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 ABSTRACT – In the framework of photonic crystal’s band 
structure calculations, we present a novel way – based on several 
advanced techniques for searching and tracing eigenvalues with 
the multiple multipole program – to compute these diagrams 
automatically, efficiently, and with a high accuracy. Finally, we 
validate the results for some well known test cases. 
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I. INTRODUCTION 
HOTONIC Crystals (PhCs) were proposed in 1987 by E. 
Yablonovitch [1] at the University of California, as an 

optical counterpart to semiconductors, i.e., PhCs should 
provide a photonic bandgap in the same way that a 
semiconductor possesses an electronic bandgap. In fact, PhCs 
are rarely found in nature. Exceptions are opals and butterfly 
wings. However, thanks to nano-technology it has become 
possible to fabricate artificial PhCs in the last decade. These 
PhCs essentially consist of a periodic assembly of dielectric 
scatterers, i.e., there is a strong link to the well-known 
structures of grating theory. One of the important differences 
between PhCs and semiconductors is the size of the unit cell. 
For a semiconductor, one has a 3D grid consisting of identical 
atoms, i.e., the lattice constant in all three directions of the 
crystal is in the order of the diameter of an atom, whereas the 
cell size of a PhC is in the order of half an optical wavelength, 
i.e., much larger. From this fact, one expects that the Photonic 
Integrated Circuits (PICs) based on PhC concept must be 
much larger than the traditional semiconductor ICs. But – 
because of the macroscopic size of the PhC’s unit cell – one 
has much more freedom in introducing and fabricating defects 
in a PhC than in a semiconductor. Note that a semiconductor 
becomes interesting from the technological point of view only 
when a few impurities or defects are introduced and the same 
holds for PhCs. Doping traditional semiconductors is a rather 
statistical way of introducing defect atoms in a semiconductor 
and therefore, the building blocks of semiconductor are 
relatively large blocks of material with a specific doping. 
These blocks obviously consist of many atoms. When 
designing a "doped" PhC, one can precisely position and 
fabricate all defects with a high degree of freedom – at least it 
is expected that this can be done in the near future [2]. 

Although the variety of PhC structures that might be 
fabricated one day seems to be almost infinite and although 
many interesting structures were already proposed (various 
types of waveguides, sharp bends in waveguides without any 
reflection, couplers, resonators, etc.) or even fabricated on a 
prototype level, one currently cannot say what kind of PhC 
structures will be favored. At the moment, one can neither 
know the materials that are best suited for PhCs – it is well 
known that a large dielectric contrast is required for obtaining 
a bandgap, which somehow limits the materials that may be 
used, but there is no unique choice at all – nor what kind of 
geometry (2D crystals or 3D crystals [3]-[5], symmetry, shape 
of the scatterers) is most appropriate. Thus, there is a strong 
need for theoretical investigations and simulations of potential 
structures. The first step of such investigations consists in the 
computation of the band diagrams of perfect PhCs without 
any defects. The goal is to find structures that may easily be 
fabricated and exhibit a broad band gap, i.e., a frequency 
range where no electromagnetic waves are allowed to 
propagate within the crystal. In order to find the band gap, one 
must compute the band diagram of the lowest order modes of 
the PhC. This is essentially an eigenvalue problem that 
exhibits several special cases that may cause difficult 
numerical problems, especially when one is designing a 
procedure for the automatic, efficient, accurate, and reliable 
computation of the complete band diagrams for arbitrary 
structures. 
Currently, the most frequently used approach is the Plane 
Wave Method (PWM) that mainly approximates the 
electromagnetic field by a superposition of plane waves [6]-
[10]. It is well known, that this method has a problematic 
convergence [11]-[13],[10]. Other methods that were used for 
PhCs are the Finite Difference Time Domain (FDTD) [14], 
[15], the transfer matrix method [16], the Finite Element 
Method (FEM) [17], and the Boundary Element Method 
(BEM) [18]. In the following, we apply the latest version of 
the Multiple Multipole Program (MMP) [19] implemented in 
the MaX-1 software [20].  
In order to obtain efficient, reliable, and accurate results, we 
carefully analyze the numerical problems that may occur and 
introduce several new techniques. For reasons of simplicity 
we focus on the 2D case.  
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The remainder of the paper is organized as follows: A commonly 
used representation of PhCs in terms of their band diagram is 
elucidated in Section II. In Section III we briefly explain the 
core of our photonic crystal calculations, when MMP is 
considered. The proper framework of the eigenvalue search is 
reported in Section IV, whereas in Section V a successful 
automation of such search procedure is proposed. A validation 
of our band structure calculation by means of various test 
examples is given in Section VI. And finally, we conclude this 
contribution with a short summary in Section VII. 

II. DEFINITION OF THE BAND DIAGRAM 
As an introductory example let us consider the simple case of 

a 2D PhC consisting of dielectric rods arranged in a square 
lattice and embedded in, e.g., air. For periodic structures it is 
possible to apply some fundamental theorems from solid state 
physics. The original lattice for this crystal is given on the left 
hand side of Fig. 1. For the dielectric constant we can write 

 where )()( Rrr += εε R  is one of the original lattice vectors. 
According to Bloch’s theorem [6], [7] for the modal field inside 
the crystal we write 
 

( ) ( ) ,ikr
kn knE E r u r e= = ⋅                      (1) 

( ) ( ) .kn knu r u r R= +                             (2) 

 
Note that (1) holds not only for the electric but also for the 
magnetic field. Bloch’s theorem may be proven in classical electro-
dynamics [6]. Important consequences of this theorem are [6], [7] 
 
1. , i.e., 1ik Re ⋅ = 2k R N π⋅ = ⋅ , where N is an integer – the 

wave vector space (reciprocal space) is discrete, 
2. )()( ,, rErE nGknk +

= , i.e., the reciprocal space is 

periodic.G  is one of the reciprocal lattice vectors. 
 
This allows us to define the so-called reciprocal lattice space, 
spanned by the reciprocal lattice vectors. We first define the 
original lattice vectors as follows 
 

1 1 2 2 3 3R e e eη η η= + +                                      (3) 
 
where , ,  are three independent lattice vectors and , 

, 
1e 2e 3e 1η

2η 3η  are integer numbers. Note that  is missing in 2D 
crystals. Similarly, we write for the primitive reciprocal lattice 
vectors 

3e

 
                        (4) 

1 1 2 2 3 3 .G f f fκ κ κ= + +
 
If we want to construct the reciprocal lattice, we can use [7] 
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These equations are derived from the definition of the 
reciprocal lattice vector space. For 2D crystals (cylindrical 

geometry), the vector 3f  is omitted and the vector 
3e  is the 

unit vector ze  along the cylinder axis. 
From the equations above, we can conclude that the discrete 
translational symmetry of a photonic crystal leads to the fact 
that modes with the wave vector k  and modes with the wave 
vector Gk +  are identical, i.e., we have periodicity also in the 
reciprocal space. A special representation of the primitive cell 
for this periodicity is called the first Brillouin zone (1st BZ). It 
can be defined as a zone around any lattice point in the 
reciprocal space with points that are closer to this lattice point 
than to any other lattice point. 
The Brillouin zone construction (using Bragg’s planes – 

dashed lines) for the square lattice is shown in Fig. 2. Because 
of the high degree of symmetry, we need to analyze only a 
small part of the 1st BZ. This part is called the irreducible BZ 
(IBZ), [6], [7]. In the case of periodic structures, it is 
sufficient to perform the modal field analysis in the area of the 
IBZ. As illustrated in Fig. 2 the IBZ for a square lattice is a 
triangle with the corners Γ, X, and M. Since the maxima and 
minima of the eigenvalues (resonance frequencies) are 
supposed to be on the borders of the IBZ, it is sufficient to 
trace the eigenvalues along the sides of the IBZ in order to get 
the photonic bandgaps. Therefore, the standard band diagram 
consists of three sections: Γ–X, X–M, and M–Γ (see Fig. 5). 
For other lattices, the procedure is essentially the same [21], 

             
Fig. 1: The original (left) and reciprocal (right) lattice for a 2D photonic
crystal (square lattice). Construction details for reciprocal lattice are given in 
the text.  

 
Fig. 2: Construction of the 1st Brillouin zone (solid square), its irreducible part 
(triangle Γ-X-M) and characteristic points for band structure computation (Γ, X, 
and M). 
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[22]. Assume that an arbitrary point in the reciprocal space is 
considered. This point essentially defines a wave vector. For the 
periodicity of (3) we then obtain for the field in the original 
space 
 

(( ) ( ) ( ) i C e C ei k RF r R F r e F r e η + η⋅+ = ⋅ = ⋅ 1 1 1 2 2 2 )

h

        (5) 
 
where F stands for the electric as well as for the magnetic field. 
In the MMP implementation of the periodic boundary problem 
C1, C2 are parameters that characterize the point in the reciprocal 
lattice space. As a consequence, it is sufficient to know the field 
in a unit cell (as an equivalent representation of the primitive 
cell) of the original space. Let us call this the original cell. Note 
that neither the shape nor the location of the original cell is 
unique, but for both the square and the hexagonal lattice we 
may simply use quadrangular original cells as shown in Figs. 3 
and 4. 
For the square lattice, the relation between the periodic 
constants (C1, C2) and the position in the IBZ is very straight 
forward, i.e., t ese are the Cartesian components (Cx, Cy) of the 
wave vector . For the hexagonal lattice, the situation is a bit 
more complicated [23]-[25]. 

k

III. THE MMP SOLUTION OF PERIODIC PROBLEMS WITH 
FICTITIOUS BOUNDARIES 

Any software for computing band diagrams must handle both 
eigenvalue problems and periodic structures. The MMP 
implementation of MaX-1 contains a simple concept for 
handling arbitrary periodic structures: First, the structure is 
subdivided into cells by an appropriate grid of fictitious 
boundaries (dashed lines in Fig. 3 and Fig. 4). Assume that the 
field in one of the infinitely many cells is known, then, the 
field in all other cells is easily obtained from the periodicity 
conditions (5), i.e., the Floquet theorem [7].  
The geometric shape of the original cell depends on the 
crystallographic structure (i.e. the crystal symmetry), but it is 
not unique for a given crystallographic structure at all, because 
the fictitious boundaries we have introduced, are quite 
ambiguous. For example, in Fig. 3 we used straight lines 

between the circular rods. We could replace these lines by 
curved, periodic lines and we could move these lines to any 
other position in space. Since we will impose so-called 
periodic boundary conditions along the fictitious boundaries 
of the original cell, we have to minimize the numerical 
problems when we select the fictitious boundaries in such a 
way that the electromagnetic field along them is as well 
behaved as possible. Therefore, straight lines in the middle 
between neighbor rods are most reasonable when the rods are 
circular or rectangular. When the geometric shape of the rods 
is more complicated, it may be advantageous to use curved 
lines. 
Once, the original cell is isolated by introducing fictitious 
boundaries, we can derive boundary conditions for the field 
along them. In 2D PhCs, the original cell is bounded by two 
pairs of parallel lines. For example, when r  is a point on the 
left border of the original cell in Fig. 3, 1er +  is the 
corresponding point on the right border, where 1e  corresponds 
to one of the primitive lattice vectors. Because of the 
periodicity, we obtain from (5) 
 

1 1( )
1( ) ( ) i C eF r e F r e+ = ⋅ .                      (5') 

 
This condition holds for both the electric and the magnetic field 
in every point along the right boundary of the original cell. We 
call this the periodic boundary condition that is imposed on the 
right border of the original cell. Similarly, we can introduce a 
periodic boundary condition for the upper border. 
Having defined the original cell and its periodic boundary 
conditions, one has to set up the MMP model of the scattering 
body in the lattice point: We approximate the field in each 
domain by a superposition of multipole expansions and some-
times by additional, analytic solutions of Maxwell’s equations 
(in the frequency domain). The amplitudes or parameters of the 
resulting series expansions are then computed with the 
generalized point matching technique, i.e., by minimizing a 
weighted error function defined along all natural and fictitious 
boundaries. For example, for the simple geometry in Fig. 4 we 
use the following expansions 

 
Fig. 3. The basic cell of the photonic crystal with dielectric rods 

and square lattice 

 
Fig. 4: The unit cell of the photonic crystal with dielectric rods arranged on a
hexagonal lattice. 

 
Fig. 3: The unit cell of the photonic crystal with dielectric rods arranged on a
square lattice. 
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Fig. 5: The band diagram of the photonic crystal with dielectric rods on a square lattice (for H-polarization).The algorithms used within the 
eigenvalue search procedure are labeled correspondingly. 
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where Jn is Bessel function of order n, Hn

1 is Hankel function 
of first kind and order n, κ is transverse propagation constant 
and (r,ϕ) are polar coordinates with respect to the origin at the 
position of the corresponding expansion. Expansion (6) 
(Bessel expansion) is used in the case of E-polarization and 
expansion (7) is used in the case of H-polarization. These 
Bessel expansions are used for the domain inside of the 
dielectric rod because these functions have no singularity at 
origin. Furthermore, these expansions are sufficient because 
the domain is simply connected. The background domain is 
not simply connected, because it contains a hole. Therefore, 
we need at least two different expansions, namely a multipole 
expansion (8) or (9) and Bessel expansion (6) or (7). Note that 
the moltipole expansion essentially accounts for the field 
scattered at the inner boundary, whereas the Bessel expansion 
accounts for the outer, ficitious boundaries. This means that 
the Bessel expansion simulates the field that comes from all 
rods outside the original cell. According to Vekua [24], our 
set of expansions is complete in the sense that the error of the 
field is below an arbitrarily small value ε provided that the 

highest orders are big enough and provided that the 
amplitudes (A, B, C, D in (6)-(9) ) are computed correctly. 

IV. THE MMP-MAS EIGENVALUE SOLVER 
For obtaining the band diagram of a PhC, it is necessary to 

solve an eigenvalue problem, because there is no excitation like 
in scattering problems. This means that we only obtain non-
trivial solutions (i.e. frequencies) for an arbitrary point of the 
IBZ (i.e., for a given set of complex values C1, C2). Thus, we 
essentially have a periodic resonator problem to solve. The 
search of resonance frequencies in the MMP code MaX-1 is 
somehow different from many other numerical methods because 
MMP uses a full rectangular system matrix obtained from the 
generalized point matching technique. For such type of matrix it 
is very demanding to obtain accurate results while avoiding 
problems with the condition number [25]. Note that condition 
number problems are especially crucial when one is solving 
eigenvalue problems. If this is not properly done, one can obtain 
a "noisy" behavior near the eigenvalues and this can heavily 
disturb the numerical eigenvalue search procedures. However, 
the standard MMP eigenvalue search procedure first defines a 
real valued, positive eigenvalue search function 
 

)(
)(

)( 2

2

eA
eE

e =η                          (10) 

 
where e is the eigenvalue (i.e. the resonance frequency), E is the 
weighted residual, and A is an amplitude that may be retrieved 
from any field component in a specific test point (or an integral 
over some field profile). For the band gap computation, it is 
most reasonable to define A2 as the total electromagnetic 
energy within the original cell. According to (10) the desired 
eigenvalues are characterized by the minima of the search 
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function η . Analyzing the shape of η  near the minima provides 
additional information on the accuracy of the solution.  
Although more reliable results are obtained when the amplitude 
is defined by an appropriate integral, the definition in one or a 
few test points is sufficient for most cases. Since the numerical 
intergration may be time-consuming, one usually prefers the 
simpler test point method. However, it is important to note that 
the definition of the search function is not unique. By defining 
different search functions, one can gain even more intrinsic 
information providing a good error estimation and for validation 
purposes. As depicted in Fig. 6, even for a single model (fixed 
amplitude definition and fixed multipole expansion), one can 
address the different minima of the same eigenvalue search 
functions simply by rearranging the columns of the MMP 
matrix. In fact, in the Givens update algorithm [25], which 

was used for solving the MMP matrix equation, the last 
expansion somehow plays the role of an excitation. When it 
happens that the spatial symmetry of such excitation is not 
contained in the symmetry of the searched eigenmode, this 
mode will not be "excited", hence, the corresponding 
minimum of the eigen-value search function is suppressed. 
Although, it may be desirable to suppress some modes in 
applications where not all modes must be considered, this is 
usually inconvenient for the automatic computation of the 
complete band structure. We therefore look for an alternative 
technique. 
Remember that we have introduced fictitious boundaries for 
handling the periodic problem. Similarly, we now can 
introduce a fictitious excitation that is defined in such a way 
that all modes are excited (Fig. 7). This concept mimics the 
measurement of resonance frequencies, where one always 
needs an excitation of the resonator and a test point (or port) 
where the signal is measured. By sweeping the frequency of 
the exitation, the peaks of the amplitude A in the test point can 
be readily assigned to the resonance frequencies of the 
different modes. This procedure was first introduced by the 
Method of Auxiliary Sources (MAS) [26] and a similar 
method was used by Sakoda [27]. Finally, the method was 
adapted to MMP by Moreno [28]. MAS uses eigenvalue search 
functions µ such as the energy density A2 at the test point are 
used. The eigenvalues are then obtained from the maxima of µ. 
The analysis of µ near the maxima has yielded a strange "double 
peak" phenomenon that disturbs the numerical search 
procedure. The standard MMP-MAS eigenvalue solver 
searches for minima of the eigenvalue search function 

21/ 1/ Aη µ= = , i.e., one obtains "twin minima" instead of 
double peaks, as shown in Fig. 8. The "double peak" 
phenomenon and the "twin minima" are caused by a very 
sharp peak of the residual E at the correct eigenvalue position. 
Note that this peak is not obtained in the standard MMP 
approach without fictitous excitations. Of course, the residual 

Fig
sin
exp

Fi
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. 6: The behavior of the eigenvalue search function (in the Γ point) of one 
gle model with four different “last” expansions (the order of the last
ansion is labelled in the figure).  
peak may also be used for defining the eigenvalues. Since 

 
Fig. 8: The “twin minima” phenomenon, behavior of the eigenvalue search
function within the eigenvalue search procedure using a randomly located 
fictitious excitation. 

 
g. 7: The behavior of the eigenvalue search function (for a k-vector in the Γ
int) using the fictitious excitation in a random and symmetric position
spectively. 



 
 

these peaks are extremely sharp, it is very likely that one of 
the eigenvalues is missed by the rough search routine that 
searches for all eigenvalues. In order to overcome these 
problems, one can define more complicated eigenvalue search 
functions η  as proposed in Fig. 8. This allows one to suppress 
the double peak phenomenon. Unfortunately, one may 
encounter numerical underflow problems in some applications. 
Therefore, the current MaX-1 eigenvalue solvers uses three 
different "competing" eigenvalue search functions: 1) A 
complicated one with user-definable exponent n, 2) the inverse 
of the amplitude, and 3) the proper residual. Using all of these 
three functions, the code is capable to detect the correct 
locations of the eigenvalues. An alternative to overcome the 
twin minima problems is the introduction of "fictitious losses" 
that smoothen the resulting search function η . 
Since one often considers a broad frequency range, it is not 
reasonable to find the eigenvalues by plotting the eigenvalue 
search function over the entire range with a very high 
resolution. It is much more efficient to subdivide the search 
process into two steps: 1) Rough detection of all eigenvalues 
and 2) fine search, i.e., accurate computation of the eigenvalues. 
The first step seems to be trivial as soon as the problems 

mentioned above have been solved. The second step requires a 
fast minimum search procedure for real functions. The algorithm 
used in MaX-1 is mainly based on a parabolic interpolation 
because the search function near the minima is usually almost 
parabolic – provided that the double peak phenomenon has been 
removed. 
Having a closer look to typical band diagrams (Fig. 3), we see 
different situations which can cause problems for both the rough 
search and the fine search. Mainly at the Γ and the M point we 
usually observe degenerate modes. Furthermore, we have areas 
with almost degenerate modes and points where different lines 
seem to cross each other, where the modes are (accidentally) 
degenerated. When the rough search is performed to degenerate 
points, it usually cannot detect all modes involved. Even if the 
search procedure is started in a close vicinity to such 
degeneracies, it will be too time-consuming to iterate into all 
eigenmodes. In order to overcome these problems, it is 
reasonable to start a rough search in a domain where all 
eigenvalues could be easily tracked down (e.g. the interval 
between Γ and X in the band diagram of Fig. 5). Once this has 
been done, one can trace each eigenvalue by moving a small 
step either to the left or right side within the band diagram, and 

Fig. 9: The algorithm for the band structure computation using MMP. 

 
 

Fig. 10: The algorithm for band diagram computation written in the MaX-1 
script language. 
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repeating this procedure until the border of the diagram is 
reached. For each such step, only a fine search must be 
performed. Depending on 1) the desired accuracy, 2) the step 
size, and 3) special properties of the model, several iterations 
are required. The number of iterations could be drastically 
reduced when using the Eigenvalue Estimation Technique 
(EET) implemented in MaX-1 [19]. This technique uses the 
information of previous eigenvalue solutions for the 
extrapolation of the current eigenvalue’s search interval. 
Typically, 4–12 iterations per step are sufficient for obtaining an 
eigenvalue with a high precision. For example, for tracing the 
first mode in Fig. 3, 280 search steps were performed and 5 
iterations per step were required in the average.  

V. AUTOMATIC EIGENVALUE SEARCH 
Referring to e.g. Fig. 5 a standard band diagram consists of 

three different intervals corresponding to the three sides of the 
IBZ. When the rough search is started somewhere in the middle 
of such an interval (e.g. in the area between Γ and X in the band 

diagram), it must be repeated three times. After each rough 
search the fine search must be repeated for each obtained 
eigenvalue and, finally, the fine search routine must run for each 
eigenvalue once towards the left and once towards the right side 
of the band diagram, as depicted in Fig. 5. MaX-1 contains a 
script language that allows one to define complicated 
procedures such as the search procedure mentioned above. The 
set of MaX-1 directives for the automatic generation of a band 
diagram from the point in the middle between Γ and X to the Γ 
point, is given in Fig. 10, and the complete algorithm for this 
procedure is given in Fig. 9. It is obvious that the algorithm is 
not simple and the overall procedure relies on fast computer 
resources. 

CONVERGENCE CHARACTERISTICS, COMPUTATIO

Eigenfrequency 1 Number of 
unknowns 

Frequency (Hz) Error (%) Field mism
20 1.0223585e14 1.473 9.6207
36 1.0095955e14 0.206 4.2046
52 1.0078338e14 0.032 0.2881
94 1.0074678e14 0.005 4.4657

164 1.0075153e14 0.000 4.7297

VI. NUMERICAL VERIFICATION 
We have applied MMP to various PhC lattices. Internal tests 
show excellent convergence. Therefore high accuracy may 
easily be obtained. Table I shows the MMP estimate of the 
mismatching errors along the boundary for the model outlined 

Fig.
squa

 
Fig. 13: The band diagram of the photonic crystal with dielectric rods and
hexagonal lattice, H-polarization, the first 6 modes. 

Fig.
squa
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 11: The band diagram of the photonic crystal with dielectric rods and
re lattice, H-polarization, the first 6 modes. 
 
Fig. 14: The band diagram of the photonic crystal with dielectric rods and
 
 12: The band diagram of the photonic crystal with dielectric rods and
re lattice, E-polarization, the first 6 modes. 
TABLE I 
N FOR 1ST AND 6TH EIGENFREQUENCY AT X POINT OF IBZ 

Eigenfrequency 6 

atch. (%) Frequency (Hz) Error (%) Field mismatch. (%) 
48e-0 2.3465308e14 4.194 2.306028e+1 
39e-0 2.2567438e14 0.207 4.449937e+0 
15e-0 2.2512072e14 0.039 0.824365e-0 
47e-2 2.2519421e14 0.006 0.128581e-0 
21e-7 2.2520785e14 0.000 3.551224e-6 
hexagonal lattice, E-polarization, the first 6 modes. 



 
 

in Fig. 3 with different maximum orders of the multipoles and 
Bessel expansions, i.e., with different numbers of unknowns. 
Note that the computation time typically is proportional to the 
cube of the number of unknowns because we use a brute-force 
full matrix solver (Givens update scheme). Despite of this, the 
computation time remains reasonably short because the matrices 
obviously are much smaller than the matrices used in other 
methods. For example Fig. 11 was obtained with 3 rough-search 
routines, 100 frequency steps each. The total number of 1656 
plotted points required were then computed with 8280 MMP 
evaluations of η , i.e. approximately 5 iterations per point in the 
diagram were performed. The total calculation time was 40 
minutes on a Pentium 4, 2GHz. Because of the excellent 
convergence, we also can estimate the accuracy of the 
eigenvalues by comparing them with a very accurate MMP 
model. As one can see from Table I, one only obtains one more 
digit when doubling the number of unknowns.  
In order to validate this algorithm, several calculations were 
performed and results were compared with the results of MPB 
package developed at the MIT [29]. For the PhC with square 
lattice and dielectric rods (Fig. 3), a band diagram calculation 
was performed for different field polarizations and the results 
are given in Fig. 11 (H-polarization) and Fig. 12 (E-
polarization). The results for the hexagonal lattice case (Fig. 4), 
are depicted in Fig. 13 (H-polarization) and Fig. 14 (E-
polarization). These two types of PhC rely on the same lattice 
data: A dielectric rod with radius  and a dielectric 
constant of 

ar 3.0=
56.11=ε , the lattice is embedded in air and the 

lattice constant is . From Figs. 11–14 we deduce a 
perfect agreement with the MPB results documented in [29].  

)(10 6 ma −=

VII. CONCLUSION 
We have presented an efficient method for band structure 
calculation for 2D dielectric PhCs. In this framework a fully 
automatic algorithm was developed and evaluated along several 
examples. The eigenvalue searching procedure in the frequency 
domain has been performed using a fictitious excitation. 
Optimal eigenvalue search functions have been found while 
evaluating the total eigenvalue spectrum for k-values at three 
preferable points on the IBZ. The three resulting sets of 
eigenvalues are evolved into a full band diagram using a highly 
efficient Eigenvalue Estimation Technique (EET). The overall 
algorithm performs photonic band diagram calculations at a 
very high level of accuracy and at reasonable computational 
costs. This algorithm is easily extendable for applications 
involving localized defect mode analysis [30], various PhC 
defect waveguide types (supercell approach [31]) and photonic 
waveguide discontinuities [31], as well. 
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