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Abstract:  A preliminary study of p-refinement 
with vector finite elements is reported.  Results 
suggest that improved accuracy can be obtained 
from representations employing a mixture of 
polynomial orders instead of a uniform 
polynomial order.  Results also suggest that it 
might be possible to jump directly from the local 
error in a p=0 expansion to a final representation 
employing 5 or more polynomial orders.  In 
addition, a new set of hierarchical curl-
conforming vector basis functions is proposed. 
 
 
Introduction 
 
Over the years, there have been many extensions 
and variations on the classical scalar finite 
element method.  The recent introduction of 
vector finite elements (edge elements) has created 
the opportunity for an analogous development of 
the vector finite element method.  One aspect of 
finite elements is the possibility of adaptive 
refinement of the finite element mesh, such as the 
h-refinement process where portions of the mesh 
are refined to achieve smaller cells and higher 
accuracy where required, and the p-refinement 
strategy, where the polynomial order of the 
representation is selectively increased throughout 
portions of the mesh [1-3].  Based on work in 
scalar finite element analysis, it is generally 
thought that improved convergence can be 
obtained with one of these refinement schemes or 
a mixture of h-refinement and p-refinement 
strategies.   
 
This article considers the benefits of a p-
refinement approach for vector finite elements.  
Texts such as those by Akin [1] and Zienkiewicz 

and Taylor [2] discuss p-refinement for scalar 
finite element applications.  The use of vector 
finite elements, however, is relatively new, and 
very little has been done to study adaptive 
methods.  Salazar-Palma et al. have explored h-
refinement with vector finite elements [3], and 
several commercial packages (Ansoft’s High 
Frequency Structure Simulator, for one [4]) 
employ h-refinement with vector elements.  
Although p-refinement has not been widely 
considered for the vector case, most aspects of p-
refinement for the vector formulation are similar 
to the scalar formulation.  One major difference 
between the scalar and vector formulations is the 
basis set, which is correspondingly scalar or 
vector.   
 
 
Basis functions 
 
The present investigation considers two-
dimensional formulations based on the curl-curl 
form of the vector Helmholtz equation.  A space 
of vector basis functions suitable for use with the 
vector Helmholtz equation was introduced by 
Nedelec in 1980 [5].  These functions maintain 
tangential cell-to-cell continuity and are known as 
curl conforming.  Nedelec’s mixed-order basis 
reduces the number of null valued eigensolutions 
of the curl-curl operator, which are physically 
meaningless in a source-free region, and therefore 
improves computational efficiency [6].  Vector 
basis functions consistent with Nedelec’s spaces 
have been developed [3, 7].  A goal of the present 
study was to investigate p-refinement approaches 
using functions from Nedelec’s curl-conforming 
space.   
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In practice, p-refinement techniques often 
incorporate hierarchical basis sets, where the 
functions comprising order p contain all functions 
of lower polynomial order.  In this manner, p-
refinement can be carried out by simply adding a 
few additional functions during each pass rather 
than changing the entire set.  Several hierarchical 
vector basis sets have been proposed.  Webb and 
Forghani [8] proposed vector functions for 
tetrahedral cells that can easily be adapted to 
triangular cells.  They actually only presented 
functions for the lowest two orders (p=0 and p=1 
in our notation).  Wang [9] proposed different 
vector basis functions based on orthogonal 
polynomials which may offer improved linear 
independence.  Carrie and Webb [10] proposed a 
third variety of vector functions for triangles 
based on Jacobi polynomials.  The preceding 
functions do not appear consistent with Nedelec’s 
spaces.  More recently, several authors proposed 
alternative sets for tetrahedral cells that do appear 
to be consistent with Nedelec’s spaces [11-14].  
For completeness, Appendix A summarizes a set 
of hierarchical functions for triangular cells 
ranging up to polynomial order 4.5. 
 
Although a practical p-refinement implementation 
would employ hierarchical bases, for the present 
investigation we used the interpolatory vector 
bases of [7] rather than a hierarchical set.  The 
triangular-cell curl-conforming bases of [7], at a 
given order, provide a representation that is 
equivalent to that of the hierarchical functions of 
Appendix A.  (In infinite precision arithmetic, the 
results would be identical.)  It is also apparent that 
a useful implementation of p-refinement would 
necessarily employ a large dynamic range of basis 
orders.  In the following, results are presented 
based on a mixture of up to 5 different 
polynomial orders within the same finite element 
mesh. 
 
An additional feature of a p-refinement technique 
is the definition of transition elements, to smooth 
transition between two regions of different 
polynomial order.  The basis functions employed 
in this study [7] are each associated with an edge 
or a patch within the mesh.  The patch functions 
are entirely local to one triangular cell, and 
contribute no tangential component to any of the 
cell edges.  The tangential continuity of the 
expansion is ensured by using the same order 
basis for those functions interpolatory on both 
sides of a given edge and assigning the same 

coefficients to these functions.  Thus, these two 
edge functions may be considered a single edge 
function which spans both patches common to 
that edge.  Consequently, a transition element is 
formed when the polynomial order of the 
functions associated with different edges of the 
same triangular patch differ.  To transition from 
order p to order q, the basis functions associated 
with one edge of a triangle may be of order p, 
while those of another edge are of order q.  (We 
generally constrain the method to no more than 
two different orders per patch.) 
 
At any stage of the refinement process, a 
polynomial order is assigned to each edge within 
the mesh.  (A patch order may also be defined as 
the average of the orders of each of the three 
edges associated with that patch, rounded up to 
the next integer.)  The goal of the optimization 
scheme is therefore to determine the order of each 
edge for the optimal distribution of unknowns 
throughout the mesh.  A more detailed 
presentation and derivation of the formulation 
used in this study is presented in reference [15]. 
 
 
Formulation 
 
To investigate the potential advantages of p-
refinement, we first wish to determine whether it 
is possible to obtain a better accuracy/efficiency 
trade-off using a mixture of basis orders 
throughout a mesh than it is with a single order.  
As a canonical problem of interest, we consider 
the two-dimensional resonant cavity application 
for the transverse electric (TE) polarization.  The 
vector Helmholtz equation for this situation is 
 
 ∇ × ∇ × E = k

2
 E  (1) 

 
For a cavity with perfect electric (PEC) walls, the 
tangential component of the electric field must 
vanish on the walls.  A weak formulation of the 
problem is constructed as delineated in Chapter 9 
of [6], and we refer the readers to that text for the 
details.  In the following, we consider two 
specific cavities to illustrate our investigation.  
The first geometry is a square cavity partially 
loaded with a dielectric slab with εr=10.  The 
second structure is a circular cavity with a septum 
to the center. These examples both possess an 
exact analytical solution against which to measure 
the error in a numerical result for the dominant 
resonant frequency.  In addition, the modal 
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solutions of both of these problems have regions 
of high variation as well as regions of low 
variation  (Figure 1).  The modes of the dielectric-
loaded square cavity have relatively high 
variation within the dielectric, while the circular 
cavity has a singularity at the tip of the septum, 
and therefore has a large variation in the vicinity 
of the tip. 
 
The dielectric-loaded square cavity was studied 
with three meshes, labeled A, B, and C, having 
37, 74 and 158 patches, respectively.  The circular 
cavity was studied with three meshes, labeled D, 
E and F, having 36, 66 and 128 patches, 
respectively.  In each case, the patch size was 
relatively uniform throughout the mesh, but the 
meshes are unstructured.  Meshes A and D are 
shown in Figure 2.  For the circular cavity, 
parabolic curvilinear cells were used along the 
boundary. 
 
 
First phase of the study 
 
In the first part of our investigation, we attempted 
to determine whether a mixture of polynomial 
orders throughout the mesh offered better 
accuracy for a given number of unknowns than a 
representation with a uniform polynomial order.  
To study this issue, we developed an iterative 
optimization algorithm that locally adjusted the 
polynomial order (both up and down) while 
holding the total number of unknowns fixed.  The 
iterative optimization method used in this study 
was based on three assumptions: 
 
(1)   The normal discontinuity in the D-field at 

cell edges is proportional to the local 
error.  (The normal discontinuity is zero 
in the true solution.) 

(2)   It is optimal for the error to be uniformly 
distributed throughout the mesh as 
opposed to localized. 

(3)   A localized increase in the number of 
unknowns will improve the localized 
solution, decreasing the localized error. 

 
The optimization routine attempts to minimize the 
standard deviation of the normal discontinuities 
throughout the mesh for a given number of 
unknowns.  The program first calculates the 
statistical quantities of interest for the initial 
distribution of unknowns and attempts to improve 
the uniformity by increasing the number of 

unknowns in highly discontinuous regions and 
decreasing the number of unknowns in regions 
with relatively low discontinuities.  It was found 
that the actual limits by which the “high” and 
“low” discontinuities are defined affect the 
convergence rate of the optimized solution but not 
the final solution (if they are picked within 
reason, of course).  These quantities were picked 
somewhat arbitrarily and will not be discussed 
here. 
 
 
 

 
 

 
 
Figure 1.  The dominant modes in the square and 
circular cavities. 
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Figure 2.  The coarsest meshes for the square and 
circular cavities. 
 
 
 
The reallocation of unknowns is repeated until the 
program can no longer decrease the standard 
deviation of the discontinuities in the mesh.  This 
final distribution of unknowns is then regarded as 
the optimal distribution of unknowns and the 
error associated with this distribution of 
unknowns (the error in the dominant resonant 
wavenumber) is used in a plot of error versus 
number of unknowns.  There is, of course, no 
guarantee that the result is actually optimal. 
 

Second phase of the study 
 
The first phase of the study investigated whether a 
more accurate solution was possible with a fixed 
number of unknowns.  In the second phase of the 
study, we attempted to determine if one could 
efficiently realize a nearly optimal distribution of 
unknowns, while avoiding the cumbersome 
optimization process used in phase 1.   
 
As a first step in the approach, we solve the 
problem using a uniform zero-order 
representation throughout the mesh.  We then 
determine the normal discontinuity (in the D-
field) produced at each edge in the mesh by that 
zero-order representation.  The second step is to 
use that error distribution to immediately assign a 
“final” polynomial order to each edge in the 
mesh.   
 
The ambiguity of such an approach is in how 
many orders and how many edges of each order 
to assign, since the process is constrained by the 
total number of unknowns desired.  For this study, 
we cheated — we used the results of the earlier 
iterative optimization procedure to determine the 
number of orders and percentage of each order to 
use.  In other words, if for a particular mesh the 
iterative method determined (after many passes) 
that 15% of the edges were assigned polynomial 
order 4, then 15% of the edges were assigned that 
order in the single step algorithm.  However, in 
the single step procedure the edges chosen for 
refinement were selected based solely upon the 
extent of the zero-order normal discontinuity at 
that edge.  Thus, the procedure is not a complete 
p-refinement algorithm at this point, and our 
specific approach is not practical for 
implementation.  Data presented below suggest, 
however, that an efficient algorithm for 
distributing the unknowns among several orders is 
possible.  The second phase of the study, while 
not a self contained single step p-refinement 
capability, does provide insight into the accuracy 
possible with relatively little computational effort. 
 
 
Results 
 
Figures 3-8 show the percent error in the 
dominant cavity resonant frequency determined 
by various methods versus number of unknowns.  
Each figure depicts the “homogeneous order 
solution,” the error obtained using a p=0 
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representation, a p=1 representation, etc., 
throughout the entire mesh.   
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Figure 3.  Error Versus Unknowns for Square 
Cavity, Mesh A, Iterative and One Step Methods. 
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Figure 4.  Error Versus Unknowns for Square 
Cavity, Mesh B, Iterative and One Step Methods. 
 
Each figure also shows the error produced by the 
iterative optimization process, which employed a 
mixture of various polynomial orders throughout 
the mesh.  The iterative process attempted to 
minimize the standard deviation of the normal 
discontinuity within the dominant mode.  For 
most of the data, the iterative process produced 
better accuracy for a given number of unknowns 
(using a mixture of polynomial orders) than the 
homogeneous solution (a single polynomial 
order). 

 
Figures 3-8 also show the “one step” solution 
obtained by jumping from the zero-order result 
directly to the final distribution of unknowns.   
The one step solution is usually as good (and 
occasionally better) than that produced by the 
gradual iterative process.  This suggests that the 
local error associated with the zero-order solution 
is a meaningful predictor for the distribution of 
unknowns in the final result. 
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Figure 5.  Error Versus Unknowns for Square 
Cavity, Mesh C, Iterative and One Step Methods. 
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Figure 6.  Error Versus Unknowns for Circular 
Cavity, Mesh D, Iterative and One Step Methods. 
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Figure 7.  Error Versus Unknowns for Circular 
Cavity, Mesh E, Iterative and One Step Methods. 
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Figure 8.  Error Versus Unknowns for Circular 
Cavity, Mesh F, Iterative and One Step Methods. 
 
 
For Figures 3-5, representing the square cavity, 
the optimal distribution of unknowns tended to be 
that with a single order throughout the air-filled 
part of the cavity and a higher order throughout 
the dielectric part.  The error curves tend to 
zigzag up and down as the number of unknowns 
is increased, due to the fact that a single order in 
the air filled part of the cavity and a higher order 
throughout the dielectric part can only be 
achieved for specific numbers of unknowns.  
When the algorithm is forced to optimize to a 
number of unknowns for which this distribution is 
not possible, it is less efficient.  In contrast, the 
error curves in Figures 6-8 for the circular cavity 

show a more uniform behavior.  Figure 9 
illustrates the distribution of degrees of freedom 
for mesh F, when optimized for 1000 unknowns. 
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Figure 9.  Distribution of degrees of freedom for 
mesh F when optimized at 1000 unknowns. 
 
 
As an initial step in developing a control 
algorithm for p-refinement, we present several 
plots showing the distribution of polynomial order 
associated with a given number of unknowns.  
Figures 10 and 11 show the transition profiles for 
the square dielectric-loaded cavity (Mesh B) and 
the circular cavity with a baffle (Mesh E), 
respectively.  The transition profiles show the 
percentage of the total number of unknowns 
assigned to each polynomial order for a given 
number of unknowns.  These data are produced 
using the iterative optimization process.  The 
number of unknowns is normalized to the number 
of unknowns in the homogeneous zero order case. 
For example, a normalized number of unknowns 
of “3” corresponds to three times as many 
unknowns as in the zero order homogeneous case. 
 
Figures 12 and 13 show the percentage of edges 
of each polynomial order in terms of a “transition 
point.”  The local error (discontinuity in D-field) 
level is organized into a list by edges; the 
transition point is the position in that list where 
the transition between orders is assigned.  The 
unknowns in the one step method are assigned 
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directly by the ordered list of discontinuities.  For 
example, mesh A has 37 edges.  If it is 
determined that there are to be 30 zero order 
edges and 7 first order edges after refinement, the 
0/1 normalized transition point would be 30 / 37 = 
0.81.   
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Figure 10.  Transition Profile for Square Cavity, 
Mesh B. 
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Figure 11.  Transition Profile for Circular Cavity, 
Mesh E. 
 
 
Because the unknowns in the one step method are 
assigned directly by the ordered list of 
discontinuities, the normalized transition point 
also corresponds to the percentage of edges to 
which each order is assigned.  The 1/2 transition 
point corresponds to the percentage of edges with 

order less than two in the optimized distribution 
of unknowns.  Thus, the difference between the 
1/2 transition point and the 0/1 transition point is 
the percentage of edges with order one in the 
optimized distribution.  Thus, the bar graphs show 
the percentage of edges assigned to each order.  
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Figure 12.  Comparison of Transition Profiles for 
the Square Cavity, Meshes A, B and C. 
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Figure 13.  Comparison of Transition Profiles for 
the Circular Cavity, Meshes D, E and F. 
 
 
It appears from Figure 12 that the normalized 
transition points of the different meshes for the 
square dielectric-loaded cavity occur at roughly 
the same point.  Figure 13 suggests that the 
normalized transition points of the different 
meshes of the circular cavity also occur at roughly 
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the same point.  This would indicate that the 
optimal normalized transition points are not 
strongly dependent on the number of patches or 
their arrangement.  The transition points of the 
circular cavity do not, however, occur at the same 
points as those for the square cavity.  Thus, there 
are other variables that do change these profiles.  
The similarity of Figures 12 and 13 suggest that it 
might be possible to develop an algorithm to 
assign transition points, leading to an efficient 
implementation of the one step p-refinement 
procedure, applicable to a wider range of 
problems than those considered here.  Additional 
research is required to determine an efficient 
strategy for assigning transition points.   
 
 
Conclusions 
 
Aspects of p-refinement for vector finite elements 
have been investigated for two-dimensional 
cavity applications.  Data suggest that 
representations with mixed polynomial orders 
offer better accuracy than those with a uniform 
polynomial order throughout the mesh.  A one 
step p-refinement strategy is studied where the 
final polynomial order is assigned based on the 
normal field discontinuity in the zero-order 
solution.  Results suggest that the zero-order 
result gives meaningful information about the 
regions to refine, and implies that  such a strategy 
can provide a better accuracy-versus-efficiency 
trade off than methods based on a uniform 
polynomial order. 
 
Two further studies would prove of immediate 
benefit.  First, a study detailing the sensitivity of 
the error versus unknown curves to perturbations 
of the transition points would give an indication 
of to what accuracy the transition points must be 
found in order to reap the gains of a one step p-
refinement method.  The fact that the error trends 
for the one step solutions did not differ 
appreciably from those of the iterative method 
suggests that there may be significant freedom in 
choosing these transition points. 
 
A second route of further study would be to 
attempt to correlate these optimized transition 
points to factors in the order zero results, such as 
the standard deviation of the discontinuities in the 

order zero solution.  If these other factors could 
be identified, it would be possible to implement 
an efficient one step p-refinement scheme.    
 
 
Appendix A:  A set of hierarchical vector basis 
functions for triangles 
 
A set of proposed hierarchical functions for 
triangular cells is presented in Table 1.  These are 
defined in terms of simplex coordinates (L1, L2, 
L3) [6].  The lower-order members of this set are 
similar to the Webb and Forghani functions [8], 
but have been modified to satisfy the Nedelec 
conditions [5].  Functions have been included up 
to order 4/5.  For source-free regions, the intent is 
to use the entire set up to mixed order 0/1, mixed 
order 1/2, mixed order 2/3, and so on.  In other 
words, a refinement would involve increasing the 
order from 1/2 to 2/3, not from mixed 1/2 to 
complete 2.  In each case the highest-order 
members of a given mixed group satisfy the 
Nedelec conditions. 
 
In Table 1, functions of degrees 3 and 4 are 
constructed using polynomial products such as 
(3L1 – L2) (L1 – L2) (L1 – 3L2) in order to enhance 
the linear independence of the functions.  There 
are a number of ways of constructing such 
functions, and it can be argued that (L1 – L2)

3
 is 

an equally valid way of expressing an equivalent 
degree of freedom, although possibly not as 
linearly independent — consider, for instance, the 
similarity in the shapes of (L1 – L2)

2
 and (L1 – 

L2)
4
.  Other specific products could be used. 

 
The vector basis set reported in Table 1 appears to 
be equivalent to the sets of functions recently 
reported by Savage [11], Andersen and Volakis 
[12-13], and Webb [14], if those sets are 
converted in a fairly obvious manner to triangular 
cells.  This equivalence implies that an 
appropriate combination of any of these sets of 
functions conform to Nedelec’s curl-conforming 
spaces.  However, the specific elements of each 
set are different and parameters such as the 
associated matrix condition numbers may be 
different as a consequence. 
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Table 1 

Proposed Hierarchal Vector Bases 

 

mixed order 0/1: L2 ∇L3 – L3 ∇L2 3 edge-based functions 

 L3 ∇L1 – L1 ∇L3  

 L1 ∇L2 – L2 ∇L1 total degrees of freedom = 3 

   

complete order 1: ∇(L1 L2) 3 edge-based functions 

 ∇(L1 L3)  

 ∇(L2 L3) total degrees of freedom = 6 

   

mixed order 1/2: L1 (L2 ∇L3 – L3 ∇L2) 2 cell-based functions 

 L2 (L3 ∇L1 – L1 ∇L3) total degrees of freedom = 8 

   

complete order 2: ∇{L1 L2 (L1 – L2)} 3 edge-based functions 

 ∇{L1 L3 (L1 – L3)} 1 cell-based function 

 ∇{L2 L3 (L2 – L3)}  

 ∇{L1 L2 L3} total degrees of freedom = 12 

   

mixed-order 2/3: L1 L2 (L2 ∇L3 – L3 ∇L2) 3 cell-based functions 

 L1 L3 (L2 ∇L3 – L3 ∇L2)  

 L2 L3 (L3 ∇L1 – L1 ∇L3) total degrees of freedom = 15 

   

complete order 3: ∇{L1 L2 (2L1 – L2) (L1 – 2L2)} 3 edge-based functions, 

 ∇{L1 L3 (2L1 – L3) (L1 – 2L3)} 2 cell-based functions 

 ∇{L2 L3 (2L2 – L3) (L2 – 2L3)}  

 ∇{L1 L2 L3 (L1 – L2)}  

 ∇{L1 L2 L3 (L1 – L3)} total degrees of freedom = 20 

   

mixed-order 3/4: L1 L2 (L1 – L2) (L2 ∇L3 – L3 ∇L2) 4 cell-based functions 

 L1 L3 (L1 – L3) (L2 ∇L3 – L3 ∇L2)  

 L2 L3 (L2 – L3) (L3 ∇L1 – L1 ∇L3)  

 L1 L2 L3 (L3 ∇L1 – L1 ∇L3) total degrees of freedom = 24 
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Table 1, cont. 

Proposed Hierarchal Vector Bases 

 

complete order 4: ∇{L1 L2 (3L1 – L2) (L1 – L2) (L1 – 3L2)} 3 edge-based functions, 

 ∇{L1 L3 (3L1 – L3) (L1 – L3) (L1 – 3L3)} 3 cell-based functions 

 ∇{L2 L3 (3L2 – L3) (L2 – L3) (L2 – 3L3)}  

 ∇{L1 L2 L3 (2L1 – L2) (L1 – 2L2)}  

 ∇{L1 L2 L3 (2L1 – L3) (L1 – 2L3)}  

 ∇{L1 L2 L3 (2L2 – L3) (L2 – 2L3)} total degrees of freedom = 30 

   

mixed-order 4/5: L1L2(2L1 – L2)(L1 – 2L2)(L2∇L3 – 

L3∇L2) 

5 cell-based functions 

 L1L3(2L1 – L3)(L1 – 2L3)(L2∇L3 – 

L3∇L2) 

 

 L2L3(2L2 – L3)(L2 – 2L3)(L3∇L1 – 

L1∇L3) 

 

 L1 L2 L3 (L1 – L2) (L3∇L1 – L1∇L3)  

 L1 L2 L3 (L1 – L3) (L3∇L1 – L1∇L3) total degrees of freedom = 35 
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