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Abstract: This paper analyzes the limits of applicability 
of the time domain surface impedance concept. 
Numerical results obtained by the boundary element 
formulation employing time domain surface impedance 
boundary conditions (SIBCs) of different orders of 
approximation are compared with experimental data and 
numerical results obtained using the finite element 
method. An analytical formula for evaluation of the error 
due to application of the various SIBCs is proposed. 
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1. Introduction 
 

Transient analysis of skin effect eddy current 
problems is of significant interest in practice. There are 
two basic approaches to solve transient problems: (1) by 
obtaining the solution in the frequency domain for the 
time-harmonic exciting source and using inverse Fourier 
transform techniques to calculate the required transient 
data and (2) by formulating the problem directly in the 
time domain. In [1, 2] the arguments in favor of the 
second method are discussed. However, time domain 
techniques remain computationally expensive in most 
cases. The problem is simplified if the electromagnetic 
penetration depth in the conducting body is so short that 
the variation of the field in the direction tangential to the 
body’s surface is much less than the field variation in the 
normal direction, so that the complete equation of the 
electromagnetic field diffusion into the body can be 
replaced by a one-dimensional equation in the direction 
normal to the surface of the body. The solution of the 
reduced equation can be then used to derive the so-called 
surface impedance boundary conditions (SIBC) involving 
only the external fields imposed at the outer surface to 
simulate the material properties of the body and thereby 
to convert a two (or more) media problem into a one 
medium problem. 

Existence of such conditions follows directly from 
Snell’s law of refraction: if the electromagnetic wave 
propagates from a low-conductive medium to a high-

conductive medium, the reflection angle is about 90 
degrees and it practically does not depend on the incident 
angle. Suppose the conducting region is so large that the 
wave attenuates completely inside the region. Then the 
electromagnetic field distribution in the conductor’s skin 
layer can be described as a damped plane wave 
propagating into the depth of the conductor, normal to its 
surface. In other words, the behavior of the 
electromagnetic field in the conducting region may be 
assumed known a priori. The electromagnetic field is 
continuous across the real conductor’s surface so the 
intrinsic impedance of the wave remains the same at the 
interface. Therefore, the ratio yx HE  at the xy-plane of 

the dielectric/conductor interface is assumed to be equal 
to the intrinsic impedance of the plane wave propagating 
in the homogeneous conducting body in the positive z-
direction: 
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where ω is the angular frequency of the field source, δ is 
the electromagnetic penetration depth, and σ, ε  and µ 
are the electrical conductivity, permittivity and magnetic 
permeability of the body, respectively.  

The SIBC for planar surfaces can be applied as long as 
the smallest radius of curvature of the surface is much 
larger than the wavelength inside the conductor. 
Leontovich developed the SIBC with a first order 
correction term that accounted for the curvature of the 
interface [3]. However, usually only the simplified form 
(1) of his condition is quoted so the SIBC for the planar 
surface is also called Leontovich’s condition. A further 
correction has been introduced by Mitzner [4], who 
developed the conditions, now known by his name, for 
any smooth surface of a conducting body. The Mitzner’s 
SIBC is written in the form: 
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where xd  and yd  are the local radii of curvature of the 

coordinate lines. More information about origins of the 
surface impedance concept can be found in [5-7]. 
 Note that the condition (2) includes the term 

containing 2δ  whereas the condition (1) contains δ only. 
It is natural to expect that the SIBC of the approximation 
order exceeding the order of the Mitzner’s approximation 

should include terms containing 3δ  and higher. The way 
to obtain these terms was suggested by Rytov [8] more 
than sixty years ago. He applied the perturbation method 
and used the following time-harmonic solution of the 
one-dimensional equation of the magnetic field diffusion 
into a perfect conductor as an initial approximation 
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where 
0=z

yH is the tangential magnetic field at the 

surface of the body. By substituting the solution into 
Maxwell's equations for the conducting region, Rytov 
derived the boundary conditions at the planar surface of a 
highly conducting body in the following form of 
asymptotic expansions in the skin depth taken as a small 
parameter 
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The main advantage of the expression in (3) is that the 
variation of the magnetic field in the direction tangential 
to the body surface is taken into account under the 
concept of the surface impedance based on the solution 
of the reduced 1-D problem in the direction normal to the 
body surface. The generality of the condition (3) is not 
appreciated since only the SIBC of lower order of 
approximation were used until recently. 
 The SIBC concepts can also be used in transient 
problems, when, for instance, the duration of the incident 
pulse is so short that the field has no time to diffuse 
deeply into the body and remains concentrated in the thin 
layer near the body surface. The simplest SIBC in the 
time domain is obtained directly from (1) by using the 
inverse Laplace transformation and written in the form of 
the convolution with respect to time: 
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Although condition (4) is mostly applied in analysis of 
high-frequency problems using the finite difference time 
domain method [9-11], it was also used in combination 
with the finite element method [12] and the boundary 
integral equation method [13-15].  
 Following the perturbation approach proposed by 
Rytov, the following time domain SIBC of high order of 
approximation has been developed [16]: 
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Here * denotes a time domain convolution product )(tU  

is the unit step function and time-dependent functions kT̂  

are defined as follows: 
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where ( )tU ′  is the delta function. 

In some cases it is more convenient to use another SIBC 
relating normal and tangential components of the 
magnetic field on the conductor’s surface: 
 

⎪⎩

⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−
∂

∂−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂

∂
=

y

H

x

H
T

dd

dd

y

H

x

H
TH

yx

yx

xyyx
z *

2
* 21interface

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂−−
+

∂
∂−−

∗
y

H

dd

dddd

x

H

dd

dddd
T

y

yx

yxyxx

yx

yxxy

22

22

22

22

3
8

23

8

23

⎪⎭

⎪
⎬
⎫

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂∂

∂
+

∂∂
∂+

∂

∂
+

∂
∂+

∂∂

∂
−

∂∂
∂−∗

2

3

2

3

3

3

3

3

2

2

2

2
3 22
2 xy

H

yx

H

y

H

x

H

xy

H

yx

HT yxyxyx  

                 (6a) 
 

( ) ( ) ,2121
1

−−= ttT πσµ   ( ) ( ) ( ),2 σµtUtT =  

( ) .212133
3 tT

−= µπσ          (6b) 
 
Although conditions (5) and (6) allow for such effects as 
curvature of the surface and variation of the field in the 
tangential direction, the SIBC (4) of lowest 
(Leontovich’s) order of approximation only has been 
used until now in the time domain calculations (current 
situation in frequency domain analysis is better: 
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Mitzner’s SIBC (2) is widely used). The matter has 
uncertain limits of applicability of the surface impedance 
concept. Indeed, under definition the surface impedance 
boundary conditions can be used when the skin depth δ  
is much less than characteristic size D of the conductor’s 
surface: 

 
 D<<δ ; ( )condsourceyx RRddD ,,,min=    (7) 

 
where sourceR and condR  are the distances to the source 

and or neighboring conductor (if the system of 
conductors is considered), respectively. Condition (7) is 
usually used to check applicability of the concept. But it 
does give us neither an approximation error due to 
application of SIBC nor the rule which SIBC (for 
example, (4) or (5)) should be used in a given problem. 
In addition, SIBCs have been originally derived for 
smooth surfaces whereas real geometries include corners 
and edges. Although rigorous and practical technique to 
extend the concept to this kind of problems has not been 
developed so far, in practice, SIBCs are frequently 
applied to all kinds of bodies supposing that the errors 
due to singularities near edges are local.  The situation is 
worse in the time domain due to lack of accurate 
mathematical definition for the skin depth in the transient 
case. Thus detailed validation of the SIBCs is of great 
importance for the concept. This problem has been 
frequently considered in the past [17-19], but almost all 
reported works are focused on the frequency domain 
SIBCs of low order of approximation. According to our 
knowledge, time domain SIBCs of high orders have not 
been validated using experimental methods so far. In the 
present paper limits of applicability of the low-frequency 
high order time domain SIBCs for homogeneous 
conductors are investigated by using experimental and 
numerical techniques. 
 
 

2. Statement of Transient Problem 
 

Consider a pair of identical long parallel aluminum 

( ( ) 171082.3 −Ω×= mσ ) conductors of circular cross 

section of the radius D equal to 30 mm. Distance between 
centers of the conductors is equal to 120 mm. Conductors 
are connected in series and the circuit is fed by a dc 
voltage source that provides equal and oppositely 
directed currents )(1 tI  and )(2 tI  flowing through the 

conductors: 
 

       )()( 21 tItI −= .       (8) 

 
The duration of the source current has been chosen so 
that  
 

       2Dσµτ <<         (9) 

 
where τ  is the pulse duration. Clearly, (9) is time 
domain analog of (7).  
 
 
3. Boundary Element Formulation Employing Time 

Domain SIBC 
 
Presence of condition (9) enables the surface 

impedance concept being applied. It is natural to consider 
the problem as two-dimensional in the plane of cross 
sections of the conductors. The magnetic scalar potential 
in free space can be introduced as follows: 
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Biot-Savart law as 
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Hence in free space the governing equation is 
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and application of the boundary element method yields 
the following set of integral equations over the contours 
of cross sections of conductors: 
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Here iL  is the contour of the cross section of the 

conductor i, s=s(x,y) is the coordinate directed along the 
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contour of the conductor’s cross section, n
r

 is the normal 
unit vector directed inside a conductor, c is the 
coefficient depending on the shape of the contour. G and 
K are the fundamental solutions of the two-dimensional 
Laplace and diffusion equations, respectively [20]: 
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with Ft  the final time of analysis. 

Solution of (13)-(16) yields distributions of φ , 

)( Hn
rr

× , )( Hn
rr

⋅  and nHn
rrr

∂×∂ )( over the contour of the 

conductor’s cross sections. Hence, for our problem, ne 
being the number of elements in which the contour of 
each conductor is discretized, the system to be solved is a 
square system of dimension 5·2ne. However, the number 
of unknowns can be reduced by application of SIBC (6) 
that in our 2-D case is written in the form: 
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SIBC (18) can be used instead of integral equations (14)-
(15) so the BEM-SIBC formulation consists of equations 
(13), (16) and (18) and can be solved with respect to φ , 

)( Hn
rr

× , )( Hn
rr

⋅ . If ne is the total number of nodes, 3 

linear systems of ne equations and ne unknowns must be 
solved in order to calculate the scalar potential over the 
nodes.  

 
 

4. Experimental Setup 
 

The experimental set-up is described in Fig. 1. The 
transient is obtained closing a circuit breaker so that the 
resulting source current is exponential (see Figure 2). 
Commercial magnetoresistive sensors (Philips KMZ10A) 
of nominal sensitivity S = 80 mV/(kA/m) lie over the 
conductors, as described in Fig. 1. Sensor No 1 is in 
position (-121 mm, 54.2 mm), sensor No. 2 is in position 
(-73 mm, 54.2 mm) and sensor No. 3 is in position (-25 
mm, 54.6 mm). Measurement standard uncertainty of the 
positions has been estimated 0.5 mm. Sensors are 
oriented with their sensitivity axis parallel to x-axis. Six 
low drift, high accuracy instrument amplifiers (INA 128, 

Burr Brown) have been employed in order to process and 
amplify the signals generated by each magnetoresistive 
sensor. The output signals are sampled and acquired by 
an 8 channels data acquisition system, with 12-bit 
resolution and 32 ksamples/s rate for each channel 
 

 

 

 
 
 

5. Comparison of Numerical and Experimental 
Results 

 
In this section the experimental data together with 

numerical results obtained using BEM formulation 
employing SIBCs of different orders of approximation 
and commercial finite element software [21] are 
presented. Figures 3, 4 and 5 give the magnetic fields at 
the position of sensors 1, 2 and 3, respectively. Figures 
6,7 and 8 report the difference between calculated and 
measured fields. 

In Figures 9, 10 and 11 distributions of the tangential 
magnetic field over the surface of the conductor obtained 
using PEC, Leontovich’s, Mitzner’s and Rytov’s 
boundary conditions are compared with data obtained 
using commercial FEM software. BEM code uses 80 
nodes per conductor, numbered starting from A along s, 
and constant elements. From the results shown in Figures 

120 mm 

60 mm 

I1 (t) 

x 

y 

3 2 1 

I2 

Magnetic sensors 

60 mm 

Fig. 1. Experimental set-up. 

A 
s 

Fig. 2. Current waveform I1(t). 
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3-11 it can be concluded that the SIBC formulation 
allows an efficient and accurate simulation of the test 
case. The hypothesis of perfect electric conductor gives 
definitely worse results. Increasing the order of the SIBC 
formulation, numerical results are closer and to the FEM 
solution and to the experimental measurements, 
considering uncertainty in the latter. However, it is 
unclear a priori, until which times BEM-SIBC 
formulation may be used. For this purpose an analytical 
formula giving approximate limit of applicability of the 
surface impedance concept is derived in the next Section. 
Note that the error (difference between results obtained 
using BEM-SIBC and FEM) is higher in Figures 9-11 
than in Figures 3-8. It occurs because the field in free 
space has been calculated by performing integration of 
the scalar potential over the surface of the conductors that 
reduces computational error. 

 

 
Fig. 3 The magnetic field near the sensor No. 1. 

 
Fig. 4 The magnetic field near the sensor No. 2. 

 
Fig. 5  The magnetic field near the sensor No. 3. 

 
Fig. 6 Difference between computed and measured 

fields in the case of sensor No. 1. 

 
Fig. 7 Difference between computed and measured 

fields in the case of sensor No. 2. 
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Fig. 8 Difference between computed and measured 

fields in the case of sensor No. 3. 
 

 
Fig. 9 Distribution of the tangential magnetic field over 

the conductor’s surface at 0.006 s. 

 
Fig. 10 Distribution of the tangential magnetic field over 

the conductor’s surface at 0.012 s. 

 

 
Fig. 11 Distribution of the tangential magnetic field over 

the conductor’s surface at 0.025  s. 
 
 

6. Conditions of Applicability 
 
Since the surface impedance approach gives the 

solution in the form of asymptotic expansions, a natural 
question is limits of their applicability. Basic condition 
giving an error of approximation of the surface 
impedance boundary condition is derived from (9) and 
written in the form: 

 

     [ ] 1)(
2/2 <<=

kk Dp σµτ     (19) 

 
where values of k equal to 1,2,3 correspond to PEC-limit, 
Leontovich’s SIBC, Mitzner’s SIBC and Rytov’s SIBC 
respectively. Small parameter p is combination of two 
values, τ  and D. In our experimental setup the duration 
τ  of the pulse may vary whereas the conductor’s radius 
D is constant. Thus condition (19) can be represented in 
the form: 
 

   2/kk
k ταε = , 2/12 )( −= Dσµα  ,   k=1,2,3  (20) 

 
where kε  is the error of approximation k. Figure 10 

shows distribution of the errors corresponding to PEC-
limit, Leontovich’s, Mitzner’s and Rytov’s 
approximations. For example, application of Leontoivh’s 
SIBC for simulations with the pulse duration equal to 
0.0065 s leads to the 10% error. Use of Rytov’s SIBC 
allows to perform simulations for longer pulse of the 
duration equal to 0.021 s with the same error.  
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Fig. 12.   The approximation error as a function of the 
pulse duration. 

 
Note that the disagreement between results obtained 

using the SIBCs and measured data is actually less than 
the error predicted by the formula (20) since it does not 
take into account such effects as symmetry of the 
problem, shape of the pulse and the proximity effect. 
Nevertheless, (20) gives quick evaluation of the 
applicability of the surface impedance concept for a 
given problem and can be used for selection of the 
approximation order. 

 
 

7. Conclusions 
 

Experimental and numerical verification of the time 
domain surface impedance concept has been performed 
by simulation and measurement of the transient 
electromagnetic field around a system of two long 
parallel conductors with oppositely directed currents. The 
time domain surface impedance boundary conditions of 
different orders of approximation have been coupled with 
the boundary element code based on the fundamental 
solution in free space (the Laplace equation). The results 
have been compared with measured data and numerical 
results obtained using the boundary element code 
employing the fundamental solutions of the Laplace and 
diffusion equations. A formula for quick evaluation of 
applicability of the surface impedance concept for a 
given problem has been proposed and analyzed.  
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