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Abstract

An integral equation approach is derived for an electromagnetic scattering from an M arbitrary multilayered
dielectric domain. The integral equation is valid for the 2D and 3D Helmholtz equation. Here we show the
numerical solution for the 2D case by using the Nyström method. For validating the method we develop a
mode matching method for the case when the domains are multilayered circular cylinders and give numerical
results for illustrating the algorithm.

Introduction

Problems of electromagnetic scattering in layered me-
dia are of significant importance in many areas of tech-
nology such as optics, geophysical probing, communic-
ation, etc. (see [6] and the references therein). In this
paper we discuss some analytical and computational
results for the problem of approximating the scattered
electromagnetic field from M layered two-dimensional
scatterer. The scatterer is a nested body consisting of a
finite number of homogeneous layers (annular regions)
with boundary conditions on the interfaces. For the
case when the boundaries are circular, closed form solu-
tions can be obtained via a mode matching approach
(see [9], [16] and [6], Chapter 6). For boundaries of ar-
bitrary shapes, one of the most efficient techniques to
tackle the problem is using (volume or surface) integral
equation methods. There are also other type of meth-
ods such as the domain decomposition methods [12]
and k-space methods (Cf. [3] and [4]). In this paper
we choose the surface integral equation method since
the inhomogeneities are piecewise constants in each re-

gion. The problem can thus be solved (via a boundary
element method) on surfaces. It has an advantage over
the volume integral equation method, where the whole
multilayered domain has to be discretized and the un-
knowns are in a volume rather than on a surface (see
[13]). The straightforward way for solving this type
of problems via boundary element methods is by us-
ing Green’s theorem in each domain [6]. Another al-
ternative is to consider the use of single and/or double
layer potentials [7]. In the case of one interface, both
methods yield a single integral equation for a single
unknown if the interface is impenetrable (e.g., imped-
ance core). However, when the body is penetrable with
one interface (e.g., dielectric core), they lead to a pair
of integral equations for a pair of unknowns [7]. We
deduce that, by using these approaches in the mul-
tilayered dielectric domain, for N interfaces we have
2N unknown functions to determine. From a compu-
tational point of view, it is highly desirable to obtain
less equations and less unknowns. In the case of one
interface, the so called transmission problem, one integ-
ral equation involving one unknown was obtained by a
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few authors (see [10], [14] and the references therein).
In [10] the single integral equation for one unknown
was obtained for the transmission problem by using a
hybrid of Green’s theorem and layer potentials. In [6],
Chapter 8.3, single integral equations are obtained for
multilayered domains by using the extended boundary
condition method. But this method suffers from ill-
conditioned equations and is mainly convenient for a
scatterer where the fields around it are expandable to
cylindrical harmonics. The purpose of this paper is to
obtain Fredholm type single integral equations on each
interface for the multilayered domain case. To this end,
we alternate the layer potentials and Green’s theorems
in the multilayered domain and implement numerical
computations using the Nyström method. For a theor-
etical study of the problem, see [1] and [2]. Our results
are validated by developing a mode matching approach
for the case of a multilayered circular cylinder and com-
paring the two algorithms.
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Figure 1: The geometry for the case of five concentric
layered cylinder. The incident field is a plane wave
propagating in a direction d.

1 The mathematical formulation of the prob-
lem

Let Dl, l = 0, 1, · · ·M − 1 be M bounded domains in
R2 such that Dl−1 ⊂ Dl, l = 1, 2, · · · , M − 1. Let Γl

be the C2 boundaries of Dl−1, l = 1, · · · , M . Now let
Ω1 = D0, Ωl = Dl\Dl−1, l = 1, · · · , M − 1, and ΩM =
R2\DM−1. We assume that ΩM is simply connected.
See Figure 1 for Ωl, l = 0, 1, · · · , 5. This is a special
case of the general geometry where we have the cross
section of (M = 5) concentric cylinders that are infinite
in length and their axes are parallel to the z direction.

Each of the regions Ωl is a dielectric material of con-
stant complex permittivity and permeability εl and µl

(l = 0, · · · , M), respectively. This geometry is illumin-
ated by an incident field which is a plane wave with
direction d = (cos φ0, sin φ0).

It can be shown that we have to solve the follow-
ing type of boundary value problem for the Helmholtz
equation.

(∆ + κ2
l )ul = 0 in Ωl, l = 0, · · · , M,

where the wave numbers κl are given by κl = ω
√

εlµl,
ω is the frequency, with the following continuity con-
ditions on the internal interfaces:

∂

∂ν
ul = ρl

∂

∂ν
ul−1 on Γl, l = 1, · · · , M − 1,

ul = ul−1 on Γl, l = 1, · · · , M − 1,

with ρl = ρ̂l

ρ̂l−l
, l = 1, 2, · · · , M, where ρ̂l =

√
µl

εl
is the

intrinsic impedance.
On the outermost interface we have

∂u

∂ν
= ρM

∂

∂ν
uM−1 on ΓM ,

u = uM−1 on ΓM ,

where,
u = uM + ui in ΩM

and the given incident field, ui, satisfies

∆ui + κ2
Mui = 0

everywhere. In addition, uM must satisfy the Sommer-
feld radiation condition, i.e.,

lim
|x|→∞

|x|1/2

(
∂uM

∂|x| − iκMuM

)
= 0.
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The unit outward normal ν to Γl is assumed to be
directed towards the exterior domain. The above prob-
lem is known as the TM mode. The TE mode is ob-
tained by replacing ρl by 1

ρl
. We denote the funda-

mental solution to the Helmholtz equations (the free-
space source) by

Φk(x,y) = − i

2
H

(1)
0 (κk|x − y|), k = 0, 1, · · · , M,

where H
(1)
0 is the Hankel function of the first kind and

order zero. Throughout this paper i will denote the
complex constant satisfying i2 = −1.

2 The integral equation approach

First, for non-zero functions φl, l = 1, 2, · · · , M, define
the single and double layer potentials as

Sl
kφl(x) =

∫
Γl

Φk(x,y)φl(y) ds(y), x ∈ R2\Γl,

and

Dl
kφl(x) =

∫
Γl

∂

∂νl(y)
Φk(x,y)φl(y) ds(y), x ∈ R2\Γl,

respectively, for k = 0, 1, · · · , M . Their normal de-
rivatives are denoted by P l

k and Ql
k, respectively, for

k = 0, 1, · · · , M .
We have the continuity relations

Sl
k = Ŝl

k, Ql
k = Q̂l

k,

and the jump relations

Dl
k = ∓I + D̂l

k and P l
k = ±I + P̂ l

k,

where, the upper (lower) sign corresponds to the limit
when x approaches Γl from the outside (inside). The
hat on each operator represents it on the boundary Γl.

To arrive at the desired integral equation we define
a layer ansatz by El

k := Dl
k − iηlS

l
k for l �= 0 and

E0
k = 0 (with normal derivative H l

k := ∂El
k/∂ν) in

Ωk, where ηls are nonzero complex constants chosen
to obtain well-posedness, k = 0, 2, 4, · · · , and Green’s
theorem in Ωk′ , k′ = 1, 3, 5, · · · . In particular, let us

assume that M is odd. Then, in the core region Ω0 we
define

u0(x) = E1
0φ1(x), x ∈ Ω0. (2.1)

In the outermost domain, we use Green’s theorem ([7]
pp. 68-70) to obtain{

2uM (x) = SM
M

∂
∂ν u(x) − DM

M u(x), x ∈ ΩM ,

−2ui(x) = SM
M

∂
∂ν u(x) − DM

M u(x), x ∈ R2\ΩM .

(2.2)
In the other domains, for l = 2, 4, · · · , M − 1, we

define

ul(x) = El
lφl(x) + El+1

l φl+1(x), x ∈ Ωl, (2.3)

and, using Green’s theorem for l = 1, 3, · · · , M − 2 we
have


2ul(x) = Sl

l
∂
∂ν ul(x) − Sl+1

l
∂
∂ν ul(x)−

(Dl
l − Dl+1

l )ul(x), x ∈ Ωl,

0 = Sl
l

∂
∂ν ul(x) − Sl+1

l
∂
∂ν ul(x)−

(Dl
l − Dl+1

l )ul(x), x ∈ R2\Ωl

(2.4)

Now, using the jump and continuity relations we obtain

the second equation in (2.2) on ΓM and the second
equation in (2.4) on Γl and Γl+1 (l = 1, 3, 5, · · ·M −2).
Using the boundary conditions, jump properties for the
single and double layer potentials together with their
derivatives, and replacing u0 (given in (2.1)) and ul

(given in (2.3)) into these equations we arrive at a set
of M integral equations with M unknowns φl on Γl,
l = 1, 2 · · · , M . In particular, on ΓM we have

−2ui = (ρM ŜM
M ĤM

M−1 − (D̂M
M + I)ÊM

M−1)φM+(
ρM ŜM

M HM−1,M
M−1 − (D̂M

M + I)EM−1,M
M−1 )

)
×φM−1,

and for l = 1, 3, 5, · · ·M − 2, we have

0 =
(
ρlŜ

l
lH

l−1,l
l−1 − (D̂l

l + I)El−1,l
l−1

)
φl−1+(

ρlŜ
l
lĤ

l
l−1 − (D̂l

l + I)Êl
l−1

)
φl−(

1
ρl+1

Sl+1,l
l Ĥ l+1

l+1 − Dl+1,l
l Êl+1

l+1

)
φl+1−(

1
ρl+1

Sl+1,l
l H l+2,l+1

l+1 − Dl+1,l
l El+2,l+1

l+1

)
φl+2
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on Γl and

0 =
(

1
ρl+1

Ŝl+1
l Ĥ l+1

l+1 − (D̂l+1
l − I)Êl+1

l+1

)
φl+1+(

1
ρl+1

Ŝl+1
l H l+2,l+1

l+1 − (D̂l+1
l − I)El+2,l+1

l+1

)
φl+2

−
(
ρlS

l,l+1
l H l−1,l

l−1 − Dl,l+1
l El−1,l

l−1

)
φl−1−(

ρlS
l,l+1
l Ĥ l

l−1 − Dl,l+1
l Êl

l−1

)
φl on Γl+1,

where Êm
k = ∓I+D̂m

k −iηmŜm
k , Ĥm

k = Q̂m
k −iηm(±I+

P̂ m
k ), and by T m,n

k (T is for S, D, E or H) we mean that
T m

k is evaluated on Γn when n �= m. Numerically the
above system has to be discretized and solved to obtain
an approximation of the unknowns φl, l = 1, 2 · · · , M .
Then the solution of the layered problem can be con-
structed for the discretized forms of (2.1)-(2.4).
Remark: The above system is also valid for the 3D
Helmholtz equation. The only difference is that the
fundamental solution is

Φk(x,y) = − eiκk|x−y|

2π|x− y| .

3 Numerical validation and results

This section is devoted to the numerical solution of
the above system and its validation for the 2D case.
To this end, we use the Nyström method for the nu-
merical solution and Bessel function expansion for the
validation. Then we show the numerical results.

3.1 Discretization and numerical solution

The system is discretized using the Nyström method
[11]. The resulting matrix equation, that involves mat-
rix multiplications resulted from the multiplications of
layer potentials and/or their derivatives, is solved by
a standard LU decomposition approach. Let us note
that the assumption that M is odd is not a loss of
generality. In fact, for an even M we can use the same
method, but for M +1 regions, ΓM+1 encloses the scat-
terer, with κM+1 = κM and ρM+1 = 1. This way has
the advantage of keeping the same system of equations
and the disadvantage of adding another equation and
an unknown function φM+1. This may be overcome
by starting with Green’s theorem in the core region,

alternate with layer ansatz and obtain the Green’s the-
orem in ΩM , which gives a different system than the
previous argument.

3.2 The Mode Matching Approach

This method is studied in detail in the literature (see
e.g., [9]). Consider the case when the regions Dl’s
are circular cylinders with radii rl+1 and origins Ol+1,
l = 0, 1, 2, · · · , M − 1; then we have the following ex-
pansions [6]: For the outermost region

u(r̃M , φM ) =
∑∞

n=−∞
(
bM
n H

(1)
n (κM r̃M ) + Jn(κM r̃M )

)
×e−in(φM−φo)

and for other regions we have

ul(r̃1, φ1) =
∑∞

n=−∞
(
bl
nH

(1)
n (κlr̃1) + al

nJn(κM r̃1)
)

×e−in(φ1−φo), l = 0, 1, 2, · · ·M − 1,

where b0
n = 0.

To enforce the boundary conditions we need the ad-
dition formula for ul, l = 1, · · · , M − 1 which means
that the fields expressed in terms of X1O1Y1 be trans-
lated to XlOlYl coordinates. This yields, by the addi-
tion theorem (cf. [5] pp. 30-31),

ul(r̃l, φl) =
∑∞

n=−∞
∑∞

i=−∞ Ji−n(κldl1)

×
[
bl
nH

(1)
i (κlr̃l) + al

nJi(κlr̃l)
]

×ei(φ0−(i−n)φl1 ),

where dl1 is the distance between O1 and Ol, and φl1

is the angle between O1Ol and the x axis.
The sums in the above equations have to be trun-

cated, at some number, N0, to obtain a finite system.
Now we can use the expansions on the boundary to-
gether with their derivatives and the boundary condi-
tions to obtain a linear system in the unknowns al

n and
bl
n. This system is also solved via LU decomposition

approach.

3.3 Numerical Results

In this section, numerical solution obtained by using
the integral equation (IE) and mode matching (MM)
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methods are presented. We have conducted several nu-
merical experiments.

First we try to validate the MM method by analyzing
the physical properties of the waves, by plotting the
absolute value of the waves against the boundaries. To
this end, we consider a cylinder with radius r = 3, so
that we only have the inner and outermost domains,
and keep the angle of the incident field φ0 = 90 deg
and ρ1 = 1 fixed. We would expect, for real κ1 and
complex κ2 with negative imaginary part, the wave to
diverge at the boundary. If, on the other hand, we
have that the two wave numbers are real and equal,
the absolute value of the wave should be unity. Finally,
for the case when κ1 is real and κ2 is complex with
a positive imaginary part, because of absorption, the
absolute value of the wave must decay at the boundary
and the bigger the imaginary part, the faster the wave
should decay. Our numerical computations show that
all theses properties are satisfied, and the results are
summarized in Figure 2.

Next we validated the IE method for one interface,
centered at O = (−0.2, 0.7), by plotting the absolute
value of the far field pattern (measured at a fixed ob-
servation point x̂) against the incidence angle for two
different wave numbers using the IE and MM methods.
See [8], page 20, for the definition of the far field pat-
tern f . The result is given in Figure 3, which shows a
very good agreement of the two methods. Unless oth-
erwise stated we use 32 grid points for the Nyström
solver.

Our next examples are for the two and three-layered
circular cases. First we plot the absolute value of the
far field against the incidence angle for the two-layered
case and then for the three-layered case. The results
are shown in Figure 4 and Figure 5, respectively. In
these cases as well we have very good agreements of
the two methods.

For the case of more circular layers we have the same
conclusions, except that more grid points are needed,
which is due to the errors in the computation of the
layer potentials.

Our last example is for the case of three boundaries
of kite type where MM method can not be performed
(Figure 6). Here we investigate the convergence as well
as the boundary conditions. For the former we com-
pute the far field pattern for different wave numbers.
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Figure 2: The case of one circular boundary (r = 3).
The absolute value of the wave plotted against the ra-
dius. We have used κ1 = 2 and κ2 = 2− 0.5i (top left)
κ1 = 2 and κ2 = 2 (top right), κ1 = 2 and κ2 = 2+0.5i
(bottom left), and κ1 = 2 and κ2 = 2 + 1.5i (bottom
right).
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Figure 3: The absolute value of the far field pattern
plotted against the incidence angle using the MM (’o’)
and IE (solid line) methods. The case of one interface.
We used κ0 = 2, κ1 = 3 and the radius is r = 1.
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Figure 4: The absolute value of the far field pattern
plotted against the incidence angle using the MM (’o’)
and IE (solid line) methods. The case of two-layered
circular cylinders. Here κ0 = 2, κ1 = 3, κ2 = 4,r1 = 1
and r2 = 2.
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Figure 5: The absolute value of the far field pattern
plotted against the incidence angle for the MM (’o’)
and IE (solid line) methods. The case of three-layered
circular cylinder. Here κ0 = 2, κ1 = 3, κ2 = 4, κ3 = 1
r1 = 1, r2 = 2 and r3 = 3.

The results are reported in the two tables below. We
see clear convergence, and, as expected, it is fast. For
the latter case we plot |u0| and |u1| on Γ1, |u1| and
|u2| on Γ2, and |u2| and |u3 +ui| on Γ3, against the in-
cidence angle. From the boundary conditions we know
that they must coincide. This is shown in Figures 7.
One way we have used to compare the IE and MM
methods in the case of 3−layered kite is by enclosing
the tree layers within a circular domain and choose all
the inner layers to have the same wave numbers and the
outer region to have a different wave number. Physic-
ally, this is a one-layered problem; but mathematically
the four layers exist. By so doing we still obtain a
figure similar to Figure 3.

Figure 6: The geometry for the case of three boundaries
of kite type.
Table 1: Parameter values and description for the geo-
metry in Figure 6. D1, D2 and D3 are the first, the
second and third data, respectively, for the numerical
computation

Description Symbol D1 D2 D3
κ0 2 4 1+i

Wave numbers κ1 3 5 2
κ2 1.5 4.5 2+0.5i
κ3 2.5 5.5 3

4 Conclusion and future work

We have developed an integral equation approach for
solving the M multilayered electromagnetic problem
and used the Nyström method for the numerical com-
putation. The algorithm was validated by a Fourier
expansion method for circular (not necessarily concent-
ric) cylinders. One may think as a disadvantage for our
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Table 2: The numerical results using the integral equa-
tion (IE) approach for the geometry in Figure 6. The
data are given in Table 1. The number N is the number
of Nyström (grid) points.

N IE
8 −3.1863 + 0.4213i
16 −3.5238 + 0.1952i

D1 32 −3.5215 + 0.1955i
64 −3.5214 + 0.1954i
8 −11.9843 + 15.8975i
16 −3.5291 + 3.2993i

D2 32 −4.2103 + 3.5349i
64 −4.2103 + 3.5344i
8 −2.3889 + 1.6002i
16 −2.5120 + 1.5746i

D3 32 −2.5126 + 1.5739i
64 2.5126 + 1.5739i
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Figure 7: Here we plot |uj | (’o’) and |uj+1 +
(j−1)(j−2)

2 ui| (solid line) on the boundary Γj against
the incidence angle. In (a) we have the case j=1, in (b)
j=2 and (c) j=3.

method the numerous matrix vector multiplications.
This problem can be overcome by using fast multipole
methods (see [15]) where these operations are done very
quickly. Our results also show the (expected) fast con-
vergence of the Nyström method for analytic boundar-
ies. The natural expansion of our method is for the nu-
merical solution of the three-dimensional electromag-
netic problem, and to the case of multiple scatterers.
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