

pq mn

mn n k ij

n p q j k

R
s a j k e I s

c
µ

−

= = =

− −
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑∑ ∑ .      (37) 

Rewriting (37) in a simpler form, we have 

        , , ,
1

, 1, 2, , ,
N

mn n i m i m i
n

e V P m Nα
=

= + =∑ L    (38) 

where 

       
2

,

exp
4 2

pq pq

pq mn mn

mn mn

p q

s b R
a s

c
α µ

ε
= + −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑           (39) 

2 1

,

0

,
1

1 , 2

,

0 0

4

( )

.

pq pqi
pq mn mn

mn n j ij
N

j

m i pqi j
n p q pq mn

mn n k ij

j k

s b R
a e I s

c
P

R
s a j k e I s

c

µ
ε

µ

−

=

−
=

= =

+ +

= −

−

⎡⎛ ⎞ ⎛ ⎞ ⎤
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎣ ⎝ ⎠ ⎦

∑
∑∑

∑∑
 

(40) 

In obtaining (39), we used ( ) / 2y

ii
I y e−=  from (36). 

Finally, we can write (38) in a matrix form as 

    [ ] , ,
, 0, 1, ,

mn n i m i
e iα γ= = ∞⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ L ,                    (41) 

where
, , ,m i m i m i

V Pγ = + . It is important to note that [ ]
mn

α  

is not a function of the degree of the temporal testing 

function. Therefore, we can obtain the unknown 
coefficients by solving (41) by increasing the degree of 
the temporal testing functions. The coefficients of the 

current ( )
n

J t  oscillate for low degrees and die down for 

high degrees. We can solve the coefficients recursively 
until they are small enough. Therefore, this formulation 
is marching on in degree as opposed to marching –on-in 
time for an implicit procedure. The matrix equation is 
first solved for i = 0 and then continued for different 
values for i which corresponds to different order of the 
Laguerre functions. 

We need the minimum degree or number of temporal 
basis functions, M  in computing (41). This parameter is 
dependent on the time duration of the transient response 
and the bandwidth of the excitation signal. We consider 
a signal with a bandwidth B in frequency-domain and 

the duration 
f

T in the time-domain. When we represent 

this signal by a Fourier series, the range of the sampling 
frequency is B k f B− ≤ ∆ ≤ , where k  is an integer and 

1/
f

f T∆ = . So we get /
f

k B T≤ . Hence the minimum 

number of temporal basis functions becomes 

2 1
f

M BT= + . We note that the upper limit of the 

integral in (31) can be replaced by a time duration 
f

sT  

instead of infinity. 
 
4. CURRENT AND FAR FIELD 

By solving the matrix equation (41) in a marching-on 
in degree manner, the electric transient current 
coefficient in (8) is expressed using the relation (9) and 
(11) with (25) as 

  
1 1

, ,

0 0

1
( ) ( ) ( )

2
.

M j

n n n j n k j

j k

d
J t e t s e e st

dt
φ

− −

= =

= = +⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑     (42) 

Once the current coefficients have been obtained, we can 
compute the far field. We explain the analytic method to 
compute the far field directly by using the coefficient 

( )
n

e t  obtained from (41). Neglecting the scalar potential 

term, the far field is given by 

                  s ( , ) ( , )t t
t

∂
≈ −

∂
E r A r .                           (43) 

Substituting (3), (9), and (11) into (43) with (7-1), we get 

   
2

s

2
1

( )
( , ) ( )

4
.

qN

n

nS
n q

d
t e dS

dt R

µ
τ

π =

′
′≈ − ∑∑∫

f r
E r         (44) 

We make the following approximation in the far field: 
ˆR r ′≈ − ⋅r r  for the time retardation term /t R cτ = − , 

R r≈  for the amplitude term 1 / ,R  where ˆ / r=r r  is a 
unit vector in the direction of the radiation. The integral 
in (44) is evaluated by approximating the integrand by 

the value at the center of the source triangle q

n
T . 
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Substituting (7-2) into (44) and approximating cq

n
′ ≈r r  

and q cq

n n
≈ρ ρ , we obtain 

2

s

2
1

( , ) ( )
8

,
N

cq q

n n n n

n q

d
t l e

r dt

µ
τ

π =

≈ − ∑ ∑E r ρ                    (45) 

where ˆ( ) /q cq

n n
t r cτ ≈ − − ⋅r r  and  

 
2 1 1

2

, ,2
0 0

1
( ) ( ) ( )

4
.

M j
q

n n j n k j n

j k

d
e t s e j k e s

dt
φ τ

− −

= =

= + −⎡ ⎤
⎢ ⎥⎣ ⎦

∑ ∑   (46) 

 
 
III. ALTERNATIVE FORMULATION 

In this section, we present an alternative method of 
solving TD-EFIE as given in (1), which has been 
extensively used in the literature. The goal is to see 
which form provides more accurate solution as this 
method contains double derivatives. By differentiating 
(6), we get 

2

i

2

tantan

( , ) ( , ) ( , ) ,t Φ t t
t t t

∂ ∂ ∂
+ ∇ =

∂ ∂ ∂
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

A r r E r

.S∈r .             (47) 
In a similar manner as in (12), we obtain the result of the 
spatial testing from (47) as 

  

2

2

i

( ), ( , ) ( ), ( , )

( ), ( , ) .

m m

m

t Φ t
t t

t
t

∂ ∂
< > + < ∇ >

∂ ∂

∂
= < >

∂

f r A r f r r

f r E r

(48) 

Substituting (3)-(5), (7), and (8) into (48) and with the 
use of (13), we get 

  
2

2
1 ,

( ) ( ) ( ),
pqN

pq pq pqmn

mn n mn n mn m

n p q

d b
a J J V t

dt
µ τ τ

ε=

+ =
⎡ ⎤
⎢ ⎥⎣ ⎦

∑∑    (49) 

where pq

mn
a  and pq

mn
b  are same as to (15) and (16), 

respectively, and 

                    ( ) ( ) ( , ) .i

m mS
V t t dS

t

∂
= ⋅

∂∫ f r E r              (50) 

The transient current coefficient can be written as 

                        
,

0

( ) ( ),
n n j j

j

J t J stφ
∞

=

= ∑                            (51) 

where s  is a scaling factor. Using (26), the second 
derivative of the current coefficient is given as  

 
2 1

2

, ,2
0 0

1
( ) ( ) ( )

4
.

j

n n j n k j

j k

d
J t s J j k J st

dt
φ

∞ −

= =

= + −⎡ ⎤
⎢ ⎥⎣ ⎦

∑ ∑   (52) 

Substituting (51) and (52) into (49) with the temporal 

testing with ( )
i

stφ , we get 

   

2

,

,
1

1 , 0
2

,

0

4
,

( )

pq

pq mn

mn n j pqN

mn

ij m i
j

n p q j
pq

mn n k

k

s b
a J

R
I s V

c
s a j k J

µ
ε

µ

∞

−
= =

=

+

=

+ −

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥ ⎛ ⎞⎝ ⎠⎢ ⎥ ⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

∑∑∑
∑

(53) 

where 
,m i

V  is of the same form given in (31), but ( )
m

V t  

is different. Changing the upper limit of the summation 
symbol to i  instead of ∞  in (53) and moving the terms 

including 
,n j

J , which is for j i< , to the right-hand side, 

we obtain 
2

,

1 ,

21

, ,

1 , 0

4

4

pq pqN
pq mn mn

mn n i ii

n p q

pq pqN i
pq mn mn

m i mn n j ij

n p q j

s b R
a J I s

c

s b R
V a J I s

c

µ
ε

µ
ε

=

−

= =

+

= − +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑

∑∑∑
 

          
1

2

,

1 , 0 0

( )
pqN i j

pq mn

mn n k ij

n p q j k

R
s a j k J I s

c
µ

−

= = =

− −
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑∑ ∑ .   (54) 

Rewriting (54) in a simple form, we have 

               
, , ,

1

, 1, 2, , ,
N

mn n i m i m i

n

J V P m Nα
=

= + =∑ L        (55) 

where 
mn

α  is same as (39) and 
2 1

,

0

,
1

1 ,
2

,

0 0

4

( )

.

pq pqi

pq mn mn

mn n j ij
N

j

m i
pqi j

n p q
pq mn

mn n k ij

j k

s b R
a J I s

c
P

R
s a j k J I s

c

µ
ε

µ

−

=

−
=

= =

+

= −

+ −

⎡⎛ ⎞ ⎛ ⎞ ⎤
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞

⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑
∑∑

∑∑
  (56) 

Lastly, we can write (55) in a matrix form as 

                           [ ][ ] [ ], ,
,

mn n i m i
Jα γ=                             (57) 

where
, , ,

.
m i m i m i

V Pγ = +  By solving (57) by a 

marching-on in degree algorithm with M  temporal 
basis functions, we can obtain the current coefficient 
directly, which is given as 

                         
1

,

0

( ) ( ).
M

n n j j

j

J t J stφ
−

=

= ∑                           (58) 

Substituting (3) and (8) into (43) with (7), and using 
(25), the far field is given as 

         s

1

( , ) ( )
8

,
N

cq q

n n n n

n q

d
t l J

r dt

µ
τ

π =

≈ − ∑ ∑E r ρ              (59) 

where 

       
1 1

, ,

0 0

1
( ) ( )

2
.

M j
q q

n n n j n k j n

j k

d
J s J J s

d t
τ φ τ

− −

= =

= +⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑      (60) 

The formulation provided in this section computes the 

coefficients of ( )
n

J t  directly. We don’t need to convert 

( )
n

e t  to ( )
n

J t  by (42). However, this formulation 
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requires the derivative of the incident wave as in (50). 
Gaussian wave is used extensively in transient analysis, 
and we have the analytic form of derivative of Gaussian 
wave. Two formulations will obtain the same 
performance by using Gaussian wave, as shown in the 
next section. If we have an arbitrary input, the 
formulation introduced in section II is preferred. 

It’s important to notice that the minimum degree can 
be obtained at the optimal scaling factor s. We can 
estimate the range for convergence and the optimal 
scaling factor s by B and Tf, and solve Jn,i recursively, 
until Jn,i converges to zero ([16]). Stable performance 
can be obtained by this way. 

 
IV. NUMERICAL EXAMPLES 

In this section, we present the numerical results for 
three representative 3-D scatterers, viz. a sphere, a cube, 
and a cylinder, as shown in Fig. 1. The scatterers are 
illuminated by a Gaussian plane wave, in which the 
electric field is given by 

                     
2i

0

4
( , ) ,t

T
γ

π
−=E r E e                            (61) 

                       0

4 ˆ(ct ct
T

γ = − − ⋅r k),                            (62) 

where  is the unit vector in the direction of wave 
propagation,  is the pulse width of the Gaussian 
impulse, and  is a time delay which represents the time 
at which the pulse peaks at the origin. In this work, the 
field is incident from  and  with 

k̂
T

0t

0φ = 0θ = ˆ ˆ= −k z  

and . To avoid problems with the internal 
resonance of the structure, we use a pulse of width 

0
ˆ=E x

T = 8 
lm with 12 lm, which has a frequency spectrum of 
125 MHz. The unit ‘lm’ denotes a light meter. A light 
meter is the length of time taken by the electromagnetic 
wave to travel 1 m. We set  and 

0ct =

910s = 80M = , which 
is sufficient to get accurate solutions. For comparison, 
we present MOT solutions using the method in [8] and 
the results obtained by taking the IDFT solution 
calculated from the frequency-domain EFIE. In all 
figures to be shown, the legends ‘form1’ and ‘form2’ 
implies results computed by the formulation in section II 
and section III, respectively. 

As a first example, we consider a conducting sphere of 
radius 0.5 m centered at the origin as shown in Fig. 1(a). 
The first resonant frequency of this sphere is 262 MHz. 
There are twelve and twenty-four divisions along the θ  
and φ  directions with equal angular intervals. This 
results in a total of 528 patches and 792 common edges, 
and =2.23 cm, where  represents the minimum 
distance between any two distinct patch centers. The 

minR minR

θ − directed current at  and , and 90θ = 7.5φ =

φ − directed current at  and  on the 
sphere are indicated by arrows in Fig. 1(a). Fig. 2 shows 
the transient response for the 

7.5θ = 90φ =

θ − directed and 
φ − directed current. The time step in the MOT 

computation is chosen such that  in order to 
generate an implicit solution. It is important to note that 
all the four solutions show good agreements except the 
late-time oscillation in the MOT solution. We can see 
that solutions of the presented method 1 and 2 are stable 
and the agreement between each other is very good. Fig. 
3 compares the transient response of two presented 
methods with the Mie series solution and the IDFT of the 
frequency-domain EFIE solution for the far scattered 
field from the sphere along the backward direction. All 
the four solutions agree well as is evident from the 
figure. 

min4c t R∆ =

As a second example, consider a conducting cube, 1 m 
on a side, centered about the origin shown in Fig. 1(b). 
The first resonant frequency of this cube is 212 MHz. 
There are eight divisions along the x ,  and  
directions, respectively. This represents a total of 768 
patches and 1,152 common edges, and =5.57 cm. 
The 

y z

minR
z −  and x − directed current at the side faces are 

indicated by arrows in Fig. 1(b). Fig. 4 shows the 
transient response for the z −  and x − directed currents. 
The time step in the MOT computation is chosen as 

 in order to generate an implicit solution. 
Here the agreement between the results from the IDFT 
and two presented methods is very good. It is important 
to note that the MOT solution shows some instability. 
Fig. 5 compares the transient response of two presented 
methods and the IDFT of the frequency-domain EFIE 
solution for the far scattered field from the cube along 
the backward direction. All the three solutions agree 
well. 

min2c t R∆ =

As a final example, we show the transient response 
from a conducting cylinder with a radius of 0.5 m and 
height 1 m, centered at the origin as shown in Fig. 1(c). 
We subdivide the cylinder into four, twenty-four, and 
eight divisions along , r φ  and  directions, 
respectively. This represents a total of 720 patches with 
1,080 common edges, and =2.15 cm. The z

z

minR −  and 
φ − directed current at the side faces are indicated by 
arrows in Fig. 1(c). Fig. 6 shows the transient response 
for the z −  and φ − directed currents. The time step in 

MOT computation is chosen as  in order to 
generate an implicit solution. Here the agreement 
between the results from the IDFT and two presented 
methods is very good, while MOT solution shows 

min4c t R∆ =
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instability. Fig. 7 compares the transient response of two 
presented methods and the IDFT of the 
frequency-domain EFIE solution for the far scattered 
field from the cylinder along the backward direction. All 
the three solutions agree well without late-time 
oscillation. 

 
V. CONCLUSION 

We presented two methods to solve the time-domain 
electric field integral equation for three-dimensional 
arbitrarily shaped conducting structures. To apply MoM 
procedure, we used triangular patch functions as spatial 
basis and testing functions. We introduced temporal 
basis function set derived from Laguerre polynomials. 
The advantages of proposed method is to guarantee the 
late time stability. The temporal derivative can be treated 
analytically. Transient electric current and far field 
obtained by the two presented methods are accurate and 
stable. The agreement between the solutions obtained 
using the two proposed methods and the IDFT of the 
frequency domain is excellent. 

 
 

(a) 

 
(b) 

 
(c) 

Fig. 1. Triangle patching of a conducting objects. (a) 
sphere. (b) cube. (c) cylinder. 

 

 
(a) 

 
(b) 

Fig. 2. Transient current on the sphere. (a) θ − directed 
current. (b) φ − directed current. 
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Fig. 3. Scattered far field from the sphere along 

backward direction. 

 
(a) 

 
(b) 

Fig. 4. Transient current on the cube. (a) z − directed 
current. (b) x − directed current. 

 
Fig. 5. Scattered far field from the cube along backward 

direction. 

 
(a) 

 

 
(b) 

Fig. 6. Transient current on the cylinder. (a) z − directed 
current. (b) φ − directed current. 
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Fig. 7. Scattered far field from the cylinder along 

backward direction. 
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Abstract— In this paper, we study the plane wave scattering 
from perfectly electric conducting (PEC) bodies of revolution 
(BOR) with tip singularities. It is known that solutions to 
surface integral equations such as magnetic, electric, and 
combined field integral equations (MFIE, EFIE, and CFIE, 
respectively) are singular near the tips. Consequently, the 
convergence of method of moments (MoM) based on those 
surface integral equations is not optimal or guaranteed. By 
using appropriate graded meshes, one can retain the optimal 
convergence rate in MoM. 
 

Keywords—Tip Singularity, Graded Mesh, Optimal 
Convergence, Integral Equations, Method of Moments, Radar 
Cross Section. 
 

I. INTRODUCTION 

omputational electromagnetics (CEM) technology has 
made tremendous progress in the last decade due 
largely to the advancement of fast solver and high 

performance computing technology. Consequently, CEM 
tools are being applied to ever more complex problems. 
Even though CEM tools still rely on radar cross section 
(RCS) measurements for validation, the measurement 
community is increasingly relying on CEM tools, especially 
those based on the method of moments (MoM), to validate 
their measured data to minimize measurement uncertainty. 
To provide prediction data for measurement validation, one 
typically needs to compute the RCS from 2 to 18 GHz using 
very fine grids to ensure solution convergence. This 
presents quite a challenge for MoM codes even for 
canonical targets of moderate sizes, especially if 
computation is required at every 10 MHz and every 0.1 
degree. Instead of using a uniform mesh, one would like to 
use a non-uniform mesh that is denser near the singularities 
and coarser elsewhere to minimize the number of 
unknowns. In this paper, we investigate the choices of non-
uniform mesh that give fast converging solutions for bodies 
of revolution (BOR). The theorem that defines the 
constraint for the graded mesh will be discussed and 

 
 

followed by numerical examples, particularly those of a 10-
foot ogive and a 10-inch ogive with gap. 

II. SOLUTIONS NEAR GEOMETRY SINGULARITIES 

It is known that the solution of the scattering problem by the 
perfectly conducting ogive is singular due to the ogive tips. 
In fact, if r is the distance from the tip, the solution near the 
tip behaves as  

1 21 1
1 2~ ~ 0 1E r H rµ µ µ µ− −| | , | | , < , < ,  

where 1µ and 2µ depend on the angle of the tip (see, for 

example, [1] and [2]). If piecewise polynomial basis 
functions defined on a uniform mesh are used to 
approximate the solutions, the convergence of MoM is not 
optimal due to the singular behavior of the solutions near 
the ogive tips. To retain the optimal convergence rate, one 
can either include the singular basis functions in the 
approximation or discretize the ogive with a graded mesh. It 
is easier to construct graded meshes and apply them to the 
existing MoM codes.  Here we apply graded meshes to 
Cicero [1] which is a MoM computer code for bodies of 
resolution (BOR) (see [4], [5], [6], and references therein).   
We will need the following result in approximating the 

singular function r α− on [0 1], , 0 1α< <  (see [7]): 

Theorem 1:  Let p  be such that 1 pα < / . Define the 

following partition q
nτ  of [0 1],   

( ) 0 1 2 3q
ir i n i … n= / , = , , , , , ,  

where 
1

1
p
pq α

+
−=  and is called the grading exponent of nτ .  

Let ( )q
nS τ  be the set of functions that are constant on each 

subinterval 1[ ]i ir r+, . Then  

[0 1]( )
inf ( ) (1 )

p
n LS q

r r O nα

ζ τ
ζ−

,∈ ,
− = / .  

 

In fact, if ( ) ( )q
nr Sζ τ∈  is such that 

1( ) in [ ] 0 1 2 1i i ir r r r i … nαζ −
+= , , = , , , , − , then  

[0 1]
( )

pL
r r C nα ζ−

,
− ≤ / .  
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The norm of [0,1]pf L∈ is [ ]
1 1

0,1 0

p
p

p

L
f f dx= ∫ . In 

engineering application, 2L -norm (i.e., 2p = ) is usually 

used.  In this case, Theorem 1 states that, when r α− , for 
0 1r< < , and 1

2α < , is approximated by step functions, 

the best approximation in 2L -norm is obtained when these 
step functions are defined on a graded grid with grading 

exponent 3
1 2q α−= . Note that the above theorem can be 

applied to singularities of arbitrary order such as vertices, 
edges, corners, etc.   The singularity order α of field 
solutions near the ogive tips can be approximated by that of 
the field near the tip of the cone whose interior angle is the 
same as the angle of the ogive tip.  

III. GRADED MESH AND CONVERGENCE 

Let S  be the surface of the PEC ogive which is 
parameterized by arc-length  

( ) ( ( ) ( )) [0 ] [0 2 )l l z l l Lφ ρ φ φ π, → , , , ∈ , , ∈ ,  

where L  is the total arc-length of the generating curve and 
the axis of rotation is along the z  direction. The tips occur 

at 0l =  and l L=  with (0) ( ) 0Lρ ρ= = . The 

components tJ  and Jφ  of the surface current ˆJ n H= ×  

behave like l α−  and ( )L l α−−  near the tips, where 

0 1α< < .  A graded mesh is constructed as follows. First, 

we divide [0 ]L,  into three subintervals[0 ]ε, , [ ]Lε ε, − , 

and [ ]L Lε− ,  where 4Lε < /  and is a rational. Let 

( )xβ  be a twice differentiable function defined as  

( ) for [0 ]

( ) ( ) for [ ]

for [ ]

q

q

x x

x b x x L

L x
L x L L

ε ε ε
β ε ε

ε ε
ε

⎧
⎪ / ∈ , ,⎪⎪= ∈ , − ,⎨
⎪ −⎛ ⎞⎪ − ∈ − , ,⎜ ⎟⎪ ⎝ ⎠⎩

 

where
1

1
p
pq α

+
−= , 0 1p α< < / , and ( )b x  is a “connecting 

function” which is monotonically increasing and has two 
continuous derivatives. (Such a function is constructed from 
a perfect spline in [8]). Then the nodes in the graded mesh 

q
Nτ  is defined as  

( ) ( ) 0 1 2i i il x x L i N i … Nβ= , = / , = , , , , ,             

where ix ’s represent a uniform mesh and il ’s are the 

mapped points in the graded mesh. Note that ε  needs to be 

chosen so that ε  and L ε−  coincide with one of the ix ’s. 

It is common in MoM codes to approximate the fields with 

pulse functions (or piecewise constant), i.e. ( )q
NS τ . Let 

([0 ]) ( )p q
n NP L L S τ: , →  be the orthogonal projection, 

that is,  

( )q
n n n n nP u v u v v S τ, = , , ∀ ∈ .               

Then Galerkin approximation problem is to find 

( )q
n Nu S τ∈  such that  

n n nP Au P f= ,  

where A  is the integral operator defined as in the combined 
field integral equation (CFIE) and f  is the given incident 

field. We assume that the integral equation fAu =  has a 

unique solution. It can be shown that Galerkin 
approximation scheme is stable [9], that is,  

2 2(0 2 [0 ]) (0 2 [0 ])
,p pn n nL L L L L L

P Av C vπ π, , , , , ,
≥        

for all ( )q
n Nv S τ∈ and some 0C >  independent of nv . 

Consequently, we obtain the error estimate [9]  

2 2(0 2 [0 ]) (0 2 [0 ])( )
infp p

q
n N

n nL L L L L Lv S
u u C u vπ πτ, , , , , ,∈

− ≤ − ,  

where u  is the solution of the continuous problem and 

( )q
n Nu S τ∈  is the approximating solution. This implies 

that convergence rate for the graded mesh is optimal (for 
pL -norm).  In other words, the approximating solutions 

( )q
n Nu S τ∈  converges to u  at the rate 

2 (0 2 [0 ])( )
inf p

q
n N

n L L Lv S
u v πτ , , ,∈

−  which is the best possible for 

elements in ( )q
NS τ .  It is possible to show that the 

optimality holds for a more familiar weighted Sobolev 
space, 2 ([0 ])L Lα , , whose norm is defined as  

( )2

1 2
2

([0 ]) 0

L

L L
u x u dx

α

α
/

,
= | |∫ . 

Hence, if t nJ ,  and nJφ ,  are the approximate solutions of 

tJ  and Jφ , respectively, then the following error estimates 

also hold  

2 2(0 2 [0 ])t t n L L L
J J C n

απ, , , ,
− ≤ / ,  

2 2(0 2 [0 ])n L L L
J J C n

α
φ φ π, , , ,

− ≤ / ,  

where α  is the order of singularity. 

IV. NUMERICAL RESULTS 

In this section, we illustrate the benefits of using properly 
graded meshes with Cicero code in computing RCS of a 10-
foot ogive and a 10-inch ogive with gap.  Cicero is a MoM 
code with pulse basis and testing functions. In each of the 
following figures, the numbers in the legend are the number 
of sampling points per wavelength (ppw) used. For graded 
meshes, the “ppw” means that the total number of grid 
points are the same as that of the uniform mesh with the 
“ppw”. All results are computed using CFIE.   

A. The 10-foot ogive 

The 10-foot ogive is 10-foot long from tip to tip and 1-foot 
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wide at the waist.  The tips of the ogive are at 1.524z = ±  

meters. The meshes are either uniform ( 1q = ) or graded 

with the grading exponents 2q = . We first compute the 

electric current components tJ  and Jφ  at 0.5 GHz.  In 

Figure 1and Figure 2, we plot tJ| | , Jφ| |  for θ -polarized 

incident field at 0iθ = o and 20iθ = o , respectively.   
 

 
 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 

2 

4 

6 

8 x 10 -4 θ -polarized incident field at 0° 

J 
φ 

z (meters) 
 

Figure 1: Magnitude tJ  and Jφ  for θ -polarized incidence field at 

0oθ = .  Tips of the 10-foot ogive are at z=1.524 m and z=-1.524 m. 

 
Due to numerical limitations in Cicero such as piecewise 
approximations to the roof-top basis functions, we can only 

observe that tJ  and Jφ  and their derivatives tend to 

infinity at the tips instead of become infinity as expected in 
[2].  In any case, these singularities cause slow convergence 
in MoM using uniform meshes.  
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       J φ 
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Figure 2: Magnitude tJ  and Jφ  for θ -polarized incidence field at 

20oθ = . 

 
We assume that the electric currents computed with 640 
points per wavelength are “exact” and plot the relative 

errors 
nhe in Figure 3 and Figure 4 

1 2

1 2

(0 )

(0 )

1 2 5
n min

n n

h h

L L
h h

L L

J J
e n …

J

ν ν

ν

/

/

,

,

−
= , = , , ,            

where ν  is either t  or φ , nh  is the mesh size 

corresponding to the number of points per wavelength pww 

= 2 10n × , and minh  is the mesh size for 6n =  (or 640 

points per wavelength). It is observed that the errors in 
graded meshes are smaller than their uniform counterparts 
for sufficiently large ppw and decrease at a faster rate.  
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Figure 3: Logarithmic relative error for ( ),tJ Jφ at  
00θ =  in 

graded meshes are smaller and decrease faster than those in uniform 
meshes. 
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Figure 4: Logarithmic relative error for ( ),tJ Jφ at  
020θ =  in 

graded meshes are smaller and decrease faster than those in uniform 
meshes. 

Next we compare the RCS results for different meshes. It 
can be seen from the below figures that the graded mesh 
performs better than the uniform one with the same number 
of unknowns, that is, RCS results of the graded meshes 
converge at a faster rate. In Figure 5, RCS at 0.5 GHz for 
θθ polarization computed with the 640 ppw-uniform mesh 
is viewed as the “exact” result. The zero-degree angle 
corresponds to the tip scattering direction while the 90-
degree angle corresponds to the broadside scattering. We 
observe that the result computed with the graded mesh at 60 
ppw already overlaps with the “exact” solution while the 
RCS curve computed with the uniform mesh at 60 ppw has 

not converged, especially near 20oθ = . In fact, it requires 
at least 160 ppw in a uniform mesh to yield the same 
accuracy as the 60 ppw in a graded mesh. 

 

Figure 5: RCS of the 10-foot ogive at 0.5 GHz (θθ  polarization). The 
“exact” solution is represented by the 640 ppw-uniform mesh (solid line). 
At 60 ppw, the uniform-mesh solution has not converged (dotted line) 
while the graded-mesh solution (dash-dotted line) overlaps with the 
“exact” solution. 
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At higher frequencies, tip singularity becomes more 
problematic.  In Figure 6, RCS at 5 GHz for the 10-foot 
ogive is computed near the nose-on (grazing) angular region 
by using uniform meshes of different grid densities.  The 
curves oscillate near -69.5 dBsm.   
 

 
Figure 6: Uniform mesh - RCS of the 10-foot ogive at 5 GHz near the 

grazing angle (φφ polarization). 

However, RCS at 5 GHz for the 10-foot ogive computed 
with graded meshes approaches monotonically to a 
converged solution as seen in Figure 7. 

 
Figure 7: Graded mesh - RCS of the 10-foot ogive at 5 GHz near the 

grazing angle (φφ polarization). 

 

B. The 10-inch ogive with gap 

To examine further the advantage of graded meshes, we 
also consider the ogive with gap (see Figure 8), one of the 
test targets proposed by Electromagnetic Code Consortium 
[10], [11]. The ogive is 10 inches long, subtending a half 

angle of 22.62 degree, and with a maximum radius of 1 inch 
at the middle. The generating curve for this ogive is part of 
a circular arc with a 13 inch radius. A small rectangular 
groove cut out around the middle of the ogive. The 
circumferential groove is 0.25 inches wide by 0.25 inches 
deep. The bottom of the groove forms a ring 0.75 inches in 
radius.  

 
Figure 8: Ogive with gap. 

 
Here, the solutions to the integral equations have both edge 
and tip singularities due to the groove and the ogive tips. As 
in the case of the 10-foot ogive, we design appropriate 
graded meshes to improve the convergence rate in MoM 
solutions. There are three corners in the generating arc and 
each has different angles. Thus, we construct a graded mesh 

with three grading exponents ( )1 2 3, ,q q q .  For example, 

the distribution of points in a graded mesh with 

( ) ( )1 2 3, , 2, 2, 2q q q = is plotted in Figure 9.  

 
Figure 9: Point distribution of a graded mesh on the generating arc of 
ogive with gap. 

 
In Figure 10 and Figure 11, RCS curves at 2 GHz are 
plotted.  Uniform-mesh solutions converge much slower 
than graded-mesh solutions, especially near the grazing 
angular region.  We see that at 80 ppw, RCS of the graded 
mesh already converges while that of uniform mesh does 
not.  
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Figure 10: Uniform mesh - RCS of ogive with gap at 2 GHz 

(φφ polarization). 

 

 

Figure 11: Graded mesh - RCS of ogive with gap at 2 GHz 

(φφ polarization).  

Furthermore, the RCS differences at 0oφ =  (the grazing 

angle) decrease for graded meshes while oscillate for the 
uniform meshes as seen in Figure 12 and Figure 13.   

V. CONCLUSIONS 

In this paper, we present a construction of graded meshes 
that enable a faster convergence using MoM for BOR 
targets with tip singularities. Numerical results are given for 
the PEC ogive with and without gap using CFIE. These 
preliminary results show that faster convergence can be 
achieved if one chooses a graded mesh using the technique 
outlined in this paper. We have also observed the similar 
improvement in convergence for other types of integral 
equations. The technique can be easily generalized to non-
BOR targets which have tip and edge singularities. This will 
be reported in the future.  
 

 
Figure 12: Uniform mesh at 2 GHz – RCS errors in ogive with gap at 

0oθ = . 

 

Figure 13: Graded mesh at 2 GHz – RCS errors in ogive with gap at 

0oθ = . 
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TM Electromagnetic Scattering from 2D Multilayered Dielectric
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Abstract

An integral equation approach is derived for an electromagnetic scattering from an M arbitrary multilayered
dielectric domain. The integral equation is valid for the 2D and 3D Helmholtz equation. Here we show the
numerical solution for the 2D case by using the Nyström method. For validating the method we develop a
mode matching method for the case when the domains are multilayered circular cylinders and give numerical
results for illustrating the algorithm.

Introduction

Problems of electromagnetic scattering in layered me-
dia are of significant importance in many areas of tech-
nology such as optics, geophysical probing, communic-
ation, etc. (see [6] and the references therein). In this
paper we discuss some analytical and computational
results for the problem of approximating the scattered
electromagnetic field from M layered two-dimensional
scatterer. The scatterer is a nested body consisting of a
finite number of homogeneous layers (annular regions)
with boundary conditions on the interfaces. For the
case when the boundaries are circular, closed form solu-
tions can be obtained via a mode matching approach
(see [9], [16] and [6], Chapter 6). For boundaries of ar-
bitrary shapes, one of the most efficient techniques to
tackle the problem is using (volume or surface) integral
equation methods. There are also other type of meth-
ods such as the domain decomposition methods [12]
and k-space methods (Cf. [3] and [4]). In this paper
we choose the surface integral equation method since
the inhomogeneities are piecewise constants in each re-

gion. The problem can thus be solved (via a boundary
element method) on surfaces. It has an advantage over
the volume integral equation method, where the whole
multilayered domain has to be discretized and the un-
knowns are in a volume rather than on a surface (see
[13]). The straightforward way for solving this type
of problems via boundary element methods is by us-
ing Green’s theorem in each domain [6]. Another al-
ternative is to consider the use of single and/or double
layer potentials [7]. In the case of one interface, both
methods yield a single integral equation for a single
unknown if the interface is impenetrable (e.g., imped-
ance core). However, when the body is penetrable with
one interface (e.g., dielectric core), they lead to a pair
of integral equations for a pair of unknowns [7]. We
deduce that, by using these approaches in the mul-
tilayered dielectric domain, for N interfaces we have
2N unknown functions to determine. From a compu-
tational point of view, it is highly desirable to obtain
less equations and less unknowns. In the case of one
interface, the so called transmission problem, one integ-
ral equation involving one unknown was obtained by a
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few authors (see [10], [14] and the references therein).
In [10] the single integral equation for one unknown
was obtained for the transmission problem by using a
hybrid of Green’s theorem and layer potentials. In [6],
Chapter 8.3, single integral equations are obtained for
multilayered domains by using the extended boundary
condition method. But this method suffers from ill-
conditioned equations and is mainly convenient for a
scatterer where the fields around it are expandable to
cylindrical harmonics. The purpose of this paper is to
obtain Fredholm type single integral equations on each
interface for the multilayered domain case. To this end,
we alternate the layer potentials and Green’s theorems
in the multilayered domain and implement numerical
computations using the Nyström method. For a theor-
etical study of the problem, see [1] and [2]. Our results
are validated by developing a mode matching approach
for the case of a multilayered circular cylinder and com-
paring the two algorithms.

0

1

2

3

4

5

d

Figure 1: The geometry for the case of five concentric
layered cylinder. The incident field is a plane wave
propagating in a direction d.

1 The mathematical formulation of the prob-
lem

Let Dl, l = 0, 1, · · ·M − 1 be M bounded domains in
R2 such that Dl−1 ⊂ Dl, l = 1, 2, · · · , M − 1. Let Γl

be the C2 boundaries of Dl−1, l = 1, · · · , M . Now let
Ω1 = D0, Ωl = Dl\Dl−1, l = 1, · · · , M − 1, and ΩM =
R2\DM−1. We assume that ΩM is simply connected.
See Figure 1 for Ωl, l = 0, 1, · · · , 5. This is a special
case of the general geometry where we have the cross
section of (M = 5) concentric cylinders that are infinite
in length and their axes are parallel to the z direction.

Each of the regions Ωl is a dielectric material of con-
stant complex permittivity and permeability εl and µl

(l = 0, · · · , M), respectively. This geometry is illumin-
ated by an incident field which is a plane wave with
direction d = (cos φ0, sin φ0).

It can be shown that we have to solve the follow-
ing type of boundary value problem for the Helmholtz
equation.

(∆ + κ2
l )ul = 0 in Ωl, l = 0, · · · , M,

where the wave numbers κl are given by κl = ω
√

εlµl,
ω is the frequency, with the following continuity con-
ditions on the internal interfaces:

∂

∂ν
ul = ρl

∂

∂ν
ul−1 on Γl, l = 1, · · · , M − 1,

ul = ul−1 on Γl, l = 1, · · · , M − 1,

with ρl = ρ̂l

ρ̂l−l
, l = 1, 2, · · · , M, where ρ̂l =

√
µl

εl
is the

intrinsic impedance.
On the outermost interface we have

∂u

∂ν
= ρM

∂

∂ν
uM−1 on ΓM ,

u = uM−1 on ΓM ,

where,
u = uM + ui in ΩM

and the given incident field, ui, satisfies

∆ui + κ2
Mui = 0

everywhere. In addition, uM must satisfy the Sommer-
feld radiation condition, i.e.,

lim
|x|→∞

|x|1/2

(
∂uM

∂|x| − iκMuM

)
= 0.
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The unit outward normal ν to Γl is assumed to be
directed towards the exterior domain. The above prob-
lem is known as the TM mode. The TE mode is ob-
tained by replacing ρl by 1

ρl
. We denote the funda-

mental solution to the Helmholtz equations (the free-
space source) by

Φk(x,y) = − i

2
H

(1)
0 (κk|x − y|), k = 0, 1, · · · , M,

where H
(1)
0 is the Hankel function of the first kind and

order zero. Throughout this paper i will denote the
complex constant satisfying i2 = −1.

2 The integral equation approach

First, for non-zero functions φl, l = 1, 2, · · · , M, define
the single and double layer potentials as

Sl
kφl(x) =

∫
Γl

Φk(x,y)φl(y) ds(y), x ∈ R2\Γl,

and

Dl
kφl(x) =

∫
Γl

∂

∂νl(y)
Φk(x,y)φl(y) ds(y), x ∈ R2\Γl,

respectively, for k = 0, 1, · · · , M . Their normal de-
rivatives are denoted by P l

k and Ql
k, respectively, for

k = 0, 1, · · · , M .
We have the continuity relations

Sl
k = Ŝl

k, Ql
k = Q̂l

k,

and the jump relations

Dl
k = ∓I + D̂l

k and P l
k = ±I + P̂ l

k,

where, the upper (lower) sign corresponds to the limit
when x approaches Γl from the outside (inside). The
hat on each operator represents it on the boundary Γl.

To arrive at the desired integral equation we define
a layer ansatz by El

k := Dl
k − iηlS

l
k for l �= 0 and

E0
k = 0 (with normal derivative H l

k := ∂El
k/∂ν) in

Ωk, where ηls are nonzero complex constants chosen
to obtain well-posedness, k = 0, 2, 4, · · · , and Green’s
theorem in Ωk′ , k′ = 1, 3, 5, · · · . In particular, let us

assume that M is odd. Then, in the core region Ω0 we
define

u0(x) = E1
0φ1(x), x ∈ Ω0. (2.1)

In the outermost domain, we use Green’s theorem ([7]
pp. 68-70) to obtain{

2uM (x) = SM
M

∂
∂ν u(x) − DM

M u(x), x ∈ ΩM ,

−2ui(x) = SM
M

∂
∂ν u(x) − DM

M u(x), x ∈ R2\ΩM .

(2.2)
In the other domains, for l = 2, 4, · · · , M − 1, we

define

ul(x) = El
lφl(x) + El+1

l φl+1(x), x ∈ Ωl, (2.3)

and, using Green’s theorem for l = 1, 3, · · · , M − 2 we
have


2ul(x) = Sl

l
∂
∂ν ul(x) − Sl+1

l
∂
∂ν ul(x)−

(Dl
l − Dl+1

l )ul(x), x ∈ Ωl,

0 = Sl
l

∂
∂ν ul(x) − Sl+1

l
∂
∂ν ul(x)−

(Dl
l − Dl+1

l )ul(x), x ∈ R2\Ωl

(2.4)

Now, using the jump and continuity relations we obtain

the second equation in (2.2) on ΓM and the second
equation in (2.4) on Γl and Γl+1 (l = 1, 3, 5, · · ·M −2).
Using the boundary conditions, jump properties for the
single and double layer potentials together with their
derivatives, and replacing u0 (given in (2.1)) and ul

(given in (2.3)) into these equations we arrive at a set
of M integral equations with M unknowns φl on Γl,
l = 1, 2 · · · , M . In particular, on ΓM we have

−2ui = (ρM ŜM
M ĤM

M−1 − (D̂M
M + I)ÊM

M−1)φM+(
ρM ŜM

M HM−1,M
M−1 − (D̂M

M + I)EM−1,M
M−1 )

)
×φM−1,

and for l = 1, 3, 5, · · ·M − 2, we have

0 =
(
ρlŜ

l
lH

l−1,l
l−1 − (D̂l

l + I)El−1,l
l−1

)
φl−1+(

ρlŜ
l
lĤ

l
l−1 − (D̂l

l + I)Êl
l−1

)
φl−(

1
ρl+1

Sl+1,l
l Ĥ l+1

l+1 − Dl+1,l
l Êl+1

l+1

)
φl+1−(

1
ρl+1

Sl+1,l
l H l+2,l+1

l+1 − Dl+1,l
l El+2,l+1

l+1

)
φl+2

102 ACES JOURNAL, VOL. 19, NO. 2, JULY 2004



on Γl and

0 =
(

1
ρl+1

Ŝl+1
l Ĥ l+1

l+1 − (D̂l+1
l − I)Êl+1

l+1

)
φl+1+(

1
ρl+1

Ŝl+1
l H l+2,l+1

l+1 − (D̂l+1
l − I)El+2,l+1

l+1

)
φl+2

−
(
ρlS

l,l+1
l H l−1,l

l−1 − Dl,l+1
l El−1,l

l−1

)
φl−1−(

ρlS
l,l+1
l Ĥ l

l−1 − Dl,l+1
l Êl

l−1

)
φl on Γl+1,

where Êm
k = ∓I+D̂m

k −iηmŜm
k , Ĥm

k = Q̂m
k −iηm(±I+

P̂ m
k ), and by T m,n

k (T is for S, D, E or H) we mean that
T m

k is evaluated on Γn when n �= m. Numerically the
above system has to be discretized and solved to obtain
an approximation of the unknowns φl, l = 1, 2 · · · , M .
Then the solution of the layered problem can be con-
structed for the discretized forms of (2.1)-(2.4).
Remark: The above system is also valid for the 3D
Helmholtz equation. The only difference is that the
fundamental solution is

Φk(x,y) = − eiκk|x−y|

2π|x− y| .

3 Numerical validation and results

This section is devoted to the numerical solution of
the above system and its validation for the 2D case.
To this end, we use the Nyström method for the nu-
merical solution and Bessel function expansion for the
validation. Then we show the numerical results.

3.1 Discretization and numerical solution

The system is discretized using the Nyström method
[11]. The resulting matrix equation, that involves mat-
rix multiplications resulted from the multiplications of
layer potentials and/or their derivatives, is solved by
a standard LU decomposition approach. Let us note
that the assumption that M is odd is not a loss of
generality. In fact, for an even M we can use the same
method, but for M +1 regions, ΓM+1 encloses the scat-
terer, with κM+1 = κM and ρM+1 = 1. This way has
the advantage of keeping the same system of equations
and the disadvantage of adding another equation and
an unknown function φM+1. This may be overcome
by starting with Green’s theorem in the core region,

alternate with layer ansatz and obtain the Green’s the-
orem in ΩM , which gives a different system than the
previous argument.

3.2 The Mode Matching Approach

This method is studied in detail in the literature (see
e.g., [9]). Consider the case when the regions Dl’s
are circular cylinders with radii rl+1 and origins Ol+1,
l = 0, 1, 2, · · · , M − 1; then we have the following ex-
pansions [6]: For the outermost region

u(r̃M , φM ) =
∑∞

n=−∞
(
bM
n H

(1)
n (κM r̃M ) + Jn(κM r̃M )

)
×e−in(φM−φo)

and for other regions we have

ul(r̃1, φ1) =
∑∞

n=−∞
(
bl
nH

(1)
n (κlr̃1) + al

nJn(κM r̃1)
)

×e−in(φ1−φo), l = 0, 1, 2, · · ·M − 1,

where b0
n = 0.

To enforce the boundary conditions we need the ad-
dition formula for ul, l = 1, · · · , M − 1 which means
that the fields expressed in terms of X1O1Y1 be trans-
lated to XlOlYl coordinates. This yields, by the addi-
tion theorem (cf. [5] pp. 30-31),

ul(r̃l, φl) =
∑∞

n=−∞
∑∞

i=−∞ Ji−n(κldl1)

×
[
bl
nH

(1)
i (κlr̃l) + al

nJi(κlr̃l)
]

×ei(φ0−(i−n)φl1 ),

where dl1 is the distance between O1 and Ol, and φl1

is the angle between O1Ol and the x axis.
The sums in the above equations have to be trun-

cated, at some number, N0, to obtain a finite system.
Now we can use the expansions on the boundary to-
gether with their derivatives and the boundary condi-
tions to obtain a linear system in the unknowns al

n and
bl
n. This system is also solved via LU decomposition

approach.

3.3 Numerical Results

In this section, numerical solution obtained by using
the integral equation (IE) and mode matching (MM)
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methods are presented. We have conducted several nu-
merical experiments.

First we try to validate the MM method by analyzing
the physical properties of the waves, by plotting the
absolute value of the waves against the boundaries. To
this end, we consider a cylinder with radius r = 3, so
that we only have the inner and outermost domains,
and keep the angle of the incident field φ0 = 90 deg
and ρ1 = 1 fixed. We would expect, for real κ1 and
complex κ2 with negative imaginary part, the wave to
diverge at the boundary. If, on the other hand, we
have that the two wave numbers are real and equal,
the absolute value of the wave should be unity. Finally,
for the case when κ1 is real and κ2 is complex with
a positive imaginary part, because of absorption, the
absolute value of the wave must decay at the boundary
and the bigger the imaginary part, the faster the wave
should decay. Our numerical computations show that
all theses properties are satisfied, and the results are
summarized in Figure 2.

Next we validated the IE method for one interface,
centered at O = (−0.2, 0.7), by plotting the absolute
value of the far field pattern (measured at a fixed ob-
servation point x̂) against the incidence angle for two
different wave numbers using the IE and MM methods.
See [8], page 20, for the definition of the far field pat-
tern f . The result is given in Figure 3, which shows a
very good agreement of the two methods. Unless oth-
erwise stated we use 32 grid points for the Nyström
solver.

Our next examples are for the two and three-layered
circular cases. First we plot the absolute value of the
far field against the incidence angle for the two-layered
case and then for the three-layered case. The results
are shown in Figure 4 and Figure 5, respectively. In
these cases as well we have very good agreements of
the two methods.

For the case of more circular layers we have the same
conclusions, except that more grid points are needed,
which is due to the errors in the computation of the
layer potentials.

Our last example is for the case of three boundaries
of kite type where MM method can not be performed
(Figure 6). Here we investigate the convergence as well
as the boundary conditions. For the former we com-
pute the far field pattern for different wave numbers.
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Figure 2: The case of one circular boundary (r = 3).
The absolute value of the wave plotted against the ra-
dius. We have used κ1 = 2 and κ2 = 2− 0.5i (top left)
κ1 = 2 and κ2 = 2 (top right), κ1 = 2 and κ2 = 2+0.5i
(bottom left), and κ1 = 2 and κ2 = 2 + 1.5i (bottom
right).
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Figure 3: The absolute value of the far field pattern
plotted against the incidence angle using the MM (’o’)
and IE (solid line) methods. The case of one interface.
We used κ0 = 2, κ1 = 3 and the radius is r = 1.
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Figure 4: The absolute value of the far field pattern
plotted against the incidence angle using the MM (’o’)
and IE (solid line) methods. The case of two-layered
circular cylinders. Here κ0 = 2, κ1 = 3, κ2 = 4,r1 = 1
and r2 = 2.
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Figure 5: The absolute value of the far field pattern
plotted against the incidence angle for the MM (’o’)
and IE (solid line) methods. The case of three-layered
circular cylinder. Here κ0 = 2, κ1 = 3, κ2 = 4, κ3 = 1
r1 = 1, r2 = 2 and r3 = 3.

The results are reported in the two tables below. We
see clear convergence, and, as expected, it is fast. For
the latter case we plot |u0| and |u1| on Γ1, |u1| and
|u2| on Γ2, and |u2| and |u3 +ui| on Γ3, against the in-
cidence angle. From the boundary conditions we know
that they must coincide. This is shown in Figures 7.
One way we have used to compare the IE and MM
methods in the case of 3−layered kite is by enclosing
the tree layers within a circular domain and choose all
the inner layers to have the same wave numbers and the
outer region to have a different wave number. Physic-
ally, this is a one-layered problem; but mathematically
the four layers exist. By so doing we still obtain a
figure similar to Figure 3.

Figure 6: The geometry for the case of three boundaries
of kite type.
Table 1: Parameter values and description for the geo-
metry in Figure 6. D1, D2 and D3 are the first, the
second and third data, respectively, for the numerical
computation

Description Symbol D1 D2 D3
κ0 2 4 1+i

Wave numbers κ1 3 5 2
κ2 1.5 4.5 2+0.5i
κ3 2.5 5.5 3

4 Conclusion and future work

We have developed an integral equation approach for
solving the M multilayered electromagnetic problem
and used the Nyström method for the numerical com-
putation. The algorithm was validated by a Fourier
expansion method for circular (not necessarily concent-
ric) cylinders. One may think as a disadvantage for our
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Table 2: The numerical results using the integral equa-
tion (IE) approach for the geometry in Figure 6. The
data are given in Table 1. The number N is the number
of Nyström (grid) points.

N IE
8 −3.1863 + 0.4213i
16 −3.5238 + 0.1952i

D1 32 −3.5215 + 0.1955i
64 −3.5214 + 0.1954i
8 −11.9843 + 15.8975i
16 −3.5291 + 3.2993i

D2 32 −4.2103 + 3.5349i
64 −4.2103 + 3.5344i
8 −2.3889 + 1.6002i
16 −2.5120 + 1.5746i

D3 32 −2.5126 + 1.5739i
64 2.5126 + 1.5739i
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Figure 7: Here we plot |uj | (’o’) and |uj+1 +
(j−1)(j−2)

2 ui| (solid line) on the boundary Γj against
the incidence angle. In (a) we have the case j=1, in (b)
j=2 and (c) j=3.

method the numerous matrix vector multiplications.
This problem can be overcome by using fast multipole
methods (see [15]) where these operations are done very
quickly. Our results also show the (expected) fast con-
vergence of the Nyström method for analytic boundar-
ies. The natural expansion of our method is for the nu-
merical solution of the three-dimensional electromag-
netic problem, and to the case of multiple scatterers.
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 Abstract: Compact 3 dB 0o/180o microstrip couplers 
in ring and square configurations are proposed and 
discussed. In a  ring form, the coupler may be designed 
for symmetrical ports about either one axis or two axes. 
The proposed configurations introduce significant size 
reduction, which is the most important demand for 
microwave integrated circuits (MICs) and monolithic 
microwave integrated circuits (MMICs). Different 
couplers are designed, and simulated at 1 GHz. The 
IE3D software is used in order to validate the design 
procedure. The designed coupler in ring shape is 
simulated and implemented. The experimental results 
agree well with the theoretical prediction. 
 
 Keywords: Compact ring coupler, Hybrid ring, 
Microstrip, MMICs 
 

I. Introduction 
 
 In recent years, the rapid growth in wireless 
communications has increased the demand for small size 
RF circuits. Hybrid couplers are fundamental 
components in microwave circuits and include branch 
line couplers, parallel line couplers, hybrid ring couplers, 
and the rat race ring. A fundamental component of all 
these couplers is the 4/λ  transmission line section. At 
the lower microwave frequencies, the size based on this 

4/λ  section is unsuitably large for many wireless 
applications. Much effort to reduce the size of hybrid 
couplers has been reported [1-6]. Recently, T-shaped and 
stepped impedance circuits equivalent to 4/λ  line 
section have been used in hybrid quadrature branch line 
coupler [1]. The resultant coupler has been implemented 
on 36% of the area of that of the conventional one 
without any significant sacrifice  in circuit performance. 
Different techniques have been used to reduce the size of 
the conventional ring coupler of 1.5 λ circumference 
(see Fig. 1). A quarter wavelength pair of coupled lines 
short-circuited at their diagonal ends has been used to 
replace the three quarter wavelength line [2]. The 
circumference of such coupler has been reduced to one 

wavelength λ . However, this technique requires a very 
tightly coupled line section that is difficult to fabricate 
with simple microstrip technology. The use of λ /6 or 

λ /8 sections allows reducing the circumference of the 

ring to 1.25 λ [3]. Another approach to reduce the ring 
coupler size requires; (1) using a small section of 
transmission line with a specified characteristic 
impedance instead of the λ /4 line; and (2) replacing the 
three quarter wavelength line by a one-quarter-
wavelength line with phase inverter [4, 5]. Based on this 
approach, the 1.5 λ circumference has been reduced to 

0.67 λ  [4]. The circuit is composed of a coplanar strip 
(CPS) ring and coplanar waveguide (CPW) feed lines. 
Air bridges are then needed to avoid the excitation of an 
even mode. A crossover of the two strips on the ring is 
also required to achieve 180o phase shift (phase inverter). 
These techniques tend to increase the fabrication cost 
which is one of the most important parameters of MIC. 
Compact ring 0o/180o couplers using T-shaped sections 
to replace the λ/4 lines have been introduced recently by 
the authors [6].  
In this paper, we propose new small size 3 dB 0o/180o 
coupler configurations.  The coupler can be designed in 
square form or ring shape with symmetric ports about 
either one axis or two axes. The various configurations 
can be fabricated with simple low cost microstrip 
technology.  The reduced size coupler configurations are 
discussed in the next section followed by the simulation 
and experimental results. The couplers’ simulations are 
performed using the IE3D software. 
 

II. Reduced Size Coupler Configurations 
 

The size of the conventional ring coupler, shown in 
Fig.1, can be reduced to the ring coupler with 4θ  
circumference shown in Fig. 2. The arms characteristic 
impedances ZC are related to the electrical length θ  and 
50 Ω port impedance ZO by [4]: 
 

1054-4887 © 2004 ACES
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Z −= .                              (1) 

 
The range of the arm electrical length is 45o < θ  < 90o, 

where θ  is the arm electrical length at the center 
frequency. The phase inverter has been implemented by 
crossing over the two strips in case of coplanar strip 
technique. In simple microstrip technique, the phase 
inverter can be implemented as a half wavelength line 
having the same characteristic impedance of the θ  
sections. In this case the resultant bandwidth is narrow 
and decreases as θ decreases. However, wider 
bandwidth can be obtained if θ  is equal to 90o at the 
center frequency [5]. The corresponding characteristic 
impedance of the arms is 
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where L is the maximum in-band return loss 
specification. For L= ∞ the resultant ring coupler will be 
similar to the conventional one. In the following, some 
proposed geometrical arrangements, suitable for 
microstrip technology, are given and they lead to the 
coupler structures shown in Figs 3-5:  
 
A. Semi-circle shape with symmetric ports about one 
axis (Fig. 3) 
In this case the 180o+θ  line between ports 2 and 4 is 
designed in the free region inside the semi-circle as 
shown in Fig. 3. The minimum area can be achieved for 
θ =45o, which correspond to 12.5% of that of the 
conventional ring coupler. However, the resultant 
bandwidth in this case will be almost zero. Practically, 
θ  should be greater than 45o and can be determined for 
a particular BW requirement as described in the next 
section. A simple software program such as Puff can 
quickly predict the coupler performance.  
 
B. Ring shape with symmetric ports about the two axes 
(Fig. 4)  
The line 180o +θ , in this case is formed inside the ring 
in a circular shape. However, the inner line should be far 
enough from the outer one to avoid any significant 
coupling. Denote the electrical distance between the two 
bending lines and the two rings by θ 1 as shown in Fig. 
4. For small θ1, the arms electrical length can be 
approximated by  
 

θ  ≈ 0.5 ( 1πθ + 900).    (3) 

 
C. Square shape (Fig. 5)  
In this case the coupler can be implemented in the square 
form of side length θ , where the θ +180o line takes the 
serpentine shape inside the square as shown in Fig. 5.  
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III. Design Procedure and performance Trade-off 
 

The couplers proposed herein are based on the 
implementation of the 180o phase inverter by half-
wavelenth line using special arrangement as shown in 
Figs. 3-5. So, the expected performance of all 
configurations will be approximately the same. The 
difference may be occurring only due to the unwanted 
coupling between the lines that are too close to each 
other. This can be eliminated by optimizing the structure 
to keep lines as far as possible.  The coupler design can 
start by plotting the bandwidth and the area used, with 
respect to the area of the conventional type (Fig.1), 
against the arm electrical length θ as shown in Fig. 6.  
The relative bandwidth (BW) is calculated for ideal 
transmission line elements under the following limits: 
Port matching  < -10 dB 
Coupling  -2.5 to -4 dB 
Isolation < -15 dB 
Output phase balance when fed at E-port =180o ± 12o 
Output phase balance when fed at H-port= 0o ± 10o  

Fig. 6 shows that the relative bandwidth increases as θ 
increases. The maximum bandwidth is obtained for the 
conventional type, i.e when θ = 90o.  It is also noted that 
the area used decreases as θ decreases. As shown in this 
figure, the most compact structure is that of circular 
shape of Fig. 4. The used area can be reduced to 13.7 % 
of the conventional type when θ = 50o. In this case, the 
corresponding percentage BW is 17.7%. Fig. 7 shows 
the characteristic impedance (Zc) of the coupler arms 
calculated from (1). The characteristic impedance 
decreases as θ decreases. For high compactness, this will 
add some constraints on the selection of the substrate 
material since the line width increases as Zc decreases. 
The increase of line width may cause the lines to be very 
close causing a strong coupling.  Fig. 6 is used to 
determine the arm electrical length for a given 
bandwidth, and the corresponding characteristic 
impedance can be calculated from Fig.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
IV. Design Cases and Experimental Results 

 
We introduce here different design cases in order to 

validate the proposed configurations. Duroid dielectric 

substrate RT/5880 with rε =2.2 and h=0.51 mm is used. 
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Fig. 4 Layout of small size ring   coupler 
for symmetrical feeding ports. 
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Fig. 5 Layout of square shape coupler. 

Fig. 6 Relative bandwidth and percentage area used 
with respect to the conventional coupler of Figs. 3-5. 
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For high compactness and acceptable line width, the 
arms electrical length are selected to be 55o. The design 
is carried out at 1 GHz. The resultant characteristic 
impedance of the coupler arms is 50 Ω  (Fig. 7). 
Therefore the arms width and length are 1.6 and 33.3 
mm, respectively. The simulation results performed by 
Puff software and based on ideal transmission lines are 
shown in Fig. 8. Within the band 0.95 to 1.1 GHz, S11< 
-10.5 dB, S21 = -3.25 ± 0.35 dB, S31 = -3.5 ± 0.6 dB 
and S41 (isolation)< -22 dB. For this design, the ratio of 
the circuit layout area relative to that of the conventional 
ring coupler is 18.5%, 16.6%, and 26 % for circuits in 
Fig. 3, Fig.4 and the square shape in Fig. 5, respectively.   
However, wide band couplers can be designed based on 
(2). In this case the arms length will be 90o at 1 GHz and 
the characteristic impedance is 64 Ω  for 20 dB return 
loss at the center frequency. The expected ratio of the 
circuit layout area with respect to that of the 
conventional ring coupler will be, 50%, 44%, and 70 % 
for circuits in Fig. 3, Fig.4 and Fig. 5., respectively.  
 
As an example, the layout of the coupler shown in Fig. 4 
is implemented. The arms length is 33.3 mm (θ = 55o) 
and θ1=6.6o, which is 4 mm. The inner and outer radii are 
17.4, and 21.2 mm, respectively. The simulation results 
performed by the IE3D are shown in Fig. 9. Between 
0.88 and 1.15 GHz, S11< -10 dB, S21 = -3.15 ± 0.35 dB, 
S31 = -3.5 ± 0.3 dB and S41< -14 dB.  At this case the 
area of coupler is approximately 17% of that of the 
conventional ring one, as expected from Fig. 6. The 
experimental results of this coupler are shown in Fig. 10. 
It is seen that the measured results agree well with the 
simulation in Fig. 9.  
 

Conclusion 
 

New small size configurations acting as a 3 dB 
0o/180o ring coupler have been proposed. The coupler 
can be designed for narrow or wide band operations with 
significant size reduction in both cases although the size 
reduction is less in the wide band case. The coupler in 
square shape has been designed, simulated and 
measured. Good performance with 27% bandwidth 
centered at 1.015 GHz has been obtained. The coupler 
area is 17% of that of the conventional ring coupler. The  
proposed configurations allow good flexibility for MICs 
and MMICs applications. 
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 A LU Decomposition Useful for Antenna Optimization  
 

K. Jamil and E. H. Newman 
Ohio State University ElectroScience Lab 

 
 
Abstract - This paper describes a LU 
decomposition technique useful when 
solving a series of matrix equations in which 
only a small fraction of the original matrix 
changes from run to run.  On the first run, 
the entire matrix must be computed and LU 
decomposed.  However, on the second or 
subsequent runs, only those rows and 
columns of the matrix which have changed 
need be recomputed and re-LU decomposed.  
If only a small fraction of the matrix has 
changed, this results in a substantial saving 
in CPU time both in the computation of the 
original matrix and in its LU decomposition. 

 
I.  Description of Procedure 

Many computational techniques in 
electromagnetics and other branches of 
engineering are based upon the solution of a 
matrix equation.  For example, a Method of 
Moments (MM) solution with N  unknowns 
requires setting up and solving an order N  
matrix equation of the form [ ]Z I V= .   In this 
case, order 2N  CPU time is required to set 
up the [ ]Z  matrix, and order 3N  CPU time 
to solve the matrix equation by direct 
methods [1].  For a multidimensional 
optimization procedure, requiring thousands 
of runs, the total CPU time can become 
prohibitive.  Assuming that the change in the 
geometry only impacts the lower numbered 
unknowns of the problem, this paper 
presents a LU decomposition procedure 
which saves CPU time since only the rows 
and columns of the [ ]Z  matrix which have 
changed need be re-LU decomposed.  The 
technique has been implemented in the 

author’s Electromagnetic Surface Patch 
Code: Version V (ESP5) for the MM 
analysis of the electromagnetic radiation and 
scattering from geometries which can be 
modeled as an interconnection of thin wires, 
polygonal plates, and polygonal dielectric 
volumes [2,3]. 

 
An ideal application of the method 

would be the design of an antenna on a large 
body of fixed geometry.   Figure 1 shows a 
MM [ ]Z  matrix with AN  modes on the 

antenna and BN  modes on the fixed 

geometry body.  On the first run, the entire 
order A BN N N= +  MM [ ]Z  matrix would 
need to be computed and LU decomposed.  
However, on the second and subsequent 
runs only the first AN  rows and columns of 

the [ ]Z  matrix would need to be recomputed 
and re-LU decomposed, resulting in a 
substantial saving in CPU time if A BN N<< . 

 

Fig. 1. The MM impedance matrix for an 
antenna on a large body. 

1054-4887 © 2004 ACES
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II. Description of the Method 
The appendix describes an LU 

technique that begins at the lower right hand 
corner of the matrix, and proceeds to the 
upper left corner.  Figure 2 shows a snapshot 
of the [ ]Z  matrix part of the way through the 
LU process.  At this point, the 2 2N N× block 
in the lower right corner has been LU 
decomposed, but the first 1N  rows and 
columns have not.  The important point is 
that as the method continues to LU 
decompose the first 1N  rows and columns, 
the elements in the 2 2N N× block in the lower 
right corner do not change.  Thus, if one is 
performing a series of MM computations in 
which the last 2N  expansion functions do 
not change, then the 2 2N N× block in the 
lower right hand corner of both the [ ]Z  and 
LU of [ ]Z  matrices will not change.  Only 
the first 1N  rows and columns of the [ ]Z  
matrix need to be recomputed and re-LU 
decomposed.  This reduces the number of 
elements that must be computed in the [ ]Z  
matrix from 2N  to 12N N .  More importantly, 
only the first 1N  rows and columns need to 
be re-LU decomposed, thus reducing the 
solve time from O 3( )N  to O 2

1( )N N .  If 

1N N<< , this will result in a significant 
saving in CPU time.  Note that the method 
works if 1N  changes, and thus one is free to 
change the number of expansion functions 
used to model the antenna.  

 
III. The ESP5 Implementation 

In the ESP5 implementation of the 
method, on the first run a LUD (LU to Disk) 
command causes the code to write two files 
to disk containing (1) the LU of the [ ]Z  
matrix and (2) the detailed MM expansion 
function geometry.  On the second or 
subsequent runs a DLU  (Disk to LU) 
command causes the code to read the 
expansion function geometry from the disk 

file and to compare it to that for the present 
run in order to identify 1N  and 2N .   
Assuming 1N N< , the code then reads the 
LU of the [ ]Z  matrix from the disk, and 
recomputes and re-LU decomposes only the 
first 1N  rows and columns. 

 

 

Fig. 2. The MM [Z] matrix part of the way 
through the LU procedure. 

 
Table 1 shows CPU times for a problem 

involving 4804N = wire expansion modes.  
On run 1, 6015 sec. were required to fill the 
[ ]Z  matrix, and 7289 sec. were required to 
do a full LU decomposition.  Writing the LU 
of the [ ]Z  matrix to the disk required 166 
sec., and a far zone pattern at 360 angles 
took 26 sec.  On run 2, only the first mode 
changed, and thus 1 1N =  and 2 4803N = .  In 
this case, 50 sec. were required to read the 
LU of the [ ]Z  from the disk,  2 sec. were 
required to re-compute and 13 sec. to re-LU 
decompose the 1st row and column of the 
[ ]Z  matrix.  If 1N N<< modes had changed, 
then these times would be approximately 
multiplied by 1N .  For example, if the first 

1 10N =  modes had changed, then 
approximately 20 sec. would be required to 
recompute, and 130 sec. to re-LU 
decompose the [ ]Z  matrix. 
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Table 1. CPU times in sec. for runs 1 and 2 
with N = 4804 wire modes, and with only 
the first mode changing on run 2. 

Run 
Comp. 

[ ]Z  
LU 
[ ]Z  

Write 
[ ]Z  

Read 
[ ]Z  

Comp. 
Pattern 

1 6015 7289 166 N/A 26 

2 2.0 13.0 N/A 50 26 

 
Appendix 

This appendix will describe a matrix 
LU procedure that begins at the lower right 
hand corner and proceeds to the upper left 
hand corner1.  Referring to Figure 2, it has 
the advantage that if the 2 2N N× block in the 
lower right hand corner of the original 
matrix does not change, then this block in 
the LU matrix also will not change, and one 
needs only re-LU decompose the 
first 1 2N N N= −  rows and columns of the 
matrix.  This reduces the total operation 
count and CPU time from order 3N  to 2

1N N . 
Assuming the order N [ ]Z  matrix is in 

the form of Figure 2, the following 
procedure will re-LU decompose into 
[ ] [ ][ ]Z L U= . 

 
1

, , , ,
1

, , , , ,
1

 :1: 1

 :1: 1

-  

 1:1: 1

( ) /

N

row i row i row j j i
j i

N

i col i col i j j col i i
j i

for i N

for row i

L Z L U

end

for col i

U Z L U Z

end

end

= +

= +

= −
= −

=

= − −

= −

∑

∑

 

                                                 
1 The LU procedure described below may or 
may not be new.  It was introduced to the author 
by Mr. Brian Lynch when he was a graduate 
student at The Ohio State University, 
Department of Electrical Engineering, 
ElectroScience Lab in 1989. 

On run 1, set 1N N=  to LU decompose the 

full [ ]Z  matrix. 
The backward substitution to solve 

[ ]L Y V=  for Y  proceeds as follows. 
 

, ,
1

 :1: 1

( ) /
N

row row row j j row row
j row

for row N

Y V L Y L

end

= +

= −

= − ∑  

 
The forward substitution to solve [ ]U I Y=  
for the solution vector I  is  
 

1

,
1

 1:
row

row row row j j
j

for row N

I Y U I

end

−

=

=

= − ∑  
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means to discuss problem areas in electromagnetic modeling.  
Material representing an unsuccessful application or negative 
results in computational electromgnetics will be considered 
for publication only if a reasonable expectation of success 
(and a reasonable effort) are reflected.  Moreover, such 
material must represent a problem area of potential interest to 
the ACES membership. 
 
Where possible and appropriate, authors are required to 
provide statements of quantitative accuracy for measured 
and/or computed data.  This issue is discussed in “Accuracy 
& Publication: Requiring, quantitative accuracy statements to 
accompany data,” by E. K. Miller, ACES Newsletter, Vol. 9, 
No. 3, pp. 23-29, 1994, ISBN 1056-9170. 
 
EDITORIAL REVIEW 
 
In order to ensure an appropriate level of quality control, 
papers are peer reviewed.  They are reviewed both for 
technical correctness and for adherence to the listed 
guidelines regarding information content.   
 
JOURNAL CAMERA-READY SUBMISSION DATES  
 
March issue   deadline 8 January 
July issue   deadline 20 May 
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Uploading an acceptable camera-ready article after the 
deadlines will result in a delay in publishing this article. 



STYLE FOR CAMERA-READY COPY 
 
The ACES Journal is flexible, within reason, in regard to 
style.  However, certain requirements are in effect: 
 
1. The paper title should NOT be placed on a separate page.  

The title, author(s), abstract, and (space permitting) 
beginning of the paper itself should all be on the first 
page.  The title, author(s), and author affiliations should 
be centered (center-justified) on the first page. 

 
2. An abstract is REQUIRED.  The abstract should  be a 

brief summary of the work described in the paper. It 
should state the computer codes, computational 
techniques, and applications discussed in the paper (as 
applicable) and should otherwise be usable by technical 
abstracting and indexing services. 

 
3. Either British English or American English spellings 

may be used, provided that each word is spelled 
consistently throughout the paper. 

 
4. Any commonly-accepted format for referencing is 

permitted, provided that internal consistency of format is 
maintained.  As a guideline for authors who have no 
other preference, we recommend that references be given 
by author(s) name and year in the body of the paper 
(with alphabetical listing of all references at the end of 
the paper).  Titles of Journals, monographs, and similar 
publications should be in italic font or should be 
underlined.  Titles of papers or articles should be in 
quotation marks. 

 
5. Internal consistency shall also be maintained for other 

elements of style, such as equation numbering.  As a 
guideline for authors who have no other preference, we 
suggest that equation numbers be placed in parentheses 
at the right column margin. 

 
6. The intent and meaning of all text must be clear.  For 

authors who are NOT masters of the English language, 
the ACES Editorial Staff will provide assistance with 
grammar (subject to clarity of intent and meaning). 

 
7. Unused space should be minimized.  Sections and 

subsections should not normally begin on a new page. 
 
PAPER FORMAT  
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bottom, left, and right 1 inch margins.  Manuscripts should be 
prepared on standard 8.5x11 inch paper. 
 
Only camera-ready electronic files are accepted for 
publication.  The term “camera-ready” means that the 
material is neat, legible, and reproducible.  Full details can 
be found on ACES site, Journal section. 
 
ACES reserves the right to edit any uploaded material, 
however, this is not generally done. It is the author(s) 

responsibility to provide acceptable camera-ready pdf files.  
Incompatible or incomplete pdf files will not be processed,  
and authors will be requested to re-upload a revised 
acceptable version.  
 
SUBMITTAL PROCEDURE 
 
All submissions should be uploaded to ACES server through 
ACES web site (http://aces.ee.olemiss.edu) by using the 
upload button, journal section. Only pdf files are accepted for 
submission. The file size should not be larger than 5MB, 
otherwise permission from the Editor-in-Chief should be 
obtained first. The Editor-in-Chief will acknowledge the 
electronic submission after the upload process is successfully 
completed.  
 
COPYRIGHTS AND RELEASES 
 
Each primary author must sign a copyright form and obtain a 
release from his/her organization vesting the copyright with 
ACES. Copyright forms are available at ACES, web site 
(http://aces.ee.olemiss.edu). To shorten the review process 
time, the executed copyright form should be forwarded to the 
Editor-in-Chief immediately after the completion of the 
upload (electronic submission) process.  Both the author and 
his/her organization are allowed to use the copyrighted 
material freely for their own private purposes. 
 
Permission is granted to quote short passages and reproduce 
figures and tables from and ACES Journal issue provided the 
source is cited.  Copies of ACES Journal articles may be 
made in accordance with usage permitted by Sections 107 or 
108 of the U.S. Copyright Law.  This consent does not extend 
to other kinds of copying, such as for general distribution, for 
advertising or promotional purposes, for creating new 
collective works, or for resale.  The reproduction of multiple 
copies and the use of articles or extracts for commercial 
purposes require the consent of the author and specific 
permission from ACES.  Institutional members are allowed to 
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only.  
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15 free reprints of their articles and must request these from 
the Managing Editor.  Additional reprints are available to 
authors, and reprints available to non-authors, for a nominal 
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