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Abstract

We consider a bounded obstacle characterized by
a boundary electromagnetic impedance contained
in the three dimensional real Euclidean space filled
with a homogeneous isotropic medium. When an
incoming electromagnetic field illuminates the ob-
stacle a scattered field is generated. A smart ob-
stacle is an obstacle that in the scattering pro-
cess, circulating a surface electric current density
on its boundary, tries to achieve a given goal. We
consider four possible goals: making the obstacle
undetectable (i.e.: furtivity problem), making the
obstacle to appear with a shape and impedance
different from its actual ones (i.e.: masking prob-
lem), making the obstacle to appear in a loca-
tion different from its actual one eventually with
a shape and impedance different from its actual
ones (i.e.: ghost obstacle problem) and finally one
of the previous goals limited to a given subset of
the frequency space (i.e.: definite band problems).
We consider the problem of determining the op-
timal electric current density to achieve the given
goal. The relevance in many application fields (i.e.
stealth technology, electromagnetic noise control,

etc.) of these problems is well known. The pre-
vious problems are modelled as optimal control
problems for the Maxwell equations. Some nu-
merical results on test problems obtained solving
the optimal control problems proposed are shown.

1. Introduction

In recent years the development of new technolo-
gies has made possible to build a vast class of
“smart” objects. This wave of innovation has
moved from cutting edge military applications to
everyday life objects such as, for example, wash-
ing machines. In this paper we consider the prob-
lem of formulating adequate mathematical mod-
els of smart obstacles in the context of electro-
magnetic scattering. The general mathematical
model that we have in mind to describe the be-
havior of a “smart” object is an optimal control
problem. The problems considered in electromag-
netic obstacle scattering are described by partial
differential equations so that we deal with optimal
control problems for partial differential equations.
Optimal control problems are widely used in engi-
neering as mathematical models. However their
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use is mainly limited to the control of systems
governed by ordinary differential equations and
their use in electromagnetic scattering is rather
uncommon. The development of computer tech-
nology and numerical methods occurred in the last
decades makes possible now to consider optimal
control problems for systems of partial differen-
tial equations such as the Maxwell equations, that
is makes possible the use of optimal control to
model electromagnetic scattering problems. We
consider four examples: furtivity problem (i.e.:
the obstacle wants to be undetectable), masking
problem (i.e.: the obstacle wants to appear with
a shape different from its actual shape eventu-
ally with a boundary impedance different from
its actual one), ghost obstacle problem (i.e.: the
obstacle wants to appear in a location different
from its actual location eventually with a shape
and impedance different from its actual ones) and
finally definite band problems (i.e.: the obsta-
cle pursues one of the previous goals on a given
subset of the frequency space). Recently similar
problems in the context of time dependent acous-
tic and electromagnetic obstacle scattering have
been studied from the point of view of formulating
adequate mathematical models and of developing
highly parallelizable numerical methods to solve
them (see [1], [2], [3], [4], [5] and the websites:
http://www.econ.univpm.it/recchioni/w6,
http://www.econ.univpm.it/recchioni/w8,
http://www.econ.univpm.it/recchioni/w9,
http://www.econ.univpm.it/recchioni/w10,
http://www.econ.univpm.it/recchioni/w11). Note
that in these papers “smart” and “active” obsta-
cles are synonyms. More in detail in [1] the furtiv-
ity problem in acoustic time dependent obstacle
scattering has been modelled as an optimal con-
trol problem and the first order optimality condi-
tions to solve it have been obtained as a system
of coupled partial differential equations, finally a
highly parallelizable numerical solver for this sys-
tem of partial differential equations has been de-
veloped. Later in [2], in [4] and in [5] the mask-
ing problem in acoustics and the furtivity and the

masking problems in electromagnetics have been
studied and finally in [3] the definite band ghost
obstacle problem in acoustics has been solved.

The practical interest of the mathematical mod-
els of smart obstacles proposed consists in the fact
that these models can be used to design smart
obstacles of practical value. Hence, for example,
in the realization of radar absorbers the approach
proposed can be a way of approaching the design
of phase-switched screens (see for example [6], [7],
[8]). In fact the phase-switched screen is an ob-
ject that does not absorb the incident energy but
shifts it in frequency using phase modulation so
that the reflected energy falls outside the receiver
bandwidth. That is, a phase-switched screen in
our language can be seen as a smart obstacle that
pursues the goal of being furtive in a given subset
of the frequency space.

In Section 2 we formulate the mathematical
models of the electromagnetic smart obstacles
considered. In Section 3 we show some numer-
ical results obtained solving the model proposed
in Section 2 concerning the definite band furtivity
problem.

2. Mathematical models of electromag-
netic smart obstacles

Let us begin introducing some notations. Let
R be the set of real numbers, R3 be the
three dimensional real Euclidean space and x =
(x1, x2, x3)T ∈ R3 be a generic vector, where the
superscript T means transposed. We denote with
(·, ·) the Euclidean scalar product in R3, with ‖ · ‖
the corresponding Euclidean vector norm and with
[·, ·] the usual vector product. Let R3 be filled
with a homogeneous isotropic medium of constant
electric permittivity ε > 0, constant magnetic per-
meability υ > 0 and zero electric conductivity.
Moreover we assume that there are no free electric
charges or currents. Let us suppose that R3 con-
tains an obstacle Ω given by a bounded set with-
out holes and internal cavities, more technically,
a bounded simply connected open set Ω, with lo-
cally Lipschitz boundary ∂Ω. Let Ω denote the set
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Ω ∪ ∂Ω and n(x) = (n1(x), n2(x), n3(x))T ∈ R3,
x ∈ ∂Ω be the outward unit normal vector to ∂Ω
in x ∈ ∂Ω. In the following Ω will be the scatterer,
that is the obstacle responsible for the scattering
of the incoming electromagnetic field. We assume
that Ω has a known constant real boundary elec-
tromagnetic impedance χ ≥ 0. The limit case of
perfectly insulating obstacles (i.e. χ = +∞) can
be treated with straightforward modifications of
the material presented here.

We begin modelling the standard direct obstacle
scattering problem that is, the scattering problem
relative to an obstacle that does not pursue any
goal. We refer to this obstacle as a “passive” ob-
stacle.

We consider an incoming electromagnetic field
(Ei(x, t),Bi(x, t)), (x, t) ∈ R3 ×R. The electric
vector field Ei(x, t) ∈ R3, (x, t) ∈ R3 × R and
the magnetic induction vector field Bi(x, t) ∈ R3,
(x, t) ∈ R3×R associated to the incoming electro-
magnetic field satisfy the Maxwell equations, that
is equations (1), (2), for (x, t) ∈ R3 ×R. We use
the M.K.S. unit system to write equations (1), (2)
(see [9], p. 16). When the incoming electromag-
netic field (Ei(x, t),Bi(x, t)), (x, t) ∈ R3×R, hits
the scatterer Ω generates a scattered electromag-
netic field (Es(x, t),Bs(x, t)), (x, t) ∈ (R3 \ Ω)×
R, solution of an exterior problem for the Maxwell
equations. That is the scattered electric vec-
tor field Es(x, t) ∈ R3, (x, t) ∈ (R3 \ Ω) × R
and the scattered magnetic induction vector field
Bs(x, t) ∈ R3, (x, t) ∈ (R3 \ Ω) × R satisfy the
following equations,(

curlEs +
∂Bs

∂t

)
(x, t) = 0,(

curlBs − 1
c2

∂Es

∂t

)
(x, t) = 0,

(x, t) ∈ (R3 \ Ω)×R, (1)

divBs(x, t) = 0,divEs(x, t) = 0,

(x, t) ∈ (R3 \ Ω)×R, (2)

with the boundary condition,

[n(x),Es(x, t)]− cχ [n(x), [n(x),Bs(x, t)]] =

[n(x), b(x, t)] , (x, t) ∈ ∂Ω×R, (3)

where,

b(x, t) = −Ei(x, t) + cχ
[
n(x),Bi(x, t)

]
,

(x, t) ∈ ∂Ω×R, (4)

the condition at infinity and the radiation condi-
tion given respectively by,

[Bs(x, t), x̂]− 1
c
Es(x, t) = o

(
1
r

)
,

Es(x, t) = O

(
1
r

)
, r → +∞, t ∈ R, (5)

where 0 = (0, 0, 0)T , c = 1/
√

ε υ, x̂ = x/‖x‖,
x 6= 0, r = ‖x‖, curl · and div· denote respectively
the curl and the divergence of · with respect to
the x variable, ∂ · /∂t denotes the time deriva-
tive of ·, and o(·), O(·) are the Landau symbols.
When we consider the case χ = +∞ the bound-
ary condition (3) must be “rewritten”. The two
conditions contained in (5) imply the vanishing
of the magnetic induction vector field at infinity,
that is Bs(x, t) = O(1/r), r → +∞, t ∈ R. More-
over we assume that the incoming electromagnetic
field vanishes when t → −∞, that is Ei(x, t),
Bi(x, t) → 0, x ∈ R3, t → −∞, that implies that
the scattered electromagnetic field vanishes when
t → −∞ as well, that is Es(x, t), Bs(x, t) → 0,
x ∈ (R3 \ Ω), t → −∞.

The scattering problem for a “passive” obstacle
Ω can be stated as follows:
Scattering Problem (passive obstacle).
Given the incident electromagnetic field (Ei,Bi),
the obstacle Ω and its boundary electromagnetic
impedance χ, solve the time dependent Maxwell
equations (1)-(3), (5) in the unknowns (Es,Bs).

Let us study the possibility of transforming the
“passive” obstacle into a “smart” obstacle.
Problem 1. Furtivity Problem. Given the in-
cident electromagnetic field (Ei,Bi), the obstacle
Ω and its boundary electromagnetic impedance χ

choose a control vector field (i.e. a surface electric
current density) defined for (x, t) ∈ ∂Ω ×R in a
suitable class of admissible controls, in order to
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minimize a cost functional that roughly speaking
measures the “magnitude” of the electromagnetic
field (Es,Bs) scattered by Ω, χ (when the control
vector field is active) when hit by the incoming
field (Ei,Bi) and the “magnitude” of the control
vector field employed.

To obtain a satisfactory formulation of the
furtivity problem we modify the boundary con-
dition (3) as follows,

[n(x),Es(x, t)]− cχ [n(x), [n(x),Bs(x, t)]] =

[n(x), b(x, t)] + (1 + χ)[n(x),Φ(x, t)],

(x, t) ∈ ∂Ω×R. (6)

The quantity Φ(x, t), (x, t) ∈ ∂Ω×R has the di-
mension of an electric field and is related to the
control variable that transforms the obstacle Ω
from being passive to being smart. We assume
that limt→±∞Φ(x, t) = 0, x ∈ ∂Ω.

Let us define ψ(x, t) = ∂Φ
∂t (x, t), (x, t) ∈ ∂Ω×R

and let V be the space of the admissible controls,
that we leave undetermined in this paper (see [5])
for a definition of V). Note that ψ = ∂Φ

∂t has the
dimensions of an electric (surface) current density.
The furtivity problem can be formulated as the
following optimal control problem,

min
ψ∈V

Fλ,µ(ψ) , (7)

subject to the constraints (1), (2), (5), (6) and
Fλ,µ is the following functional,

Fλ,µ(ψ) = (1 + χ)
{
λ‖| [n,Es] |‖2+

λc2‖| [n,Bs] |‖2 + µς‖| [n,ψ] |‖2
}

. (8)

The quantity ς is a positive dimensional constant
and λ ≥ 0, µ ≥ 0 are adimensional constants such
that λ + µ = 1. Moreover the norms ‖| · ‖| ap-
pearing in (8) are norms on a suitable space of
functions defined on ∂Ω×R (see [5]). For exam-
ple the square root of the integral over ∂Ω×R of
the square of the vector norm of · is such a norm.
Note that the solution of problem (7), (1), (2),
(5), (6) when λ = 0, µ = 1 is [n(x),ψ(x, t)] = 0,
(x, t) ∈ ∂Ω × R, that is in this case (Es,Bs) is

the electromagnetic field scattered by the passive
obstacle. On the other hand when λ = 1, µ = 0
the solution of the same problem gives an obsta-
cle completely undetectable since the minimiza-
tion of (8) in this case gives [n(x),Es(x, t)] = 0,
[n(x),Bs(x, t)] = 0, (x, t) ∈ ∂Ω × R that im-
plies Es(x, t) = 0, and Bs(x, t) = 0, (x, t) ∈
(R \ Ω) × R. However when λ = 1, µ = 0 the
cost functional (8) does not contain a term that
depends on the control employedψ. Note thatEs,
Bs depends implicitly on ψ through the bound-
ary condition (6). The remaining cases, that is
0 < λ < 1, correspond to nontrivial formulations
of the furtivity problem.
Problem 2. Masking Problem. In the cir-
cumstances of Problem 1 given an obstacle D ⊆
Ω, and its electromagnetic boundary impedance
χD, choose a control vector field ψ(x, t), (x, t) ∈
∂Ω×R in a suitable class of admissible controls, in
order to minimize a cost functional that roughly
speaking measures the “magnitude of the differ-
ence” between the electromagnetic field (Es,Bs)
scattered by Ω, χ (when the control vector field
is active) and the electromagnetic field (Es

D,Bs
D)

scattered by D, χD when hit by the incoming field
(Ei,Bi) and the “magnitude” of the control vec-
tor field employed. The couple D, χD will be
called the “mask”. For simplicity we assume the
mask to be a passive obstacle.

The Masking Problem can be modelled as the
optimal control problem (7), (1), (2), (5), (6) if
the functional Fλ,µ that appears in (7) is defined
as follows,

Fλ,µ(ψ) = (1 + χ)
{
λ‖| [n,Es −Es

D] |‖2+

λc2‖| [n,Bs −Bs
D] |‖2 + µς‖| [n,ψ] |‖2

}
.(9)

Problem 3. Ghost Obstacle Problem. In the
circumstances of Problem 1 given an obstacle G

such that G 6= ∅, G ∩ Ω = ∅, its electromagnetic
boundary impedance χG, and a bounded set with-
out holes and internal cavities Ω1 such that Ω, G

are contained in Ω1 and ∂Ω1 is a sufficiently reg-
ular surface, choose a control vector field ψ(x, t),
(x, t) ∈ ∂Ω × R in a suitable class of admissible

122FATONE, RECCHIONI, SCOCCIA, ZIRILLI: BEHAVIOR OF SMART OBSTACLES IN ELECTROMAGNETIC SCATTERING



controls, in order to minimize a cost functional
that roughly speaking measures in (R3 \Ω1)×R
the “magnitude of the difference” between the
electromagnetic field (Es,Bs) scattered by Ω, χ

(when the control vector field is active) and the
electromagnetic field (Es

G,Bs
G) scattered by G,

χG when hit by the incoming field (Ei,Bi) and
the “magnitude” of the control vector field em-
ployed. The couple G, χG will be called “ghost
obstacle”. For simplicity we assume the “ghost
obstacle” to be a passive obstacle. The Ghost
Obstacle Problem can be modelled as the opti-
mal control problem (7), (1), (2), (5), (6) if the
functional Fλ,µ that appears in (7) is defined as
follows,

Fλ,µ(ψ) = (1 + χ)
{
λ‖| [n,Es −Es

G] |‖21+

λc2‖| [n,Bs −Bs
G] |‖21 + µς|‖ [n,ψ] |‖2

}
, (10)

where |‖ · |‖1 is a norm on a suitable space of func-
tions defined on ∂Ω1 ×R.

Finally we formulate the so called Definite Band
Problems.

Let K ⊆ R be an assigned set of the frequency
space that we assume to be an open interval sym-
metric with respect to the origin, let ǏK(t), t ∈ R
be the inverse Fourier transform of the character-
istic function of the set K and let us denote with
f ∗ g the convolution product with respect to the
time variable of the functions f and g. The set K

is the definite band in the frequency space where
the smart obstacle pursues its goal.
Problem 4. Definite Band Furtivity Prob-
lem. In the circumstances of Problem 1 given
K choose a control vector field ψ(x, t), (x, t) ∈
∂Ω ×R in a suitable class of admissible controls,
in order to minimize a cost functional that roughly
speaking measures the “magnitude” in the fre-
quency band K (K ⊂ R) of the electromagnetic
field (Es,Bs) scattered by Ω, χ (when the control
vector field is active) when hit by the incoming
field (Ei,Bi) and the “magnitude” of the control
vector field employed.

The Definite Band Furtivity Problem can be
modelled as the optimal control problem (7), (1),

(2), (5), (6) if the functional Fλ,µ that appears in
(7) is defined as follows,

Fλ,µ(ψ)=(1 + χ)
{
λ‖| ǏK ∗ [n,Es] |‖2+

λc2‖| ǏK ∗ [n,Bs] |‖2 + µς‖| [n,ψ] |‖2
}

.(11)

Similarly we can consider the remaining goals on
a definite band:
Problem 5. Definite Band Masking Prob-
lem. In the circumstances of Problem 1 given
K, an obstacle D ⊆ Ω, and its electromagnetic
boundary impedance χD, choose a control vec-
tor field ψ(x, t), (x, t) ∈ ∂Ω × R in a suitable
class of admissible controls, in order to mini-
mize a cost functional that roughly speaking mea-
sures the “magnitude of the difference” in the fre-
quency band K between the electromagnetic field
(Es,Bs) scattered by Ω, χ (when the control vec-
tor field is active) and the electromagnetic field
(Es

D,Bs
D) scattered by D, χD when hit by the in-

coming field (Ei,Bi) and the “magnitude” of the
control vector field employed.

The Definite Band Masking Problem can be
modelled as the optimal control problem (7), (1),
(2), (5), (6) if the functional Fλ,µ that appears in
(7) is defined as follows,

Fλ,µ(ψ) =(1 + χ)
{
λ‖|ǏK ∗ [n,Es −Es

D]|‖2+

λc2‖|ǏK ∗ [n,Bs −Bs
D]|‖2 + µς‖|[n,ψ]|‖2

}
. (12)

Problem 6. Definite Band Ghost Obsta-
cle Problem. In the circumstances of Problem 1
given K, an obstacle G such that G 6= ∅, G∩Ω =
∅, its electromagnetic boundary impedance χG,
and a bounded set without holes and internal
cavities Ω1 such that Ω, G ⊂ Ω1, and ∂Ω1 is
sufficiently regular choose a control vector field
ψ(x, t), (x, t) ∈ ∂Ω ×R in a suitable class of ad-
missible controls, in order to minimize a cost func-
tional that roughly speaking measures the “mag-
nitude of the difference” in the frequency band K

between the electromagnetic field (Es,Bs) scat-
tered by Ω, χ (when the control vector field is ac-
tive) and the electromagnetic field (Es

G,Bs
G) scat-

tered by G, χG when hit by the incoming field
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(Ei,Bi) and the “magnitude” of the control vec-
tor field employed.

The Definite Band Ghost Obstacle Problem can
be modelled as the optimal control problem (7),
(1), (2), (5), (6) if the functional Fλ,µ that appears
in (7) is defined as follows,

Fλ,µ(ψ)=(1 + χ)
{
λ‖| ǏK ∗ [n,Es −Es

G] |‖21+

λc2‖| ǏK ∗ [n,Bs −Bs
G] |‖21+µς|‖ [n,ψ] |‖2

}
.(13)

Note that the Definite Band Problems formu-
lated, that is Problems 4, 5, 6, are generaliza-
tions of Problems 1, 2, 3. In fact when we choose
K = R the Definite Band Furtivity, Masking and
Ghost Obstacle Problems reduce respectively to
the Furtivity, Masking and Ghost Obstacle Prob-
lems. The advantage of solving the Definite Band
Problems rather than the corresponding problems
on the entire frequency space is that the “price” to
be paid in term of the control variable employed
is smaller when the Definite Band Problems are
considered. In fact as shown in [10] in the acous-
tic case in the Definite Band Furtivity and Ghost
Obstacle Problems the “quantity” of the control
variable, measured by the norm used in the cost
functional, required to get a given furtivity effect
(or to get a given “ghost” effect) in the frequency
band K is smaller than the “quantity” of the con-
trol variable needed to get the same effect on the
entire frequency space (i.e. when K = R).

A straightforward mode to solve the six control
problems formulated here is the use of an opti-
mization routine and a numerical solver for the
Maxwell equations. This approach is computa-
tionally very expansive since it implies the solu-
tion of the Maxwell equations (several times due
to the necessity of estimating gradient and eventu-
ally “Hessian” of the cost functionals involved in
the control problems) at each iteration of the op-
timization procedure. A computationally cheaper
approach can be obtained using the Pontryagin
maximum principle. In fact under some hypothe-
ses using the Pontryagin maximum principle it is
possible to write the first order optimality condi-
tions corresponding to these control problems as

a system of partial differential equations with the
necessary boundary, initial and final conditions.
Highly parallelizable numerical methods can be
developed to solve these systems of partial differ-
ential equation. For brevity we refer the inter-
ested reader to [4], and [5], [3], [10]. The numer-
ical results obtained in Section 3 have been ob-
tained using the Pontryagin maximum principle.
In fact, we have derived the first order optimality
conditions, i.e. a system of partial of differential
equations for Problem 1 and a similar system for
Problem 6 and then we have solved these systems
developing suitable solvers based on the operator
expansion method presented in [5] and [11].

3. Some numerical results
We present some numerical results relative to two
experiments involving smart obstacles. In both
experiments we choose c = 1, ς = 1 and the fol-
lowing electromagnetic incoming field,

Ei(x, t) = (1, 0, 0)T e−[x3−t]2 ,

Bi(x, t) = (0, 1, 0)T e−[x3−t]2 ,

(x, t) ∈ R3 ×R. (14)

The smart obstacle of the first experiment is a
sphere of center the origin and radius 2 (Figure
1a)) with boundary impedance χ = 2 that pur-
sues the goal of being undetectable (i.e. Furtivity
Problem, Problem 1).

Figure 1. Obstacles.

The smart obstacle of the second experiment is
a perfectly conducting (i.e. χ = 0) double cone
(see Figure 1b)) that pursues the goal of being
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undetectable in the subset K = (−1, 1) of the fre-
quency space (Definite Band Furtivity Problem,
Problem 4). The double cone consists of two cones
of the same height 1.2 and base (a circle having
center the origin and radius 1.2) one upon the
other through their bases.

The numerical results relative to the first exper-
iment are shown in Table I. Let us describe these
results. Let BRi

, i = 1, 2, 3 be spheres having cen-
ter the origin and radii Ri = 2.0 + (i − 1) ∗ 0.5,
i = 1, 2, 3 and let tν = −2 + ν, ν = 1, 2, 3 be three
time values such that the incident field is begin-
ning to hit the scatterer (t = t1 = −1), is going
through the body of the scatterer (t = t2 = 0)
and is leaving the scatterer (t = t3 = 1) respec-
tively. Note that the spheres BRi

, i = 1, 2, 3 con-
tain or coincide with the smart obstacle, Ω ⊆ BRi ,
i = 1, 2, 3. Let Es

a and Es
p denote the electric field

generated by the smart obstacle when the optimal
surface electric current density is used, and by the
same obstacle considered as a passive obstacle re-
spectively. For i = 1, 2, 3, ν = 1, 2, 3 we define the
following quantities,

εa,λ
E,Ri,ν

=

[∫
∂BRi

‖Es
a(x, tν)‖2ds∂BRi

(x)

]1/2

,

(15)

εp
E,Ri,ν

=

[∫
∂BRi

‖Es
p(x, tν)‖2ds∂BRi

(x)

]1/2

,

(16)
and

ελ
E,Ri

= min
ν=1,2,3

|εp
E,Ri,ν

− εa,λ
E,Ri,ν

|
|εp

E,Ri,ν
|

, i = 1, 2, 3,

(17)
where ds∂BRi

is the surface measure on ∂BRi
,

i = 1, 2, 3. Note that the quantity εa,λ
E,Ri,ν

, εp
E,Ri,ν

i = 1, 2, 3, ν = 1, 2, 3 are a sample of the “magni-
tude” of the electric fields generated by the smart
obstacle and by the passive obstacle respectively.
The quantity ελ

E,Ri
, i = 1, 2, 3 is a measure of how

the electric field generated by the smart obstacles
is small when compared with the electric field gen-
erated by a passive obstacle that is, is a measure of
the furtivity effect achieved. The results obtained

Table I . Furtivity Effect

λ = 0.1, µ = 0.9

Ri ν εa,λ
E,Ri

εp
E,Ri

ελ
E,Ri

2.0 1 1.651 2.323 0.287

2.5 1 1.082 1.421 0.238

3.0 1 0.753 0.911 0.173

λ = 0.5, µ = 0.5

Ri ν εa,λ
E,Ri

εp
E,Ri

ελ
E,Ri

2.0 1 0.808 2.323 0.652

2.5 1 0.525 1.421 0.630

3.0 1 0.367 0.911 0.597

λ = 0.9, µ = 0.1

Ri ν εa,λ
E,Ri

εp
E,Ri

ελ
E,Ri

2.0 1 0.191 2.323 0.918

2.5 1 0.123 1.421 0.913

3.0 1 0.085 0.911 0.906

are satisfactory when ελ
E,Ri

is close to one, in fact
when εa,λ

E,Ri,ν
= 0 we have ελ

E,Ri
= 1.

Note that the column denoted with ν in Table I
contains the minimizer of formula (17). Results
similar to those shown in Table I have been ob-
tained for the magnetic induction vector field (see
[5] for further details).

Note that the furtivity effect increases when λ

increases and that it ranges from 17% when λ =
0.1 to 90% when λ = 0.9 (see Table I).

Finally Figures 2, 3 show the numerical results
relative to the second experiment. In this experi-
ment we choose λ = 0.9, µ = 0.1, K = (−1, 1). As
above, let Es

a, Bs
a and Es

p, B
s
p be the electric vec-

tor field and the magnetic induction vector field
scattered by the smart double cone when the op-
timal surface electric current density is employed
and by the passive double cone respectively. Fig-
ure 2 shows from left to right in the colour scale
shown the Euclidean norms of the convolution
products ǏK ∗ Es

a, ǏK ∗ Es
p, ǏK ∗ Bs

a, ǏK ∗ Bs
p

on the sphere BR2 as a function of the polar an-
gles (θ, φ), for three different values of the time
variables that is, t = 0, t = 2, t = 3. Note that
Ω ⊂ BR2 and that the norms of the vector fields
ǏK ∗ Es

a, ǏK ∗Bs
a are negligible compared to the
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corresponding norms ǏK ∗Es
p, ǏK ∗Bs

p.

Figure 2. Furtivity effect in the frequency band
K.

Figure 3. Furtivity effect outside the frequency
band K.

Similarly Figure 3 shows from left to right in the
colour scale shown the norms of the convolution
products ǏR\K ∗Es

a, ǏR\K ∗Es
p, ǏR\K ∗Bs

a, ǏR\K ∗
Bs

p on the sphere BR2 as a function of the polar
angles (θ, φ) for t = 0, t = 2, t = 3. Note that the
norms of the vector fields ǏR\K∗Es

a, ǏR\K∗Bs
a are

similar to the corresponding norms of ǏR\K ∗Es
p,

ǏR\K ∗Bs
p. That is, outside of the frequency band

K no furtivity effect is present. Note that the
colour scales used in Figures 2 and 3 to represent
the data are the same.

4. Conclusions

In this paper we have shown how mathematical
models, such as optimal control problems, can be
used profitably to design smart objects able to
pursue non trivial goals. The main advantage of
the mathematical formulation of the electromag-
netic scattering problem involving smart obstacles
proposed in this paper is that it allows to reduce
the solution of the scattering problem to the so-
lution of an optimal control problem whose op-
timal solution can be determined as the solution
of a suitable system of coupled partial differen-
tial equations. This fact guarantees a great com-
putational efficiency. In fact the most standard
approaches solve the optimal control problem it-
eratively. That is at each step of the iterative pro-
cedure a system of partial differential equations
must to be solved.
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