
Inverse Scattering of a Dielectric Sphere Partially Buried in a Ground Plane Using a 
Radial Basis Function Network 

 
C. Loo and M. Hamid 

University of South Alabama, Department of Electrical Engineering 
Mobile, Alabama, 36688, U.S.A. 
e-mail: mhamid@usouthal.edu 

 
ABSTRACT 
An analytic solution of the problem of electromagnetic 
scattering by a dielectric spherical scatterer resting on, 
or partially buried in, an infinite perfectly conducting 
ground plane is approximated by partially truncated 
sphere and is formulated using the method of images. 
The scattered field coefficients are solved exactly so 
that the scattered field can be evaluated everywhere. In 
particular, the scattering cross section can be calculated 
as a function of the sphere radius and permittivity as 
well as the truncated sphere distance for any specified 
angle of incidence. The solution of this problem is 
relevant to analyze the scattering by complex three-
dimensional bodies, plastic mines, icebergs, rough 
surfaces, etc., in which the flat background can be 
modeled by the ground plane while the complex body 
can be simulated by a sphere or a system of spheres 
partially truncated and resting on the ground plane. In 
order to solve the inverse scattering problem, we 
employ a radial basis function network to take the 
scattered field complex coefficients for the TE and TM 
polarization case as the network inputs to predict the 
three outputs of the electrical radius, burial distance, 
and relative permittivity of the sphere. The trained 
network is able to retrieve the three aforementioned 
parameters from new data which is different from the 
learning data. 
 
1. INTRODUCTION 
The solution to the problem of electromagnetic inverse 
scattering by a partially buried dielectric sphere in an 
infinite plane is relevant to analyze the scattering by 
complex three-dimensional bodies, plastic mines, 
icebergs, rough surfaces, etc., in which the flat 
background can be modeled by the ground plane and 
the complex body can be simulated by a sphere or a 
system of spheres partially buried in the ground plane. 
Generally, in these applications, the detection of the 
dielectric characterization of the target needs to be 
performed directly “on field”. Therefore, the 
development of an accurate and also fast numerical 
algorithm for these inverse scattering problems is 
essential. Analytical and numerical techniques of 
solving the inverse scattering problem are 
computationally intensive as they require matrix 
inversion, recurrence relations or graphical inversion 
methods [2-4]. In the past few years, neural network 

technique has been used for solving inverse scattering 
problems with respect to overcoming the drawback of 
directly solving the inverse problem [5-8]. This 
technique is simple, straightforward and allows a 
sensible reduction in the computational time and, 
consequently, it permits to obtain very fast solutions. 
This is an interesting property for all those problems 
requiring an analysis performed directly “on field”. 

The problem of forward electromagnetic 
scattering by a partially buried dielectric sphere in an 
infinite plane using truncated sphere as an 
approximation has been solved by Hamid and Hamid 
[1] (depicted in Figure 1). They solved the problem but 
did not carry out their solution to the same extent as 
reported here. The rigorous analytic solution of the 
problem is formulated using the method of images. The 
incident wave is assumed a uniform plane 
electromagnetic wave of arbitrary angle of incidence. 
The method of images is applied to replace the partially 
buried sphere in a ground plane by two overlapping 
spheres of equal size, or by two touching spheres of 
equal size, if the sphere is resting on the ground plane. 
And a supplementary incident plane electromagnetic 
wave is added such that the total electric field is 
satisfied at all points where the ground plane is located 
in the original problem. The incident, supplementary 
and scattered fields are expressed in terms of 
appropriate spherical wave functions. To impose the 
boundary conditions on the surfaces of the spheres, the 
translational addition theorem for the spherical wave 
functions is used to express the coordinate system of 
the scattered field from one sphere in terms of the 
coordinate system of the other sphere leading to a 
matrix equation, which can be inverted numerically to 
recover the scattered field coefficients. 

In this paper, we improved the solution to the 
aforementioned scattering problem by employing the 
re-derived vector translational addition coefficients 
functions by Xu, which are quite similar to Cruzan’s 
formula, in order to overcome the problem associate 
with Cruzan’s formula in producing zero value for TE 
case [10]. The scattered field coefficients generated by 
exact methods are obtained, from which the scattered 
field can be evaluated everywhere. In particular, the 
scattering cross section can be calculated as a function 
of the sphere radius and permittivity as well as the 
burial distance for any specified angle of incidence.  
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Numerical results are presented for the normalized 
scattering cross-section, σ, as a function of incident 
angle. 

In order to solve the inverse scattering of a 
partially truncated dielectric sphere resting on an 
infinite conducting plane problem, a technique based on 
neural network analysis is presented where the network 
is trained to model the nonlinear relationship between 
the characterization of the sphere and the complex 
scattering coefficients. We employ a radial basis 
function network that consists of an input layer with 
four sets of inputs, a hidden layer using Gaussian 
nonlinearity functions, and an output layer with three 
outputs. The four sets of inputs in the input layer are the 
real and imaginary values of the computed scattered 
field complex coefficients for the TE and TM 
polarization cases, while the outputs are the electrical 
radius and burial distance of the training sphere, as well 
as its relative permittivity. The simplified version of the 
network diagram is shown in Fig. 2. This network is 
then trained, using the orthogonal least-squares 
algorithm [9] with a specified range of the electrical 
radius (0.01λ to 5λ) and a specified number of learning 
data samples (50 for each output) in order to retrieve 
the radius, burial distance and relative permittivity of 
the test sphere for new data that is different from the 
learning data. The results are verified by applying the 
technique to a different set of coefficients for a wide 
range of dielectric constants. Typical results are 
presented which show excellent prediction by the 
neural network. The formulation to the solution of the 
scattering problem is given in the following section and 
its far field solution is given in Section 3. Details of the 
proposed approach of inverse scattering using neural 
network is explained in Section 4 follows by the 
description of the network training algorithm in Section 
5. The computer simulation results are given in Section 
6 and the conclusion is drawn in Section 7. 

 
2. FORMULATION OF THE PROBLEM 
Consider a dielectric spherical scatterer with radius a 
and relative dielectric constant rε  to be residing on or 
partially truncated at an arbitrary depth d from the 
ground plane lying in the x-y plane. The sphere 
centered at O1 is illuminated by a plane electromagnetic 
wave with a unit electric-field intensity whose 
propagation vector k

r
 lies in the x-z plane and makes an 

angle α with the z-axis counter-clockwise in the x-z 
plane as shown in Fig. 1. Thus, the incident electric and 
magnetic fields have the form 
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 with k being the wave 
number, η the medium intrinsic impedance of the 
sphere while x̂ , ŷ , and ẑ are the unit vectors along the 
x, y and z axes, respectively. 

Applying the image technique with respect to 
the ground plane will reduce the problem to that of 
scattering by the sphere and its image due to the 
original incident wave as well as its image impinging 
simultaneously upon the two spheres. Using a prime 
superscript to denote the electric field '

iE
r

 of unit 
amplitude and the magnetic field '

iH
r

 of the latter image 
of the incident wave, we have 
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Fig. 1. Geometry of the problem. 
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Fig. 2. Radial basis function network. 
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where zkxkk ˆ)cos(ˆ)sin(' απαπ −+−=
r

 
The incident plane wave can be expressed with 
reference to the spherical coordinate system of the 
sphere center O1 as: 
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where m

nP  is the associated Legendre function of the 
first kind while jn is the spherical Bessel function of the 
first kind. 

Expressing the incident wave in the form of 
spherical wave expansion (SWE) based on scalar 
spherical wave mode coefficients (SSWMC) and vector 
spherical wave functions (VSWF), the fields due to the 
incident wave on the sphere are: 
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The fields due to the image of the incident wave on the 
sphere are: 
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The fields due to the incident wave on the image sphere 
are: 
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The fields due to the image of incident wave on image 
sphere are: 
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and )1(
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are the spherical vector wave 

functions of the first kind defined in terms of the 
spherical Bessel functions given as: 
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The scattered fields from the dielectric sphere are: 
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The scattered fields from the image sphere are: 
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The transmitted fields in the dielectric sphere are: 
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The transmitted fields in the image sphere are: 
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Note that in the transmitted fields, k is replaced by k2. 
kk rε=2

, if the dielectric sphere is a perfect dielectric 
with no magnetic losses. To impose the boundary 
condition at r1 = a, the outgoing scattered fields from 
the image sphere must be expressed in terms of 
incoming fields to the real sphere and vice versa, hence 
we apply the spherical vector translational addition 
theorem, i. e. 

∑ ∑
∞

=

=

−= 











+
=

1 111
)1(

121212

111
)1(

121212
222

)3(

),,(),,(

),,(),,(
),,(

v

v

v v
mn
v

v
mn
v

mn
rNdB

rMdA
rM

µ

µ µµ

µµ

φθφθ

φθφθ
φθ r

r
r

 
(32) 

∑ ∑
∞

=

=

−= 











+
=

1 111
)1(

121212

111
)1(

121212
222

)3(

),,(),,(

),,(),,(
),,(

v

v

v v
mn
v

v
mn
v

mn
rMdB

rNdA
rN

µ

µ µµ

µµ

φθφθ

φθφθ
φθ r

r
r

 
(33) 

137 ACES JOURNAL, VOL. 19, NO. 3, NOVEMBER 2004



∑∑
∞

=

=

−=

+













+
−=

1 222
)1(

212121

222
)1(

212121
111

)3(

),,(),,(

),,(),,(
)1(),,(

v

v

v v
mn
v

v
mn
vvn

mn
rNdB

rMdA
rM

µ

µ µµ

µµ

φθφθ

φθφθ
φθ r

r
r  

 (34) 

.
),,(),,(

),,(),,(
)1(),,(

1 222
)1(

212121

222
)1(

212121
111

)3( ∑ ∑
∞

=

=

−=

+













+
−=

v

v

v v
mn
v

v
mn
vvn

mn
rMdB

rNdA
rN

µ

µ µµ

µµ

φθφθ

φθφθ
φθ r

r
r  

 (35) 
where mn

vAµ  and mn
vAµ  are Xu’s translation addition 

theorem coefficients given in the Appendix and 
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In our case, since the image sphere is always positioned 
below the real sphere on the conducting ground, 12θ , 

21θ , 12φ , and 21φ  are equal to zero and ddd 22112 =−= . 
The boundary condition on the surface of the dielectric 
sphere and its image requires continuity of the 
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),,(ˆ
),,(),,(

),,(),,(
ˆ 111*

1
*

1
*'

11

11
'

11
1 φθ

φθφθ

φθφθ
aEr

aEaE

aEaE
r t

ss

ii r
rr

rr

×=












++

+
×  (36)  

),,(1ˆ
),,(),,(

),,(),,(1ˆ 11
2

1*
1

*
1

*'
11

11
'

11

1
1 φθ

ηφθφθ

φθφθ
η

aHr
aHaH

aHaH
r t

ss

ii r
rr

rr

×=












++

+
×  (37) 

),,(ˆ
),,(),,(

),,(),,(
ˆ 22

'
2*

2
*
2

*
22

'

22
'

22
2 φθ

φθφθ

φθφθ
aEr

aEaE

aEaE
r t

ss

ii r
rr

rr

×=












++

+
×  (38) 

),,(1ˆ
),,(),,(

),,(),,(1ˆ 22
'

2
2*

2
*
2

*
22

'

22
'

22

1
2 φθ

ηφθφθ

φθφθ
η

aHr
aHaH

aHaH
r t

ss

ii r
rr

rr

×=












++

+
×  (39) 

where 
1̂r  and 

2̂r are the outward unit normal to the 
surface of the dielectric sphere and its image, 
respectively. From the boundary condition above, the 
electric and magnetic fields on the surface of the sphere 
and its image can be expressed as: 
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From the boundary condition 1, we have: 
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From the boundary condition 2, we have: 
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From the boundary condition 3, we have: 
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From the boundary condition 4, we have: 
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Applying the orthogonality properties of the spherical 
wave functions yields the solution for the scattered field 
coefficients 
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where υn(α) and un(α) are the electric and magnetic 
scattering coefficients for a single dielectric sphere, 
which are given by 
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where ka = 2π a / λ and m = k2 / k = εε /2
 is the 

refractive index of the dielectric, which may be real or 
complex depending on whether the dielectric is lossless 
or lossy, while ε2 and ε are the permittivities of the 
sphere and the surrounding medium, respectively. 
Equations (48) to (51) above can be written in matrix 
form as 

]][[]][[)(][ 1212
21

S
Mn

S
Enn

S
E BBBAPPA υυυ +++=  (54) 

]][[]][[)(][ 1212
21

S
En

S
Mnn

S
M BBuBAuQQuA +++=  (55) 

]][[]][[)(][ 2121
43

S
Mn

S
Enn

S
E ABAAPPB υυυ +++=  (56) 

].][[]][[)(][ 2121
43

S
En

S
Mnn

S
M ABuAAuQQuB +++=  (57) 

Equations (54) to (57) are a set of complex linear 
algebraic equations, and should be solved 
simultaneously to yield the unknown scattering 
coefficients. The above system may be rewritten in the 
following form 
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where ][ 12A , ][ 21A , ][ 12B  and ][ 21B  are matrices 
associated with the translation addition coefficients. 
And ][ S

EA , ][ S
MA , ][ S

EB  and ][ S
MB  are column matrices 

containing the scattering coefficients. The above 
equation can now be solved directly by either using 
Cramer’s rule or by multiplication of the inverse matrix 
of the diagonal matrix on the left side of equation (58). 
In addition, the infinite series must be truncated to a 
finite number of terms n = v = M and m = µ = 2M + 1. 
Solution of equation (58) yields the scattered 
coefficients in equations (24), (25), (26), and (27). For 
our case of pqθ  and pqφ  equal to zero, the above system 
(µ = m) could be solved for each m independently, since 
there is no coupling between azimuthal modes. Once 
the scattered field coefficients are computed, the total 
scattered field can be determined everywhere from the 
expressions: 
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3. FAR-FIELD APPROXIMATIONS 
As shown in the previous section, both of the individual 
scattered fields from component spheres are solved in 
respective sphere-centered coordinate systems. 
Following the solution of boundary conditions for all 
partial scattering coefficients, the next step is to 
construct a single-field representation for the total 
scattered field from an aggregate of two spheres as a 
whole. This step is important for navigating towards a 
complete two-sphere scattering solution. Of particular 
interest are the far zone scattered fields. In the far field 
approximation (kr1 » 1, and kr2 » 1) we have, 
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Referring to a common coordinate centered at O as 
shown in Fig. 1, the total scattered field can also be 
expanded in VSWF with a very simple transformation 
involving only a simple phase term. This is because the 
translation of VSWF between displaced coordinate 
systems has an obviously correct asymptotic form valid 
in the far zone: 
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Substituting the above equations into equations (24) 
and (26), and summing both equations together yields 
the total scattered electric field in the far zone. 
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Fig. 4. Normalized bistatic cross-sections in the H
plane of a partially buried dielectric sphere vs. the
scattering angle θ  for ka = 1.0, d = a, and rε  = ∞ , 4,
2.3. 

Fig. 3. Normalized bistatic cross-sections in the E plane
of a partially buried dielectric sphere vs. the scattering
angle θ  for ka = 1.0, d = a, and rε  = ∞ , 4, 2.3. 

Fig. 5. Normalized bistatic cross-sections in the E plane
of a partially buried dielectric sphere vs. the scattering
angle θ  for ka = 1.0, d = 0.5a, and rε  = ∞ , 4, 2.3. 
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 (81) 
Often the scattered radiation is most conveniently 
measured by the bistatic radar cross-section.  The 
bistatic radar cross-section is defined as 
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with the unit vector τ̂  denoting the direction of 
polarization of the receiver at the observation point. 
When τ̂  has the same direction as S

TotalE , the normalized 
bistatic radar cross-section is given by 
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The normalized bistatic radar cross-sections in the E 
and H planes are obtained by substituting 2πφ =  and 

0=φ , respectively, into Eq. (83). For the back-
scattering cross-section, when απθ −=  and πφ = , the 
corresponding normalized back-scattering cross section 
is 

( ) ( ) ( ) .,,,
)(

4)( 2

32122 φθφθφθ
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 (84) 

The normalized bistatic cross-section patterns in the E 
and H planes are plotted for the partially buried 
dielectric sphere versus the scattering angle θ , taken 
between 0º and 90º, and corresponding to end fire 
incidence ( o0=α ), as well as for different burial 

Fig. 6. Normalized bistatic cross-sections in the H
plane of a partially buried dielectric sphere vs. the
scattering angle θ  for ka = 1.0, d = 0.5a, and rε  = ∞ ,
4, 2.3. 

140Loo and Hamid: Inverse Scattering of a Dielectric Sphere Partially buried in Ground Plane Using a Radial Basis Function Network



distances. Figures 3 and 4 show the normalized 
scattering cross-sections for a sphere of electrical radius 
ka = 1.0, burial distance d = a, and relative dielectric 
constant rε  = 4 and rε  = 2.3. Furthermore, Figures 3 
and 4 compare the numerical results of the conducting 
sphere residing on the ground plane that is represented 
by a continuous-line curve with the dielectric spheres 
with relative permittivity 4=rε  and 3.2=rε  represented 
by the broken-line curve and dotted-line curves, 
respectively. The three curves have almost the same 
behavior except for a resonance that occurs at θ  = 79o 
and 84o for the non-conducting spheres in the E plane. 
It can also be seen that the magnitude of the 
backscattering cross section for the dielectric cases are 
lower in average for both planes. Figures 5 and 6 show 
the normalized bistatic cross-sections of the same 
electrical radius and relative dielectric constants but 
with a burial distance of d = 0.5a. It appears that the 
dielectric spheres now show much significant resonance 
behavior at °= 78θ  and 82o. Figures 7 to 10 show the 
normalized bistatic cross-sections for a partially buried 
sphere of electrical radius ka = 2.0 with the same 
relative dielectric constants but with a burial distance of 

d = 0.7a, and d = 0.5a, respectively. It can be seen that 
the behavior of the curves has become wavier as 
electrical radius of the sphere is increased. 
 
4. THE NEURAL NETWORK APPROACH 
Radial basis functions (RBF) emerged as a variant of 
artificial neural network in the late 1980’s. However, 
their roots are entrenched in much older pattern 
recognition techniques as, for example, potential 
functions, clustering, functional approximation, spline 
interpolation and mixture models. Their excellent 
approximation capabilities have been studied by Park 
and Sandbeg [11], and Poggio and Girosi [12]. Due to 
their nonlinear approximation properties, RBF networks 
are able to model complex mappings, which perception 
neural networks can only model by means of multiple 
intermediary layers. 

In order to estimate the relative permittivity rε , 
the electrical radius and the burial distance of the 
sphere, λa  and λd  of the sphere, respectively, we 
employ the radial basis function network shown 
schematically in Fig. 2. The network consists of three 

Fig. 8. Normalized bistatic cross-section in the H plane
of a partially buried dielectric sphere vs. the scattering
angle θ  for ka = 2.0, d = 0.75a, and rε  = ∞ , 4, 2.3. 

Fig. 7. Normalized bistatic cross-section in the E plane
of a partially buried dielectric sphere vs. the scattering
angle θ  for ka = 2.0, d = 0.75a, and rε  = ∞ , 4, 2.3. 

Fig. 10. Normalized bistatic cross-section in the H
plane of a partially buried dielectric sphere vs. the
scattering angle θ  for ka = 2.0, d = 0.5a, and rε  = ∞ ,
4, 2.3. 

Fig. 9. Normalized bistatic cross-section in the E plane
of a partially buried dielectric sphere vs. the scattering
angle θ  for ka = 2.0, d = 0.5a, and rε  = ∞ , 4, 2.3. 
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layers; an input layer that consists of four sets of inputs, 
a hidden layer using Gaussian nonlinearity functions, 
and an output layer with three outputs. Each hidden unit 
represents a single radial basis function, with associated 
center position and width. Such hidden units are 
sometimes referred to as centroids or kernels. Each 
output unit performs a weighted summation of the 
hidden units, using the ωjs as weights. The four sets of 
inputs in the input layer are the real and imaginary 
values of the computed scattered field complex 
coefficients for the TE ( S

EA & S
EB ) and TM ( S

MA & S
MB ) 

polarization cases, while the outputs are the electrical 
radius and burial distance of the sphere as well as its 
relative permittivity. This network is designed to 
perform nonlinear mapping from the input layer to the 
hidden layer, which is then followed by linear mapping 
from the hidden layer to the output layer. For this, we 
choose a function )x(ky  with the following form: 
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variable x represents the input vector while ( )...φ  are 
nonlinear functions known as the radial basis functions 
that consist of Gaussian function 22 /)( σφ r

c er −=  and 
Euclidean norm ||...||. The known data points, jµ , are 
taken to be the centers of the radial basis functions. The 
design of the network includes the selection of the 
width parameter jσ  and the weighting functions jω  
such that it minimizes the difference between the 
network output and the desired output. The training of 
the network will be discussed in the next section 
followed by the demonstration of the training results in 
Section 6. 
 
5. NETWORK TRAINING 
In order to use a Radial Basis Function Network, we 
need to specify the hidden unit activation function, the 
number of processing units, a criterion for modeling a 
given task and a training algorithm for finding the 
parameters of the network. Finding the three sets of 
RBF network parameters (the centers, the widths, and 
the weights) is called network training. There are two 
categories of training algorithms: supervised and 
unsupervised. RBF networks are used mainly in 
supervised applications. In a supervised application, we 
are provided with an asset of data samples called a 
training set for which the corresponding network 
outputs are known. In this case, the network parameters 
are found such that they minimize a cost function: 
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where M is the total number of vectors from the 
training set, n

kt  is the target value of the output vector 
and )( n

k xy represents the output vector associated with a 

data sample nx  from the training set. If Gaussian basis 
functions are used to minimize this cost function, one 
can perform a stochastic gradient descent and readily 
obtain the update equations: 
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where 321 ,, ηηη  are the learning rates. 
In unsupervised training, the output 

assignment is not available for the given training set. 
One of the approaches is assigning a basis function for 
each of the data samples. This solution proved to be 
expensive in terms of memory requirement and in the 
number of parameters. Other approaches choose 
randomly, or assume known, the hidden unit weights 
and calculate the output weights jkω  by solving a 
system of equations whose solution is given in the 
training set. The matrix inversion required in this 
approach is computationally expensive and could cause 
numerical problems in certain situations (when the 
matrix is singular). 

For RBF networks, finding the right number of 
free parameters is crucial. This involves trying to 
determine the optimal number of hidden units. Hence, 
the analysis of the effect of adding a new hidden unit or 
removing an existing unit is an important one. 
Backward elimination and forward selection are two 
ways of pruning and growing RBF networks. In 
backward elimination, a network is constructed with all 
the basic functions in the candidate pool. At each step, 
the unit that least increases the error is eliminated from 
the network. Again, this procedure is continued until 
some model selection criterion stops decreasing. At this 
point, the complexity of the model is assumed sufficient 
to represent the underlying function complexity. 

In forward selection, one is given an initial 
network configuration and a candidate pool of basis 
functions; typically Gaussians centered at the training 
data points. At each step, the hidden basis function unit, 
which decreases the error most, such as sum-squared-
error, is removed from the candidate pool and added to 
the network. Though forward selection is a nonlinear 
optimization technique, it has the advantages of not 
having to fix the number of hidden units in advance, 
tractable model selection criteria, and computational 
efficiency. The projection matrix for the case where an 
extra hidden unit has been added is given by 

Jm
T

J

m
T

JJm
mm fPf

PffP
PP −=+1

 (90) 

where, 
Jf  is the column of the design matrix,Φ , 

corresponding to the most recently recruited hidden 
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unit. The reduction in the sum-squared-error due to the 
addition of the unit is given by 

.)ˆ(ˆˆ
2

1
Jm

T
J

Jm
mm fPf

fPySS =− +
 (91) 

The unit, which reduces the sum-squared-error most, is 
the chosen candidate. Geometrically, this will be the 
unit whose corresponding basis vector is most closely 
aligned to the perpendicular from ŷ  to the current m-
dimensional space. Though the sum-squared-error 
reduces as more hidden units are added, the model 
selection criterion will reach a minimum before it starts 
increasing again. This is the point where the process is 
stopped. 

Forward selection is a relatively fast algorithm 
but it can be speeded up even further using a technique 
called orthogonal least squares [9]. This is a Gram-
Schmidt orthogonalization process [15], which ensures 
that each new column added to the design matrix of the 
growing subset is orthogonal to all previous columns. 
This simplifies the equation for the change in sum-
squared-error and results in a more efficient algorithm. 

Any matrix can be factored into the product of 
a matrix with orthogonal columns and a matrix which is 
upper triangular. In particular, the design matrix, 

mp
mH ×ℜ∈ , can be factored into 

mmm UHH ~=  (92) 
where [ ] mp

mm hhhH ×ℜ∈=
~~~~

21 L  has orthogonal columns 

( )jihh j
T
i ≠= ,0~~

1
 and mm

mU ×ℜ∈  is upper triangular. 
When considering whether to add the basis function 
corresponding to J-th column, Jf~ of the full design 
matrix, the projection of Jf~ in the space already spanned 
by the m columns of the current design matrix is 
irrelevant. Only its projection perpendicular to this 
space, namely 

∑
=

−=
m

j
j

j
T
j

j
T

J
JJ h

hh
hf

ff
1

~
~~
~

~  (93) 

can contribute to a further reduction in the training 
error, and this reduction is 

.~~
)~ˆ(ˆˆ

2

1
J

T
J

J
T

mm ff
fySS =− +

 (94) 

Computation of this change in sum-squared-error is 
lower compared to the unnormalized version given in 
equation (91). This is the basis of the increased 
efficiency of orthogonal least squares. 

A small overhead is necessary to maintain the 
columns of the full design matrix orthogonal to the 
space spanned by the columns of the growing design 
matrix and to update the upper triangular matrix. After 

Jf~  is selected the new orthogonalized full design matrix 
is 

J
T

J

m
T

JJ
mm ff

FffFF ~~
~~~~~

1 −=+
 (95) 

and the upper triangular matrix is updated to 









=

−

−
−

−−−

1

~)~~(

1

1
1

111
T
m

J
T
mm

T
mm

m O
fHHHUU . (96) 

Initially U1 = 1 and FF =0
~  . The orthogonalized optimal 

weight vector 
( ) yHHHw T

mm
T
mm ˆ~~~ 1−

=  (97) 
and the unorthoganalized optimal weight equation are 
then related by 

mmm wUw ~ˆ 1−= . (98) 
 

6. NETWORK SIMULATION RESULTS 
The training and testing of the proposed Radial Basis 
Function Network was carried out using MATLAB 
script. After the Radial Basis Function Network is 
trained with a set of chosen learning data, a new set of 
test data that is different from the learning data is 
generated to evaluate the trained network. The learning 
data set requires 50 distinct sample values for each of 
the three outputs. Therefore, 125,000 samples are 
required as the learning data set. The range of the 
electrical radius a, of the training sphere is from 0.01λ 
to 5λ. The range of the  
burial distance is from 0 to a (half buried in the 
conducting ground to residing on the surface of the 
conducting ground) while the range of the relative 
permittivity rε  is from 1 to 9. Each of the sample sets 
holds 4 set of inputs and 3 target outputs. The 4 set of 
inputs are:  
x1j : Real value of scattered field coefficients for TE 
polarization case:  

)),(( nmAreal S
E

 and )),(( nmBreal S
E

 
x2j : Real value of scattered field coefficients for TM 
polarization case:  

)),(( nmAreal S
M

 
and )),(( nmBreal S

M
 

x3j : Imaginary value of scattered field coefficients for 
TE polarization case:  

)),(( nmAimag S
E

and )),(( nmBimag S
E

 
x4j : Imaginary value of scattered field coefficients for 
TM polarization case:  

)),(( nmAimag S
M

and )),(( nmBimag S
M

 where j = 1,. . ., d       and     d = 4n2 + 2n = 42.  
 
The higher the order of n, the higher the accuracy of the 
outputs and the large data set of the mapping function 
can become very costly to evaluate. Nevertheless, the 
coefficients of order up to the 3rd order (n=3) were 
sufficient for training of a sphere with electric radius 
0.01λ to 5λ. Similarly, the use of only one set of the 
scattered field coefficients ( )),(( nmAreal S

E ) will result in 
poor performance.  

The test results are plotted in Figs. 11 to 18.  
Figures 11 and 12 show the RBF network estimated 
burial distance of the sphere with electric radius ka = 1 
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Average absolute error = 0.0144 
Average relative percentage error = 3.73% 

 

 

 

 

 
 

Average absolute error = 0.0067 
% error relative to sphere radius = 0.67% 

 

 
 

 

 

 

 
Average absolute error = 0.0159 
Average relative percentage error = 4.95% 

 
 
 
 
 
 
 
 
 
 
 

 
Average absolute error = 0.0043 
% error relative to sphere radius = 0.43%

Fig. 12. RBF network estimated burial distance (ka=1.0
and

rε =4.0 ( m =2.0)). 

Fig. 11. RBF network estimated burial distance (ka=1.0
and 3.2=rε  ( m =1.51)). 

Fig. 14. RBF network estimated electric radius (d=0.5a
andε =4.0 ( m =2.0)).

Fig. 13. RBF network estimated electric radius (d=0.5a
and 3.2=rε  ( m =1.51)). 

and relative permittivity, 3.2=rε , and 4=rε , 
respectively. When burial distance d = 0, the sphere is 
half buried in the conducting ground and when burial 
distance d = a, the sphere is touching and residing on 
the conducting ground.  From the results plotted in Fig. 
11 and Fig. 12, the estimated burial distance is found to  
be very accurate as the percentage error of the 
estimated burial distance relative to the sphere radius is 
less than 1%. Figures 13 and 14 show the RBF network 
estimated electric radius of the sphere with burial 
distance d = 0.5a and relative permittivity 3.2=rε , and 

4=rε , respectively. The network gives poor prediction 
results when the electrical radius ka of the sphere is 
below 1 and close to zero, where the sphere is 
disappearing. While Figures 15 to 18 show the RBF 
network estimated refraction index m of the sphere with 
electrical radius ka = 1 and burial distance d = 0, d = 

0.25a, d = 0.5a, and d = a, respectively. As expected, 
the estimated sphere parameters are very close to the 
target values.  
 
7. CONCLUSION 
The first part of this paper describes an exact solution to 
the problem of scattering by a partially truncated 
dielectric sphere resting on a ground plane. The 
different bistatic cross-section results were obtained for 
various electrical radii, burial depths or the truncated 
depths and relative permittivity of the sphere. Since the 
medium intrinsic impedance of the sphere, η, is a 
function of the relative dielectric constant of the 
material of the sphere rε . It is obvious that the present 
solution should tend to that of a conducting sphere 
partially buried in a ground plane as ∞→rε .  
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Fig. 15. RBF network estimated refraction index m (ka=1
and d=0). 

 

 
 

 

 

 
 
 
Average absolute error = 0.0038 
Average relative percentage error = 0.18% 

Fig. 16. RBF network estimated refraction index m (ka=1
and d=0.25a). 

 

 
 

 

 

 

 
Average absolute error = 0.0038 
Average relative percentage error = 0.18%

Fig. 18. RBF network estimated refraction index m (ka=1
and d=a).

 

 
 

 

 

 

 
Average absolute error = 0.0037 
Average relative percentage error = 0.18%

Fig. 17. RBF network estimated refraction index m (ka=1
and d=0.5a).

 
 
 
 
 
 
 
 
 
 

 
Average absolute error = 0.0036 
Average relative percentage error = 0.16% 

 

 
Furthermore, the solution should tend to well known 
solutions for the special cases when 0→d [13,14].  

Comparing to analytical and numerical 
techniques, the proposed method of using neural 
networks in inverse scattering is simple, straightforward 
and timesaving, since it does not require matrix 
inversion, recurrence relations or graphical inversion 
methods to retrieve the desired parameters of the 
sphere. From the computer simulation results, the 
proposed method has proven effective in predicting the 
non-linear relation between the scattered field 
coefficient inputs and the sphere parameter outputs. The 
network has successfully retrieved the burial distance, 
radius, and relative permittivity of the dielectric sphere 
partially buried in a conducting ground given the 
scattering coefficients of the scatterer. Above and 
beyond, the performance of the proposed RBF network 
is proportional to the number of learning samples.  

 

T
herefore, by increasing the number of learning samples, 
a better prediction of the network will be achieved.  
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APPENDIX 
 
Xu’s vector translation addition theorem coefficients: 
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and a(m,n,µ,v,p) is the Gaunt coefficient given by, 
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where the symbol  
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j  is the so-called 

Wigner 3-j symbol. The integer p in the summations 
takes the values n+v, n+v-2, …, |n-v|. 
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