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Abstract: Generalizations of fractal Koch curves 
and their use in designing multi-resonant antennas 
are presented in this paper.  Both recursive and 
non-recursive generalizations of the curve are 
examined.  Variation of the indentation angle is 
used for this approach.  Although this variation has 
a direct bearing on the unfolded length of the 
curve, this should be considered as a primary 
variable since several geometries with the same 
unfolded length can be constructed with different 
permutations of indentation angles.  Antenna input 
characteristics such as the primary resonant 
frequency, the input resistance at this resonance, 
and ratios of the first few resonant frequencies 
have been studied by numerical simulations.  This 
study shows that it is possible to design multi-
resonant antennas using Koch curves with various 
indentation angles.  Identifying similar parameters 
with other known fractal geometries would offer a 
viable route for designing multiband and 
multifunctional antennas for modern wireless 
applications using them. 

Keywords: Fractals, Multifrequency antennas, 
Wire antennas. 

1. INTRODUCTION 

Fractal geometries have found numerous 
applications in several fields of science and 
engineering in the past few decades, ever since the 
term fractal was coined by Mandelbrott for a class 
of seemingly irregular geometries [1]-[5].  
Disciplines such as geology, atmospheric sciences, 
forest sciences, physiology have all benefited 
significantly by fractal modeling of several 
naturally occurring phenomena.  In 
electromagnetics, fractal geometries have been 
studied in the context of various wave propagation 
scenarios.  Scattering and diffraction from fractal 
screens have been studied extensively [6]-[7].  
More recently fractal geometries have also been 
used in frequency selective screens [8]-[10]. 
Similarly, fractal concepts have also been used in 
antenna engineering.  The primary motivation for 

the use of fractals in this area has been to extend 
antenna design and synthesis concepts beyond 
Euclidean geometry   [11]-[12]. Obtaining special 
antenna characteristics using a fractal distribution 
of elements is the main objective of the study on 
fractal antenna arrays.  Self-similar arrays have 
frequency independent multi-band characteristics 
[13].   

Antenna elements with fractal shapes have also 
been investigated in recent years.  It is the irregular 
nature of these geometries that has caught the 
attention of antenna designers - primarily as a past-
time.  Over the past decade or so, several antenna 
properties have been qualitatively linked to the 
nature of these geometries. With the deepening of 
such an understanding of relationships between 
geometric properties and antenna features, a new 
class of antennas, called fractal shaped antennas is 
becoming popular.  Initial investigations with 
fractal geometries for antenna applications have 
been experimental.  Fractal geometries such as 
Koch curves, Minkowski curves, Sierpinski carpets 
were investigated by Cohen for various types of 
antennas [14].  Fractal trees were also explored and 
found to have multiband characteristics [15].  Self-
similarity of these fractal geometries has since been 
qualitatively associated with multiband 
characteristics of antennas using them.  Several 
self-similar geometries have therefore been 
explored to obtain multiband antenna 
characteristics [16]-[19]. For example, Sierpinski 
gaskets have been studied extensively for 
monopole and dipole antenna configurations [20].  
The self-similar current distribution on these 
antennas is expected to cause its multi-band 
characteristics [21].  Yet another fractal geometry 
pursued by many antenna researchers is the Koch 
curve.  Several variants of this geometry have been 
used as dipole, monopole, loop and patch antennas 
with equally diverse performance [14], [22]-[28]. 
Historically, Koch monopoles are among the first 
antennas based on a fractal geometry designed as 
small sized antennas. In addition to being small, 
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these geometries can potentially lead to multiband 
antenna characteristics [22].   

Fractal shaped antennas for numerous wireless 
applications have been commercialized recently.  
The advantages of using fractal shaped antenna 
elements are manifold.  These geometries can lead 
to antennas with multiband characteristics, often 
with similar radiation characteristics in these 
bands.  However, it may be pointed out that the 
ordered nature of fractals introduces a substantial 
advantage over an antenna geometry obtained by 
arbitrarily shrinking the geometry, and this could 
be exploited in novel antenna design and analysis 
approaches.  However, thus far the research on 
using these geometries, has more or less 
concentrated on introducing them into the realm of 
antenna design, without seriously getting into novel 
design ideas.  There are few exceptions including 
the works by Werner et. al. [28]-[29] where 
antenna properties were optimized by modifying 
the geometry using a genetic algorithm.  The 
present authors have reported a design approach for 
Hilbert curve and Koch cure dipole antennas 
making use of its fractal features [30]-[33]. 

In this paper however, it is attempted to make a 
parametric study of dipole antennas using Koch 
curves, with the indentation angle as the design 
parameter.  If this angle is kept a constant for 
various iterations, the resultant geometry is self-
similar.  A variation in the indentation angle of 
these self-similar geometries can be used to obtain 
a parametric correlation between the antenna 
characteristics and a mathematically expressible 
feature (e.g., fractal dimension) of the fractal 
geometry [32]-[33].  However a convenient means 
for designing such antennas can be obtained if the 
indentation angles for all iterations are chosen 
independently.  The resultant geometry is non-
recursive and may not be truly called fractal.  

The geometries studied here may be considered as 
a special case of those presented in [28] and [29], 
since the initiator in the present case has one line 
segment less.  The approach for generalization of 
the geometry is described in the next section.  
Results of numerical simulations using NEC for 
antennas with these geometries are described in 
Section 3.  It has been found that the indentation 
angle of each Koch iteration may be varied to 
design multi-resonant antennas with variable 
frequency intervals.  A brief summary of the new 
findings in this paper are presented in Section 4.  It 
is expected that the use of these ideas would 
significantly reduce the computational intensity of 

optimization approaches for design of antennas 
using fractal geometries, and would help antenna 
designers approach the problem with due merit. 

2. GENERALIZATION OF KOCH CURVES 

The antenna geometry used in this paper is based 
on a fractal curve originally introduced by Swedish 
mathematician Helge von Koch in 1904 [34].  
Several generalizations of the original geometry 
exist.  The recursive construction of the basic 
fractal curve is shown in Fig. 1.  To distinguish this 
from generalizations introduced later, this 
geometry will be referred to as the standard Koch 
curve for the rest of the discussions.   

The geometric construction of the standard Koch 
curve is fairly simple.  One starts with a straight 
line, called the initiator.  This is partitioned into 
three equal parts, and the segment at the middle is 
replaced with two others of the same length.  This 
is the first iterated version of the geometry and is 
called the generator.  The process is reused in the 
generation of higher iterations. 

It may be recalled that each segment in the first 
iterated curve is 1/3 the length of the initiator.  
There are four such segments.  Thus for nth iterated 
curve the unfolded (or stretched out) length of the 
curve is (4/3)n.  This is an important property useful 
in the design of antennas using them. 

2.1. IFS for the Standard Koch Curve 

An iterative function system (IFS) can be 
effectively used to generate the standard Koch 
curve.  A set of affine transformations forms the 
IFS for its generation. Let us suppose that the 
initiator (unit length) is placed along the x-axis, 
with its left end at the origin.  The transformations 
to obtain the segments of the generator are 
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Fig. 1. Geometrical construction of standard Koch 
curve (indentation angle=60°). 

 

Fig. 2. A recursive generalization based on fractal 
Koch curves of first four iterations with an 
identical indentation angle of 30° for various 
stages.   

The generator is then obtained as 

).()()()()( 43211 AWAWAWAWAWA ∪∪∪== (5) 

This process can be repeated for all higher 
iterations of the geometry.  It may be observed that 

end points of curves of all iterations is the same.  
Various iterations of the geometry obtained with 
this IFS are shown in Fig. 1. 

the (straight line) distance between the start and 

2.2. Recursive Generalizations  

tudied as part of 
Initiator Generator 

In the proposed generalizations s
this work, the rotation (indentation) angle is made a 
variable.  This leads to generalization of IFS with 
the following transformations 
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where the scale factor s is angle dependent and is 
given by 

( ) .
cos12
11
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=

s
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This ensures the distance between the start and end 

be obtained as 

points for all iterations is the same.  It may be 
easily verified that this formulation degenerates to 
the standard Koch curve for θ=60°. 

The generator for the geometry can 
in eq. (5).  These affine transformations in the 
generalized case also lead to a self-similar fractal 
geometry.  As an example, self-similar geometries 
of various iterations obtained by recursively 
applying the above transformations have been 
shown in Fig. 2.  The indentation angle in these 
cases is 30°, as compared to 60° used for the 
standard Koch curve geometry.  In fact this 
variation in indentation angle causes a 
corresponding variation in the fractal dimension of 
the geometry.  The fractal similarity dimension of 
this generalization of the geometry is obtained as 

( )[ ] .
cos12log
4log

θ+
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Similar geometries with
dimensions can be obtained 
indentation angles with this recursive 

factor for all 
e in the 

ve.  Further 

 varying fractal similarity 
for different 

generalization.  The indentation angle may vary 
between 0 and 90°. For the indentation angle θ=0, 
the curve is linear (dimension=1) while for θ=90°, 
a geometry of sufficiently large iteration tends to 
fill a triangular area (dimension=2).  

2.3. Non-recursive Generalizations 

The indentation angle and the scale 
stages of iteration are kept the sam
recursive generalization described abo
generalized curves can be obtained by removing 
this restriction and are used in the study presented 
in this paper.  In order to ensure that the approach 
is systematic, all sub-sections of the curve are kept 
identical.  Thus all line segments of the final 
geometry have the same length, and indentation 
angles for subsections of the geometry at individual 
iteration are identical.  Such generalizations of a 
third iterated Koch curve are shown in Fig. 3.  The 
indentation angle for iteration stages are 20°, 40°, 

and 60°, with the last angle used in the outermost 
generator for case (c) and vice versa for case (d).  
For a given end-to-end distance l, the length of 
individual line segments m constituting an nth 
iterated geometry is given by 
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.
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n
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θ
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Likewise, the total unfolded length of the curve is 
given by 
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It may be observed that for a given l, various 
permutations of angles can result in the same 
unfolded length.  Thus this generalization offers a 

Di  with arms consisting of Koch 
es and fractal 

g a moment method 

ilar Geometry 

Characteristics of antennas using the standard 
Koch curve of this type have been studied 
previously by experiments as well as numerical 

possibility of studying the effects of indentation 
angles, as opposed to unfolded length. 

3. MODELING STUDIES ON THE 
ANTENNA 

3.1. Dipole Antenna Model 

pole antennas
curves of different indentation angl
iterations are simulated usin
based software G-NEC.  A typical dipole antenna 
using 4th order iteration curves with an indentation 
angle of 60° and with the feed located at the center 
of the geometry is shown in Fig. 4.  Similar 
geometries with various fractal iterations and 
indentation angles have been extensively studied 
by numerical simulations [33]. This model consists 
of wire elements only. The radius of wire segments 
constituting the antenna model is consistently kept 
at 0.1 mm.  It may be noted that this values is much 
smaller than the wavelength (~60 mm) at the 
highest frequency considered in the present study.  
The segmentation length used in the NEC model is 
taken as approximately 0.5 mm, uniform in all 
cases.  Each dipole arm has an end-to-end distance 
of 10 cm.   

3.2. Numerical Simulations of Antennas with 
Self-Sim

20° 

40° 

60° 

(a) 

(b) 

(c) 

(d) 

Fig. 3. Generalized curves obtained by non-
recursive approach.  The curve in (b) has four
copies of the one in (a), but with a different
indentation angle.  Similarly the curves in (c) is
obtained from (b). Two such 3rd iterated curvs are
compared in (c) and (d).  Indentation angles are:
(c) 20°-40°-60° (d) 60°-40°-20°. The angle for
the first generator listed first. 
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Table 1. Primary (first) resonant frequencies for dipole antennas with self-similar Koch curves (with
recursive IFS) for various iterations obtained by numerical simulations.  The end-to-end distance of these 
arms are kept constant at 0.1 m. 

Unfolded arm length (m) for various 
iterations  

Resonant frequencies (MHz) for 
various iterations  

Indentation 
Angle (Deg.) 

1 2 3 4 1 2 3 4 
10 0.101 0.102 0.102 0.103 710.1 713.5 711.7 710.1 
20 0.103 0.106 0.116 0.113 685.8 693.9 687.8 685.8 
30 0.107 0.115 0.123 0.132 643.2 662.4 649.6 643.2 
40 0.113 0.128 0.145 0.164 589.1 618.8 595.1 589.1 
50 0.122 0.148 0.18 0.22 512.5 565.6 528.6 512.5 
60 0.133 0.178 0.237 0.316 427.9 505.1 453.8 427.9 
70 0.149 0.222 0.331 0.493 337.2 441.2 376 337.2 
80 0.170 0.290 0.495 0.843 256.6 381.3 304.6 256.6 
simulations [22]-[27]. Since these antennas are 
small in terms of operational wavelength, their 

ation performance is notradi  expected to change 

quency may as well be attributed to 

nput resistance of about 

 for very small indentation angles, these 

significantly.  Hence only the input characteristics 
of these antennas are examined in the following 
discussions.   

Resonant frequencies for antennas with various 
iterations of self-similar geometry have been listed 
in Table 1.  This indicates that by changing the 
indentation angle or fractal iteration, the resonant 
frequency can be reduced.  However this reduction 

in resonant fre
 

the increase in the unfolded length of the curve.  In 
contrast to previous designs using a genetic 
algorithm [28]-[29], the present approach strives to 
generate a knowledge base using geometrical 
features and hence is expected to be less 
computation intensive.   

The input resistance at the resonant frequency also 
changes by these modifications to the standard 
geometry.  In Fig. 5, these variations are plotted for 
various iterations of the fractal.  For angle θ=0, 
these antennas all degenerate to identical linear 
dipoles with a resonant iAntenna Feed 

Fig. 4. Configuration of Koch dipole antenna.
Arms of the antenna have 4th iteration Koch curves
with indentation angle=60°. 

72Ω.  As the angle or the fractal iteration is 
increased, this value is reduced significantly.  It 
may be observed that it is always preferable to 
match the antenna impedance to a standard value 
(50Ω).  Although not attempted in this paper, this 
approach of generalization may be used to design 
antennas with the required input characteristics at a 
specified frequency.  In other words, the 
indentation angle may be used as a design 
parameter. 

The antenna input characteristics at higher resonant 
frequencies are also altered by the change in 
angles.  To compare these, the variations of first 
four resonant frequencies are plotted in Fig. 6 for 
the first four iterations of the geometry.  It may be 
noticed that0
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antennas behave similar to linear dipoles.  
However as the angle is increased, the periodicity 
of these multiple resonances is changed.  It may be 
argued that the indentation angle of the self-similar 
antenna can be changed for appropriate positioning 
of its resonant frequencies.  

Fig. 5. Variation of input resistance of the dipole
antennas with generalized Koch curves (self-similar)
of various fractal iterations. 



3.3. Numerical Simulations of Antennas with 
Non-Recursive Geometry 

The geometries used thus far were all generated 
recursively by using an IFS.  If one were to break 
this rule, antenna properties may be tailored with 
better flexibility.  Although the resulting antenna 
structure may not be called truly fractal, this offers 

unfo ent sets of angles 

re listed.  As mentioned earlier, 
ermutations of indentation angles, such as (20°, 
0°) and (40°, 20°) lead to the same unfolded 

ng identical unfolded length does 

the possibility of studying curves with the same 
lded length, but with differ

for various iterations.  Extensive numerical 
simulation studies have been performed on 
antennas using such non-recursive geometries to 
explore the usefulness of indentation angle, 
contrary to the unfolded length, as the primary  

 

parameter.  A few representative cases are 
presented here. 

In Table 2 the unfolded length of arms of the 
dipole and the resulting primary resonant 
frequency a
p
4
length, but different resonant frequencies.  This 
shows that havi
not guarantee similar input characteristics of the 
antenna.  Furthermore a consistent variation in the 
input resistance of the antenna at its primary 
resonance is also observed.  These are plotted for 
various indentation angles in Fig. 7.  Similarly, the 
variation in the periodicity of distribution of first 
four resonant frequencies of various antenna 
geometries can be observed from Table 3.  Thus if 
one has the flexibility of arbitrarily choosing the 
indentation angle at each stage of generation of the 

Fig. 6. Variation of resonant frequencies of dipole
antennas with generalized self-similar Koch curves of
various fractal iterations.  The resonant frequencies
for each resonance of all cases converge to that of
linear dipole when the indentation angle approaches
zero. 
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Table 2. Unfolded curve length and resonant frequencies for various indentation angles of the non-recursive 
generalization of the 2nd iterated Koch curve.  The end-to-end distance of its arms are kept constant at 0.1 m. 

Unfolded Curve-Length (m) for 
various (outer) Indentation angles 

Resonant Frequencies (MHz) for 
(outer) Indentation angles  

Indentation 
angle (inner) 

20° 40° 60° 80° 20° 40° 60° 80° 
20° 0.106 0.117 0.137 0.176 694 662 610 554 
40° 0.117 0.128 0.151 0.193 650 619 570 515 
60° 0.137 0.151 0.178 0.227 580 550 505 455 
80° 0.176 0.193 0.227 0.290 497 469 427 382 
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Fig. 7. Input resistance at the first (primary)
resonance of dipole antennas based on generalized
Koch curves.  In all antennas, end-to-end distance
of their arms are kept constant at 0.1 m, and have
2nd generation non-recursive Koch curve.  The
angle at the inner iteration is the parametric
variation while the x-axis is for the angle of the
outer stage. 
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able 3. Resonant frequencies of dipole antennas with 2nd generation generalized non-recursive Koch curves. 
he indentation angle in each generation stage is different.  The end-to-end distance of these arms are kept 
onstant at 0.1 m. 

Indentation 
Angles 

Input 
Resistance  

Resonant Frequencies (MHz) Ratios of Resonant 
Frequencies 

Inner Outer at  fr1 fr1 fr2 fr3 fr4 fr2/fr1 fr3/fr2 fr4/fr3
20 68.7 705 2157 3615 5078 3.060 1.676 1.405 
40 59.7 660 1999 3348 4716 3.029 1.675 1.409 
60 46.9 590 1748 2910 4130 2.963 1.665 1.419 

0 

80 34.2 511 1432 2300 3311 2.802 1.606 1.440 
20 66.7 694 2121 3549 4981 3.056 1.673 1.403 
40 58.1 650 1964 3284 4621 3.022 1.672 1.407 
60 45.5 580 1714 2847 4035 2.955 1.661 1.417 

20 

80 32.4 497 1395 2247 3236 2.807 1.611 1.440 
20 61.1 662 2012 3354 4690 3.039 1.667 1.398 
40 52.8 619 1861 3093 4332 3.006 1.662 1.401 
60 41.1 550 1619 2666 3748 2.944 1.647 1.406 

40 

80 29.1 469 1308 2093 2991 2.789 1.600 1.429 
20 52.2 610 1839 3043 4221 3.015 1.655 1.387 
40 45.4 570 1696 2792 3870 2.975 1.646 1.386 
60 35.1 505 1468 2386 3317 2.907 1.625 1.390 

60 

80 24.5 427 1177 1858 2619 2.756 1.579 1.410 
20 43.6 554 1648 2689 3663 2.975 1.632 1.362 
40 37.4 515 1513 2451 3336 2.938 1.620 1.361 
60 28.8 455 1299 2075 2828 2.855 1.597 1.363 

80 

80 19.9 382 1031 1599 2194 2.699 1.551 1.372 
rve, antennas with varied input characteristics 
n be obtained.   

milar variations in input characteristics are also 
tained for antennas with 3rd iteration geometries.  

esonant frequencies of antenna geometries with 
rious permutations of indentation angles, with 
e innermost angle kept constant at 60° are listed 
 Table 4. 

llowing this approach one can have several 

s in terms of both the input resistance 

ude both recursive 
and non-recursive curves. Schemes for such 

geometries are introduced.  

rves with the same length, but with a different 
t of resonant frequencies.  These differences in 
sonant frequencies are found to be more 
onounced as the order of iteration is increased.  
ence this approach offers a scheme of designing 
tennas based on Koch curves suiting the 
quirement
d the resonant frequency.  It is concluded from 
is study one can design multi-resonant antennas 
ith considerable flexibility by choosing their 
dentation angles arbitrarily for each iteration 
hile generating the geometry. 

4. CONCLUSIONS 

In this paper, the variation in the input 
characteristics of multi-resonant antennas based on 
generalizations of fractal Koch curves is presented.  
Geometries considered here incl

generalization of these 
In this study, the indentation angle in the 
transformations of the iterated function system is 
varied to obtain a set of geometries.  Although this 
variation has a direct bearing on the unfolded 
length of the curve, the indentation angle should be 
considered a primary variable since several 
geometries with the same unfolded length can be 
constructed with different permutations of 
indentation angles.  Antenna parameters such as 
the primary resonant frequency, the input 
resistance at this resonance, and ratios of the first 
few resonant frequencies have been studied by 
numerical simulations.  This study shows that it is 
possible to design multi-resonant antennas using 
Koch curves by individually choosing an optimum 
indentation angle for various iteration stages of the 
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Table 4. Resonant frequencies of 3rd iterated non-recursive geometry.  The innermost angle is kept θ1= 60°.  The 
ther angles are varied as listed. 

Resonant Frequencies (MHz) Ratios of Resonant 
Frequencies 

θ2 θ3 Input 
resistance 

at fr1 fr1 fr2 fr3 fr4 fr2/fr1 fr3/fr2 fr4/fr3
0 20 57.5 649 1968 3281 4589 3.032 1.667 1.399 
 40 49.6 605 1815 3017 4223 3.000 1.662 1.400 
 60 38.6 537 1571 2582 3632 2.926 1.644 1.407 
 80 27.2 456 1261 1995 2848 2.765 1.582 1.428 
20 20 55.7 638 1932 3215 4491 3.028 1.664 1.397 
 40 48.2 595 1780 2952 4129 2.992 1.658 1.399 
 60 37.1 526 1539 2523 3547 2.926 1.639 1.406 
 80 25.7 443 1229 1952 2798 2.774 1.588 1.433 
40 20 50.4 605 1822 3018 4194 3.012 1.656 1.390 
 40 43.4 563 1677 2762 3841 2.979 1.647 1.391 
 60 33.3 497 1445 2349 3285 2.907 1.626 1.398 
 80 23.1 417 1150 1816 2586 2.758 1.579 1.424 
60 20 42.6 553 1646 2697 3709 2.976 1.639 1.375 
 40 36.4 513 1509 2457 3380 2.942 1.628 1.376 
 60 27.8 451 1294 2077 2870 2.869 1.605 1.382 
 80 19 376 1023 1598 2234 2.721 1.562 1.398 
80 20 33.7 489 1428 2295 3099 2.920 1.607 1.350 
 40 29.1 454 1307 2087 2818 2.879 1.597 1.350 
 60 22 397 1113 1753 2369 2.804 1.575 1.351 
 80 14.8 328 871 1335 1820 2.655 1.533 1.363 
underlying fractal geometry.  Identifying similar 
parameters for other known fractal geometries 
would ease the complexity in designing multiband 
and multifunctional antennas for modern wireless 
applications. 
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