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Abstract— The focus of this paper is on the solution of
Maxwell’s equations on triangular orthogonal grids for time-
harmonic fields in cylindrically symmetric resonators and gen-
eral time dependant fields in length-homogeneous waveguides,
respectively. The method is based on the Finite Integration
Technique (FIT) [1], [2]. The 2D simulation on a structured
triangular grid combines the advantages of FIT, as e.g. the
consistency of the method or the numerical advantage of
banded system matrices, with the geometrical flexibility of non-
coordinate grids. FIT on triangular grids was first introduced in
[3], [4]1. This paper presents a review describing the underlying
theory in FIT operator notation first introduced in [2] and puts
this classical approach for FIT on triangular grids in relation
to actual research in the field.

I. CLASSICAL FINITE INTEGRATION TECHNIQUE ON A
STRUCTURED TRIANGULAR GRID

The Finite Integration Technique solves Maxwell’s equations
on a pair of dual grids. Actual implementations generally
work on a rectangular two- or three-dimensional domain

�
.

Sometimes the field-carrying domain
���

is only a sub-domain
of the domain

�
:
������������	

. The solution domain might be
composed of several subregions:

�����
���
�����
. Discretization

on
�

rather than on
���

has the advantage of allowing for
higher topological regularity leading to matrices with regular
(band) pattern. Usually

��	
, the overhead, is relatively small.

FIT yields an exact representation of Maxwell’s equations
in integral form on a grid duplet ���������� , denoted as Maxwell-
Grid-Equations:

C � � �������� �� � S �� �"! ��# �$ � ���� ��%'& �� ( � � ) ��% �+*�, (1)

The linear operators C �-�# � S and � ) , the so-called grid voltages� � and �$ as well as the grid fluxes �� � ��% and �� ( and the charge
vector

*
will be introduced below.

Talking of an exact representation relates to the discretiza-
tion error. The topic of errors is treated in more detail in the
next subsection.

1URMEL–T is the resonator and waveguide code based on the classical
FIT on triangular grids described here.

The FIT grid duplet ���������� is not necessarily coordinate-
bounded, not necessarily orthogonal, not necessarily regular.
Often the solution domain

���
possesses symmetries or some

geometrical invariance such that the 3D problem may be
reduced to a 2D problem by appropriate variable separation.
For example, this is the case for cylindrically symmetric
resonators and longitudinally invariant waveguides as treated
in this paper.

The linear operators C, �# , S and � ) in (1) can be interpreted
as discrete curl operators C �.�# , discrete divergence S �/� ) and
discrete gradient operators G

�0� � )213� �G �0� S 1 . The discrete
operators fulfill the following key properties

C
� �# 1 � (2)

S C
� � ) �# �"! � (3)

as generally shown in [2]. These equations, especially that the
transpose �# 1 of the dual curl operator equals the primary curl
operator C, represent a topological property resulting from
the duality of the grids. For further analytical and algebraic
properties resulting from these basic equations the reader is
referred e.g. to [2], [5] and [6]. Conservation of energy is just
one of the continuous laws for which a proof can be given
for the discrete FIT equations, too.

The vectors � ��� �$ � etc. hold scalar state variables defined as
field integrals along edges 4 � �654 � and across facets 7 � �857 � ,
yielding the so-called grid voltages � ��� �$ and grid fluxes�� � ��% � �� ( on the primary grid � and the dual grid �� , respec-
tively: � 9 �:�";=< �?>A@=B?C � �� D �E�+;=F �HGI@=BKJ ��L �:�";�M< �?NO@�B?C � ��B �E�+;PMF �HQR@�BKJ ���S � �+;PMF �?TU@�BKJ , (4)

The vector
*

holds discrete grid charges V � which are al-
located in the points (nodes) of the primary grid � and are
defined as a volume integral over the space charge W contained
in the surrounding dual grid volume 5X � :V �Y��Z M[ � W B X , (5)
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With these definitions it is straightforward to derive the
discrete form of Maxwell’s equations for a given FIT grid
duplet �����6���� . It will be shown for a 2D triangular grid �
with hexagonal dual grid �� in subsection I-A.

The choice of a specific grid is mainly influenced by the
following aspects which have to be balanced well:

1) a good approximation of the boundary \ �]� with as few
grid points as possible in order to decrease the spatial
discretization error while keeping memory requirements
as small as possible,

2) a most regular grid in order to decrease the condition
of the resulting linear or eigenvalue systems yielding
a smaller iterative convergence error and/or faster con-
vergence speed,

3) a fast and robust grid generation for arbitrary domains���
, especially those with

�����^���
�����
.

There are many more aspects influencing the solution quality
which are out of the focus of this paper which concentrates
on some basic issues.

Among several types of grids on which FIT has been
implemented until today there were first a 2D [1] and later
a 3D [2] Cartesian grid allowing for diagonal filling in order
to avoid the ’staircase’ approximation still usual in FDTD.
This grid is easy to implement but good convergence can not
always be reached depending on the specific boundary shape
of \ ��� . This gave reason to implement FIT on the regular
triangular grid [3] described in this paper which achieves good
boundary approximations with rather few grid points. Other
examples are the non-orthogonal second order convergent
quadrangular 3D grid described in [6] and the so-called
Conformal FIT (briefly CFIT) [7], on Cartesian grids, also
being second order accurate but numerically less expensive.
All of these specific grids have their pro’s and con’s regarding
the aspects described above.

A. The Triangular Grid and its Dual Grid

In the following, we describe an application of FIT on
a structured 2D triangular grid. The method has been im-
plemented in the URMEL-T code [3]. This may be used
for longitudinal and transversal eigenmode computation in
cylindrically symmetric resonators and for studies of waves
excited in longitudinally invariant waveguides. Often, this 2D
code is used in design studies in combination with a 3D
code, see e.g. [8]. Also, 2D computations may be used for
the simulation of the rf properties of cylindrically symmetric
subsections of complex structures when methods using the
scattering matrix formulations are applied, see e.g. [9] or [10].

Without loss of generality it is assumed that the electric
voltages are allocated on the triangular grid � and the
magnetic voltages on the dual grid 5� (see [4] for special
details on the alternative allocation). The mesh generator
starts off with a regular triangulation for

�
which is as

close as possible to an equilateral triangulation (cf. Fig 3
in subsection III-A). Then, grid points are moved onto the

boundary \ ��� resp. boundaries \ ����� for
���_�`���
�����

, i.e.
for solution domains which consist out of several subregions�����

. Finally the triangulation of
�

is equilibrated.

For the equilibration all grid points are taken as mass
points and all edges as springs. Then, the goal is to find an
equilibrium, i.e. to minimize the potential which corresponds
to the distance squared. The elastic force of a spring is given
by Hooke’s law a �b�]cKd where

d
is the displacement from

equilibrium
de�gf

and
c

is the spring constant. The potential
energy of motion on a straight line through

dh�^f
is given byiPj 	 � �lkm� �onp c k=q (6)

where k corresponds to the distance of two grid points and
c

is chosen to
c�� n for all points. Points on the boundaries \ �

of the mesh and \ ��� or \ ����� , respectively, of the solution
domain(s) need a special treatment. The coordinates can be
treated one after the other. For each coordinate, a sparse
linear system of equations results from (6) and is solved
iteratively. Remaining obtuse triangles are searched for. In
some typical cases they can be individually transformed into
acute triangles, too. Details on this algorithm may be found
in [13].

Optimally, the mesh generator can set up the completely
orthogonal dual grid 5�er composed of the perpendicular
bisectors of the elementary lines 4 � . The intersections of
the perpendicular bisectors, the circumcenters, give the dual
grid points 5s � . Its elementary areas 57 � in the grid plane
are general hexagons, cf. Fig. 1. In the construction of the
material operators also areas normal to the �utv�xwH� -grid plane
are needed thus a virtual mesh extends for y{z}|?~ p in the
longitudinal | -direction for the waveguide case as displayed
in Fig. 2 and for y{z}�3~ p in the azimuthal � -direction for the
resonator case, respectively.

e
b

e
c

b
z 2

e
a

Fig. 1. Classical triangular FIT grid with its dual (hexagonal) grid, and
some of the electric and magnetic state variables. The two kinds of primary
cells (vertex up and vertex down) associated to each grid point are highlighted
each. (This illustration refers to the waveguide case, i.e. ( �K�l���l� )-coordinates.
For the resonator case, i.e. ( �/�����l� )-coordinates, �� �6��� and �� �6��� just have to
be replaced by �� ���.� and �� ����� , respectively)5�er is a Delaunay-Voronoi mesh for the complete domain�

. For this dual-orthogonal FIT grid the continuity of tangen-
tial electric field and normal magnetic flux is preserved on all
inner boundaries \ ����� of different materials within

���
.

Only if all triangles of the grid � inside
���

are acute or
right-angled all grid points 5s � of the dual grid ��er lie inside
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the � -th triangle. It may well happen that obtuse triangles
occur near the boundary of

���
some of which remain after

equilibration of the grid. In that case the circumcenters are
chosen for 5s � in all acute triangles and barycenters in the
(usually very few, cf. subsection III-C) obtuse triangles. Then,
the approximation order � is locally reduced to first order,
overall � typically still has a value close (but smaller than)
two as described below.

B. The Grid Operators on the Triangular Grid

In the previous section the Maxwell-Grid-Equations (1)
were generally defined. Now we will deal with some of the
grid operators on the triangular grid. Special interest is laid
on the material operators.

1) The curl- and divergence operators: As an example
for the derivation of the Maxwell-Grid-Equations on the
orthogonal triangular grid we will first regard Faraday’s law.
With the notations as in Fig. 1 we get:� 9v� & � 9v� � � 9Y� ��� \\�� �� D���� � (7)� � 9v� � � 9v� & � 9Y� ��� \\�� �� D�� q , (8)

Since there are only grid voltages and fluxes, the time
derivative and a linear combination with factors y n this is
an exact representation of Faraday’s law on the primary cell,
i.e. the discretization error is zero per definitionem.

Collecting all voltages and fluxes in the vectors � � and �� 
and the incidences in the matrix C yields Faraday’s equation
on the grid as presented in (1).

Integration of Coulomb’s law takes place over the surface
of a prism the base of which is indicated by the dotted line
in Fig. 1. One of its side faces is depicted in Fig. 2. The flux��B � is allocated in the middle of the hexagonal’s base while��B �

back and ��B � front lie y{z}|?~ p apart in the virtual grid in | -
direction and may be determined from ��B � via (17). Then, for
Coulomb’s law we get:� ��B � left & ��B � right � ��B � bottom & ��B � top� ��B � bottom & ��B � top � ��B � back & ��B � front � V , (9)

The fluxes are collected in the vector ��% , charges in a vector*
and the incidences in the matrix � ) yielding Coulomb’s law

as presented in (1).

The set-up of �# and S is done analogously just on the
other grid, each. The discrete curl operators C and �# and the
discrete divergence operators S and � ) obviously reflect the
topology of the triangular (primary) grid, its dual hexagonal
grid and the enumeration. See [11] for more details.

2) The material operators: In order to derive a discrete
equivalent of the constitutive laws we need to find a linear
map between grid voltages and fluxes:��% �^��� � �Y� �� �^�b� �$ � �� ( �g�b� � � , (10)

In
���

we assume loss free material, i.e. �=�x� and � are real.
Here the conductivity is assumed to be equal to zero (except
for the perfect conductor material).

Fig. 2. Classical triangular FIT grid with its dual (hexagonal) grid: Zoom
to some dual grid area  ¡Y¢ normal to primary grid plane. The area  ¡Y¢ and
the path length £ ¢ are used for material averaging.

In classical FIT, the material operators
�A� � �b� and

�b�
are determined by local averaging of material quantities. This
is motivated as follows: Let us regard the dual grid area57 � depicted in Fig. 2. The primary edge 4 � perpendicularly
intersects 57 � . The electric voltage � 9 � along the edge and the
electric flux ��B � through the area are defined as in (4). They
are collinear. We may approximate both integrals with help
of some virtual constant mean value ¤=¥ . For � 9 � , we directly
get � 9 �E�¦Z < � > �u§�� @=B?C� �u¤�¥ &©¨ ��4 �lª �x� Z < � B k (11)� ¤�¥ @ 4 � &©¨ ��4 �lª � ,
Obviously, this is the moment when the introduction of some
discretization error gets unavoidable. The local approximation
order « is « � p if ¤�¥ is exactly allocated in the middle point
of 4 � .

In order to get a similar expression for ��B � we have to
deal with the fact that the dual area 57 � intersects several
triangles, i.e. primary cells, which all may be filled with
different material. For the topological regular grid treated
here we have the case shown in Fig. 2 where two cells are
intersecting and secondly that one of six intersected triangles
indicated by the dotted lines in Fig. 1. So, we introduce an
effective permittivity��¬
­�® �v�¯n57 � Z MF � �m�u§�� B 7 , (12)

Then, we receive the following expression for ��B ���B �E�¦Z MF � Q �u§�� @=BKJ �
Z MF � �m�u§�� > �u§�� @=BKJ� ° ¤�¥ &©¨ �Y57]±� �³² Z MF � �m�u§�� B 7 (13)� ��¬
­�® � @ ¤�¥ @ 57 � &©¨ ��57 ±� � ,
For equal � in all intersected primary cells the local approxi-
mation order ´ would be ´ �gµ if 57 � would be a square and¤�¥ would be exactly allocated in its middle.
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We are searching for the entry ¶ � ® � connecting � 9 � and ��B �
in the constitutive law ��% �·��� � � . Since, by orthogonality,
we have the one-to-one relation between � 9 � and ��B � they are
just connected via multiplication by the diagonal entry ¶ � ® �
of the operator

�A�
which is purely diagonal. Thus we regard

the quotient of � 9 � and ��B � in order to derive an expression for
the � � th diagonal entry of the material operator

�¸�
. From

(11) and (13) we get��B �� 9 � � ;¹MF � �m�u§�� > �u§�� @=BKJ;=< �?> �u§�� @�B?C � ��¬
­�® � @ 57 �4 � &©¨ ��4 j � , (14)

Thus the local discretization error is linear to quadratic.
It depends on the degree of regularity in the mesh: For an
equidistant Cartesian mesh the error is quadratic.

We can proceed similarly for the constitutive law connect-
ing the magnetic voltage �L � along a dual edge 54 � and the
magnetic flux �� D � through the corresponding primary area7 � (cf. e.g. [12] for more details). Then, the entries of the
permittivity and permeability operator are set to¶ � ® �v� ��¬
­�® � @ 57 �4 � � ¶ � ® �v� ��º �¬
­�® � @ 54 �7 � ,

(15)

Thus, the construction of
�A�

is based on area-wise av-
eraging (cf. Fig. 2) and the construction of

�A�
is based

on lengthwise averaging. The conductivity operator
�A�

is
defined in full analogy to

�A�
. These operators are diagonal

and have only positive entries. This is of special importance
for time domain simulations (cf. subsection II-A).

In classical FIT on orthogonal grids the transfer of the
electromagnetic material equations to the grid space generally
results with diagonal material operators

�¸� � �b� � �b� .
C. Cylindrically Symmetric Resonators and Length-
Homogeneous Waveguides

As described in [3], [4], classical FIT on triangular grids
was implemented to solve for eigenmodes in cylindrically
symmetric resonant cavities and for fields in translational
waveguides. If

���
is longitudinally invariant a variable sepa-

ration is possible for the longitudinal coordinate:> �utv�xw���|K� � >¼» �utv�xwH� 9 � ½ � (16)

with the propagation constant ¾ . On the discrete level this
can be written as> �utv�xw��/z}|K� � >¼» �utv�xwH� 9 � ½-¿ � ,� >�» �utv�xwH��� n & �
¾Yz}|K� (17)

with some virtual step size z}| in the third dimension of
space which is only needed ’on paper’ to set up the discrete
equations like (9) or (13).

Furthermore, it is assumed that the fields are time-harmonic
such that a description by a Fourier series is possible. Finally,
the materials are assumed loss free, and non-conducting.

So, additionally normalizing with the root of the wave
impedance À » �0Á � » ~�� » and the admittance Â » �0Á � » ~m� » ,

respectively, where � » and � » are the permittivity and perme-
ability of vacuum, we may write> � Á À »2ÃxÄ Å8Æ � >ÈÇ � N � Á Â »vÉ�Ê-ÃKÆ � N�Ç (18)

with the normalized fields > Ç and N Ç . Maxwell’s equations
are then discretized with FIT using the normalized fields as
given in (18).

In the resonator case the variable separation is done for the
azimuthal coordinate � and the normalized fields > Ç and N Ç
can then be written as> Ç �uË����P��|K� �
Ì^Íª8Î »ÐÏ i Çª ® Ñ �uË���|K� É�Ê-Ã «'�}ÒHÑ& i Çª ® Ó �uË���|K� ÃxÄ Å «'�}Ò6Ó& i Çª ® � �uË���|K� É�Ê-Ã «'�}Ò �ÕÔ �N Ç �uË����P��|K� �
Ì Íª8Î »ÐÏ?Ö Çª ® Ñ �uË���|K� ÃxÄ Å «'�}ÒHÑ& Ö Çª ® Ó �uË���|K� É�Ê-Ã «'�}Ò6Ó& Ö Çª ® � �uË���|K� ÃxÄ Å «'�}Ò �ÕÔ

(19)

expressing the periodicity with period
p�×

in the azimuthal
variable � . Then Maxwell’s equations are solved for each az-
imuthal mode number « separately. In case of time harmonic
fields the divergence equation is automatically fulfilled as was
shown in [1]. Therefore it is possible to resolve the equation� ) ��% �^f for the azimuthal flux density ��B Ó and substitute ��B Ó
resp. � 9 Ó in the remaining field equations. This formulation
reduces the dimension of the system to be solved by the
number of grid points Ø .

Finally, a linear algebraic eigenvalue problem results. In the
waveguide case it has the squared propagation constants ¾ q
for a given frequency Æ as eigenvalues, in the resonator case
the eigenmodes are just the eigenfrequencies of the resonant
monopole ( « �^f ), dipole ( « � n ) and higher order modes.
The propagation constant ¾ may also take complex values, i.e.
all waves including complex modes are found for waveguides.
More details on these equations and on URMEL-T may be
found in [4] and [11] or [13]. Some examples will be given
in section III below.

II. CONSIDERATIONS ON FIT AND FEM WITH
WHITNEY FORMS, FEM ON ORTHOGONAL GRIDS AND

TIME DOMAIN SIMULATIONS

In recent years there have been intensive studies on differ-
ent approaches more or less related to the classical FIT on
triangular grids. In this section, we will try to summarize
some of the results and discuss some aspects which are
important if triangular grids shall be used for time domain
simulations. Of course, this can only touch a few of the wide
variety of recent time-domain approaches with FEM, see [14]
and references therein.

A. Important Aspects for Time Domain Simulation

The stability of any time domain scheme, either FEM
or FIT, is determined by the characteristics of its material
operators. In [15] it was shown that positive definiteness
of the material matrices is a sufficient condition for energy
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conservation and stability in Yee’s leap-frog-scheme [16].
Any scheme with diagonal material operators, having only
positive entries ensures this condition.

The second advantage of diagonal material operators is the
possibility to directly invert these matrices and thus to set-up
an explicit iteration scheme which is of great advantage with
regard to the numerical effort compared to implicit schemes.
Thus it is a key point for the construction of a stable explicit
time domain simulation to use a discretization scheme with
diagonal material operators. Classical FIT on orthogonal grids
fulfills these conditions.

Using Yee’s leap-frog-scheme with FIT the equations for � �
and �� are generally given as (cf. [15] or [12])�� ¹Ù�Ú � � �� 3Ù � z�� C � � Ù�Ú{ÛÜ � (20)� � Ù�Ú]ÝÜ � � � Ù�Ú{ÛÜ & z�� � º �� ���# � º �� �� 3Ù�Ú � � �� ( Ù�Ú � � , (21)

Here �� 3Ù�Ú � denotes �� at time � � � » & c z�� while � � Ù�Ú{ÛÜ is
allocated at time � � � » & � c & �q �xz�� . The main idea of Yee’s
scheme is to use a staggered grid in time domain, too. For the
time derivatives, central difference approximations are used.

More details about conditions of spatial stability necessary
for long-time stable simulations are given in [12]. They are
involving eigenvalues of the skew-symmetric matrix which
for a lossless structure (

�����^f � ���8� ��� ) writes asÞ �àß ! ��� º ÛÜ� C
� º ÛÜ�� º ÛÜ� C

� º ÛÜ� ! á �`â ! Þ q �� Þ 1q � !Aã ,
(22)

This long-time stability is independent of the time-step. The
better known second stability criterion relates to the stable
time discretization. It depends on the step size and the
material distribution. Thus it implies a caveat for triangular
discretizations to take care of avoiding short edges in the
grid(s) in order to avoid small time steps. Instead of the
locally derived well-known form of the Courant-Friedrich-
Levy criterion (CFL-criterion) a generalized form is derived
in [12]. This form implies the eigenvalues of the iteration
matrix äå�lz��x�äå�lz��x� �oâ æ z�� Þ q �� z�� Þ 1q � æ & z�� q Þ 1q � Þ q � ã , (23)

A stable update scheme is guarantied if all eigenvalues çÕè�® �
lie within the unit circle of the complex plane while an energy
conserving scheme requires that é ç�è�® � é � n holds for the
chosen time step z�� .

In [12], also the relation to the FDTD method is discussed
in detail. Both methods are computationally equivalent but,
until recently, only FIT allowed by its linear algebraic for-
mulation for an easy but thorough analysis of properties like
the energy conservation and for clear and elegant derivations
of new developments like local subgridding [17], [18].

B. FEM with Whitney Forms and Mass Lumping

In reference [19] a leap-frog-scheme using the Galerkin
approach is presented. The domain

�]�
is covered by a

simplicial mesh consisting of sets of tetrahedra T, facets
F, edges E and nodes N. The degree-of-freedom arrays Ò
and ê on the finite-element mesh represent electromotive
forces along the edges and magnetic fluxes over the facets,
respectively. They are related to the electric fluxes ë and
magnetomotive forces ì in the dual of the FEM mesh in a
one-to-one relation. The operators in the discrete constitutive
laws ë �^�¸í �³î �����³ÒÕ�ïì �g�¸í q î �lðH�xê , (24)

are the mass matrices which result from inner products
between the Whitney basis functions (elements): With the
edge elements ñ í �³î and the facet elements ñ í q î the entries
of
� í �³î� ò and

� í q î� ò are given by� í �³î� ò ����� �"ZKó�ô ��ñ í �³î� @ ñ ò í �³îò � (25)� í q î� ò �lðH� �"ZKó�ô ðõñ í q î� @ ñ í q îò , (26)

These matrices are non-diagonal but positive-definite, sym-
metric and sparse.

The leap-frog-scheme for FEM with Whitney forms can
then be formulated in full analogy to (20), (21):ê Ù�Ú � � ê Ù � z�� # Ò Ù�Ú �xö q.� (27)Ò Ù�Ú �xö q � Ò Ù º �xö q & z���÷ �¸í �³î ����� º � # 1 �¸í q î �lðH�xê Ù=ø , (28)

As in [19] it was assumed here that the current T vanishes
in
���

. The main differences between (21) and (28) lie in the
following:

1) With �# �
C 1 FIT explicitly defines a curl operator

on its dual grid which is applied there to �$ while the
transpose of the curl operator

#
on the FEM grid is

applied there to
� í q î �lðH�xê .

2) The material operator related to the magnetic state
variables is

�b�
in FIT and

� í q î �lðH� in the FEM
formulation with the reluctivity ð � n ~m� .

From the physical meaning both procedures are, of course,
equivalent.

As shown in [20] the first mass matrix
� í �³î ����� , which

needs to be inverted in each time step according to (28),
can be replaced by some diagonal matrix ù í �³î ����� under the
constraint that its entries are positive in order to provide
positive-definiteness as necessary condition for the stability:ù í �³î ����� �0�úZ ó�ô � grad û í » î� @ grad û í » îò , (29)

This mass lumping gathers entries of
� í �³î ����� related to edges

and thus differs from summing up entries of a row as used
in scalar case.

The authors of [19] state that the mass lumping procedure
should be less stringent than the condition of all angles to be
acute as e.g. in the classical FIT on a structured Delaunay-
Voronoi grid as described above. Yet, they found out that the
positiveness of the entries is not easily met in practice. Since,
on the other hand, they observed that a mesh with only 5-10%
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non-positive entries in ù í �³î ����� is rather easily to be achieved
they suggest to replace the mass matrix

� í �³î ����� by a partially
diagonalized matrix ù í �³îü ����� with as many positive entries ofù í �³î ����� as possible. These percentages have to be compared
with the practically found percentages of obtuse triangles in
the classical FIT with structured Delaunay-Voronoi grid given
e.g. in subsection III-C.

Of course, the partial mass lumping implies that no fully
explicit scheme results.

The procedure for the partial diagonalization is described
in detail in [19]. It is stated there that, in practice, the
success of the partial diagonalization is highly dependent on
the mesh generator. For the scheme without mass lumping
the additional numerical effort for the iterative solution of
the mass matrix equation in each time step is estimated as
about 400-fold compared to a fully explicit scheme using a
direct inversion of its diagonal operator. For the scheme with
the partially diagonalized operator the computational load is
about 400p-fold compared to the fully explicit scheme, withf�ý � ý n [19].

Also, one drawback of non-diagonal mass matrices com-
pared to the classical Yee scheme (underlying the classical
FIT) is pointed out in [19]: More care has to be taken in
order to properly impose boundary conditions.

Allowing for some non-orthogonal regions in an orthogonal
Delaunay-Voronoi grid used with classical FIT usually leads
to only a small percentage of non-orthogonal cells (cf. sub-
section III-C). In consequence, also only a few off-diagonal
entries are introduced in the corresponding material matrix.
Without anticipating a systematic study of this question it
seems that the effort for FIT with non-orthogonal cells and
the partial mass lumping in FEM as described above is more
or less comparable.

C. FEM with Orthogonal Vector Basis Functions

Several authors avoid the mass lumping because instability
can not be excluded a priori, see e.g. [21], [22]. Both schemes
start with the second order vector wave equation. In these
two papers, a diagonal mass matrix is constructed using 2D
and 3D orthogonal vector basis functions, respectively. With
these basis functions a stable explicit scheme is set up. The
2D orthogonal basis presented in [21] ensures diagonality or
positive-definiteness of the employed mass matrices and thus
allows for a stable explicit scheme. The price for this is a
blow up of the factor three in the new set of basis functions,
i.e. in the degrees of freedom, but in numerical experiments
the cpu time nevertheless dropped down by a factor of three
for the same number of cells compared. In some numerical
experiments the 3D orthogonal basis presented in [22] proved
to be nearly about an order of magnitude more efficient in
terms of cpu time than the traditional zeroth- and first-order
vector basis [22].

D. FIT with Whitney Forms

As already noted above, in classical FIT interpolation gets
necessary in the construction of the material operators on
non-orthogonal grids. This destroys the one-to-one relation
between the allocation of the state variables leading to off-
diagonal entries in the material operators.

In search for a stable FIT scheme for non-orthogonal, non-
coordinate grids an approach is studied in [23] to construct
a discrete constitutive relation compatible with the integral
definition of voltages and fluxes in FIT but using Whitney
forms as interpolating functions.

At arbitrary points inside the cell field values are interpo-
lated from the electric voltages � 9 � using Whitney forms:> �u§�� ��þ � � 9 � ñ í �³î� �u§�� , (30)

This is in correspondence to the FE approach with the electric
grid voltage � 9 � corresponding to the degree of freedom 9 � .

Next, the electric flux components ��B � are computed ac-
cording to (4) now using the interpolated field values from
(30): ��B �E�¦Z MF � Q �u§�� @=BKJ �
Z MF � �m�u§�� > �u§�� @=BKJ�¦þ ò � 9 ò�Z MF � �m�u§��Kñ í �³îò �u§�� @�BKJ , (31)

Obviously the new material operator is not diagonal but it
has also off-diagonal entries:¶ � ® � ò]�
Z MF � �m�u§��Kñ í �³îò �u§�� @=BKJ (32)

which generally do not vanish - even for orthogonal grid
duplets �����6���� .

Next, the authors of [23] investigate a single triangular
cell with the barycenter as dual grid point and the dual
edges intersecting the primary ones at their midpoints, i.e.
the dual edges not being one straight line, but a kinked line.
The resulting non-diagonal material matrix is different from
the FE mass matrices. Unfortunately it is not symmetric in
general.

After all, a 2D grid set up could be presented in [23]
with symmetric material operator. This grid allows for obtuse
triangles with angles up to 120 ÿ using the so-called symmetry
points as dual grid points. Using these points as dual grid
points the symmetry of the material operator is enforced. The
symmetry point is located on the connecting line of barycenter
and circumcenter of the triangle and divides this line in a 1:4
ratio. Again, this material operator is different from the one
obtained by classical FIT and from the FE material operator.
Thus, one important result is that ”the classical FIT scheme on
triangular grids ... cannot be interpreted in terms of Whitney-
type basis functions.” A straightforward extension of this
scheme to 3D tetrahedral grids could not be found.

The new 2D algorithm was implemented and results are
presented in [23]. The numerically determined convergence
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rate for eigenmode computations was found to be typically
between 1.3 and 2.5 depending on the grid quality and its
refinement strategy.

E. Classical FIT on Triangular Grids

As described in subsection I-A, the angular limit to ob-
tain an Delaunay-Voronoi grid and thus a diagonal material
operator is 90 ÿ . Often the given geometry implies some
unavoidable obtuse angles near the boundary of the meshed
2D cut of the problem domain

���
. If a local non-orthogonal

grid is chosen in and neighbouring this triangle interpolation
and projection of components becomes necessary introducing
off-diagonal elements in the material operators.

Regarding the fact that these entries will only occur in a
very small percentage of the matrix (cf. subsection III-C) this
approach seems to be comparable to the FEM approach with
mass lumping described above. Another approach could in
principal follow a methodology presented in [24]. Yet, this
approach based on the use of the longest-edge bisection tech-
nique introduces new points and thus destroys the topological
regularity of the grid. Nevertheless both attempts or other
new ideas, e.g. for FIT on an unstructured Delaunay-Voronoi
diagram, to treat the problem of obtuse triangles seem to be
worth some studies.

III. EXAMPLES

Several examples of simulations with URMEL-T which is
based on the Finite Integration Technique on triangular grids
as described above may be found in earlier publications as
e.g. [3], [4], [11], [25], [8], [26], [27] or [28].

We present three typical specimen for cylindrically sym-
metric resonators and one waveguide example. All simula-
tions in subsections III-A - III-C have been performed on a
SUN Enterprise 450 with 300 MHz, 4 processors and 4 GB
RAM.

A. Cylindrical Resonator

A cylindrical resonator, also denoted as ’pillbox’ cavity,
is suited well for convergence studies since the analytical
solution is available. We chose a pillbox with the dimensions
of 16.5 cm height and 22 cm width as studied in [19], see
Fig. 3.

The authors of [19] computed the resonant frequencies
up to 2.5 GHz with their 3D FEM code on a mesh with
7,038 tetrahedra and compared those with results from the
3D FIT code [15] with 7,293 cells using a rectangular grid
with possibility of diagonal filling. Here, the eigenmodes are
computed in frequency domain with the resonator option in
URMEL-T for different grids. Exploiting all symmetries it is
sufficient to discretize a quarter of the cavity’s cross-section,
an example grid with Ø ��� p��

points is displayed in Fig 3.
As
�

equals
���

, the grid is nearly perfectly equilateral.

CST:URMEL-T/386 [C]1983-1992 CST GMBH DARMSTADT, GERMANY
TEXT:URMEL-T PILLBOX FRAME= 2
PLOT:MESH  ; ID: 13/03/** 16:41:36

Fig. 3. Left: Cylindrical cavity, also denoted as ’pillbox’ cavity. Right:
Triangular grid with N = 925 grid points, i.e. 1850 triangles, for the right
upper quarter of the pillbox cross-section in ( �/�
� )-plane which only needs
to be computed. In this simple case the final mesh is identical with the start
mesh of the mesh generator since �����	� holds here.

Fig. 4. Relative frequency error 
���
�� as function of number � of grid
points for the TE ����� -, TM ����� - and TM ����� -mode of the pillbox cavity;
logarithmic scale. The convergence goes with ��� ��� ��� for the TE ����� -mode,
with � � ��� ��� for the TM ����� -mode and with � � ��� �l� for the TM ����� -mode.

In Fig. 4, a convergence study is presented for three se-
lected modes. The convergence order for these modes ranges
between first and second order. Best convergence is achieved
for the TM ��� » -mode with

¨ ��Ø º ��� ��� � . Also, the CPU time as
function of the number of grid points is presented in Fig. 5. It
scales with

¨ ��Ø ��� q� � . Note that three unknowns ( � 9v� � � 9v� � � 9v� )
are related to each of the Ø grid points.

B. Resonator with Nose-Cone

As another cylindrically symmetric geometry where its
cross-section is neither rectangular like for the pillbox de-
scribed in subsection III-A nor having a smooth and simple
to approximate boundary shape like that one shown below in
subsection III-C, we chose also some resonator cavity with a
so-called ’nose-cone’ which comes rather close to a re-entrant
corner.

For comparison, an unstructured Delaunay triangulation
obtained by the open source code Triangle [29] is shown in
Fig. 6 together with a FIT grid of comparable number of tri-
angles. The code Triangle generates constrained conforming
Delaunay triangulations while most other codes only generate
conforming, but unconstrained triangulations. In addition to
the Delaunay triangulations, Triangle also offers the related
Voronoi diagram.
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Fig. 5. CPU time !�
�"$#�% as function of number � of grid points for the
pillbox cavity. The cpu time depends as !&�('*) '�'�',+.-�� ��� �/���l� .
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Fig. 6. Left: Delaunay triangulation with 1,860 triangles for �0� generated
by the code Triangle [29]. Right: FIT mesh as generated for the right half of
the PETRA cavity by URMEL-T with 1,015 grid points, i.e. 2,030 triangles
for � ( ��1��2� is modelled as perfect conductor and thus fields are only to be
computed in �2� ). Again, for symmetry reasons only the upper left or right
quarter of the cross-section in (r,z)-plane needs only to be computed.

The Triangle program informs about important grid charac-
teristics and its construction. In the example shown in Fig. 6
the divide-and-conquer method [30] was used. In the mesh
quality statistics smallest and largest area and edge are given,
each. If we denote their ratio as total aspect ratio, the total
area ratio in this example results to

p , � @ n f q and the total edge
ratio amounts to n , � @ n f � . Also, the aspect ratio which relates
the longest edge to the shortest altitude is given; it is 2.9374
in our example. The smallest angle is 34.004 ÿ , the largest
angle is 111.5 ÿ in the grid displayed in Fig. 6. In total there
are 209 obtuse triangles (11%), of those 145 (8%) have an
angle between 90 ÿ and 100 ÿ , 61 (3%) an angle between 100 ÿ
and 110 ÿ and 3 (0.02%) have an angle of 110 ÿ to 120 ÿ . Much
more information like a list of bad and so on is available, too.

Obviously the structured FIT grid has much smaller total
aspect ratios and much less obtuse triangles (cf. Table I)
thanks to the equilibration algorithm imbedded in the auto-
matic grid generation. So, the FIT grid is most regular which
leads to a better condition of the matrix of the resulting linear
algebraic eigenvalue problem. Also, this greater regularity has
a positive impact on the maximal time step if this mesh
should be used for time domain simulations. It would be
interesting to compare the numerical effort necessary to reach

the same error for a simulation with both type of grids,
the structured Delaunay grid used in URMEL-T and the
unstructured Delaunay grid. This will be the subject of a
future research project.

C. Multicell Resonators

In the design studies for the future linear collider project
TESLA [31] different multicell superconducting resonator
structures have been investigated. One of them is the 4x7-cell
so-called superstructure [32]. Without the attached couplers
the structure is again a cylindrically symmetric one so that it
can be simulated with the 2D code URMEL-T.

CST:URMEL-T/386 [C]1983-1992 CST GMBH DARMSTADT, GERMANY
TEXT:URMEL-T TESLA-7: RADIUS=103,3MM , LAST CELL TUNED FRAME= 1
PLOT:CAVITY SHAPE  ; ID: 13/03/** 17:10:15

Fig. 7. Geometry of the TESLA 7-cell cavity. For symmetry reasons only
the upper right quarter of the ( �/�l� )-cross-section needs to be computed.

CST:URMEL-T/386 [C]1983-1992 CST GMBH DARMSTADT, GERMANY
TEXT:URMEL-T TESLA-7: RADIUS=103,3MM , LAST CELL TUNED FRAME= 1
PLOT:CAVITY SHAPE  ; ID: 13/03/** 12:10:10

Fig. 8. Triangular grid in the right end-cell of the TESLA 7-cell cavity.

Here we chose this structure as an example to study the
percentage of obtuse triangles. Fig. 7 shows the part of the
cross-section used for simulation. Fig. 8 displays a zoom
to the grid of the end-cell. The total number of triangles
amounts to 13,366 triangles. Among them, there are 35
(0.26%) triangles with an angle larger than 90 ÿ , none of those
has an angle larger than 100 ÿ .

Table I also shows the results for coarser grids used for the
full 7-cell structure and a full 9-cell structure (only around
1,500 triangles per cell; ’full’ refers to the complete upper
half of the cross-section, ’half’ to its right half as shown in
Fig. 8). The percentage of obtuse triangles only amounts to
0.26% - 0.37%. Triangles with an angle larger than 100 ÿ do
not always occur - if so, then they only amount to less than
0.05%. As to be expected, there seems to be a tendency that
finer grids have a smaller percentage of obtuse triangles.

These far less than 1% of obtuse triangles automatically
obtained in the mesh generator of URMEL-T have to be
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3
triangles angle 4 90 5 angle 4 100 5

9-cell, full 12,150 45 (0.37%) 4-5 (0.04%)
7-cell, full 12,320 43 (0.37%) 4-5 (0.04%)
7-cell, half 13,366 35 (0.26%) 0

TABLE I
PERCENTAGE OF OBTUSE TRIANGLES IN THE MESH OF THE TESLA

7-CELL- AND 9-CELL-RESONATOR.

compared with the 5-10% non-positive entries achieved in the
partial mass lumping, e.g.. This small percentage of obtuse
triangles is achieved by an equilibration procedure with low
computational cost. Of course, more statistics and careful
comparison of the numerical results are necessary before
coming to final statements.

Fig. 9 shows some field plots for the accelerating mode in
one 7-cell cavity of the 4x7-cell superstructure. The TM » � -
mode used for the ”acceleration” of electrons or positrons,
respectively, passing the cavity on axis with nearly speed of
light has its field maximum of the longitudinal electric field on
axis such that a maximum of energy can be transferred to the
particles while their passage of the structure. The plots also
show that a good field flatness is achieved with the chosen
cavity geometry.

CST:URMEL-T/386 [C]1983-1992 CST GMBH DARMSTADT, GERMANY
TEXT:URMEL-T TESLA-7: RADIUS=103,3MM , LAST CELL TUNED FRAME=19
PLOT:E-FIELD AT PHI=0  ; ID: 13/03/** 19:03:24

; K/V/PC=  1.45637 AT R/M= 0.0000 ;
; MODE:TM0-EE- 4 ; F/MHZ=  1301.9 ; F/FC= 0.6

CST:URMEL-T/386 [C]1983-1992 CST GMBH DARMSTADT, GERMANY
TEXT:URMEL-T TESLA-7: RADIUS=103,3MM , LAST CELL TUNED FRAME=20
PLOT:H-FIELD AT PHI=0  ; ID: 13/03/** 19:03:24

; K/V/PC=  1.45637 AT R/M= 0.0000 ;
; MODE:TM0-EE- 4 ; F/MHZ=  1301.9 ; F/FC= 0.6

CST:URMEL-T/386 [C]1983-1992 CST GMBH DARMSTADT, GERMANY
TEXT:URMEL-T TESLA-7: RADIUS=103,3MM , LAST CELL TUNED FRAME=18
PLOT:HFI*R=CONST    AT PHI= 0  ; ID: 13/03/** 19:03:24

; K/V/PC=  1.45637 AT R/M= 0.0000 ;
; MODE:TM0-EE- 4 ; F/MHZ=  1301.9 ; F/FC= 0.6

Fig. 9. Snap shots of the electric and magnetic field of the TM ��� -mode
with frequency 1.3 GHz used to accelerate electrons passing the structure
on axis from left to right. The middle plot shows the azimuthal magnetic
field. The size of the arrows and circles corresponds to the local magnitude
of the field. Their midpoint always lies within �	� but for large magnitudes
the circles or arrows might partly extend to the outside �0� .

D. Dielectrically Filled Rectangular Waveguide

We will show one waveguide example here, others may
be found in earlier publications (see e.g. [11]). We regard
the dispersion relation for a dielectric loaded waveguide.
A rectangular waveguide filled with some dielectrics [4] is
shown in Fig. 10.

Fig. 10. Dielectric waveguide. Mesh for the computational domain.

Its fundamental mode has the frequency 3 GHz. The
dispersion relation between frequency Æ and propagation
constant ¾ has been computed. For different frequencies the
highest ¾ ’s are displayed in a fit through a few dozen distinct
values in Fig. 11. Note that for each wavenumber

c » � Æ ~76
one URMEL–T run has to be performed.

Fig. 11. Dielectric waveguide. Dispersion relation.

IV. SUMMARY

This paper revisited the application of the Finite Integra-
tion Technique on triangular grids. The corresponding code
URMEL–T is successfully applied in many different loca-
tions, mainly universities and accelerator laboratories. The
underlying method has been reviewed and some example
resonator- and waveguide computations have been shown.
Regarding the question of time domain simulations, some
recent FEM approaches seeking for diagonal or partially
diagonal mass matrices have been cited as well as an approach
for FIT with a Whitney-based material operator.

Starting point was the following: Diagonal material opera-
tors with positive entries ensure energy conservation and sta-
bility in Yee’s leap-frog-scheme for time domain simulations
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(and allow for an explicit scheme). FEM with mass lumping
and classical FIT on a structured Delaunay-Voronoi grid with
acute angles both achieve a diagonal matrix with positive
entries. Yet, both are not easily met in practice. Next best
are positive definite symmetric material operators with only
few off-diagonal entries. For FEM, a partially diagonalized
mass matrix with about 5-10% non-positive entries has been
suggested in literature. This has to be compared with the
maximally 0.5-1% off-diagonal entries in the material matrix
caused by remaining obtuse triangles in classical FIT on
a structured, equilibrated Delaunay-Voronoi grid, as it was
found for the examples presented here. The numerical effort
to achieve a small percentage of obtuse triangles is very
low - probably smaller than that one needed for the partial
diagonalization of the mass matrix. Yet, this question could
not be studied here but still needs more detailed studies in
future.

These first studies let it seem to be worthwhile to invest
some further research on a Yee-like scheme with classical FIT
on structured, equilibrated Delaunay-Voronoi grids.
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