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Abstract: This paper provides one-dimensional

simulation results of the induced currents on constantly

moving and vibrating perfect conductors under the

normal illumination of plane Gaussian electromagnetic

pulses. The characteristic-based algorithm is employed

for the solutions of time-dependent Maxwell curl

equations. In the numerical model, the size of the

computational cell adjacent to the moving boundary, and

its corresponding numerical time step become time-

dependent since the boundary is not stationary. By

comparing the computational results with the theoretical

Doppler  shift values,  we show that the present method

successfully predicts the induced currents on the perfect

conductor surface. The computed electric and magnetic

field intensities and induced currents are demonstrated as 

well.

Introduction:

The effects on electromagnetic waves caused by

uniformly traveling or oscillating targets are usually

neglected if the velocity of movement or the resultant

instantaneous speed of vibration is relatively small. The

study of these topics becomes important wherever

researchers have to deal with them. Several analytic

studies can be found and the following remarks can be

drawn: perfect conductors undergoing translational

motion result in the well-known Doppler shift in the

reflected fields; an oscillating target changes not only the

phase but also the magnitude of the scattered fields [1–3].

A variety of computational techniques are

developed for the solutions of the electromagnetic

scattering problems for the past half century. The two

most commonly approaches for solving electromagnetic

problems are the method of moments (MoM) and the

finite-difference time-domain (FDTD) technique. A

recently proposed method applied to the solution of 

various electromagnetic problems is the characteristic-

based algorithm that numerically approximates the 

time-dependent Maxwell curl equations. Whitfield and 

Janus applied this characteristic-based algorithm to the

solutions of the Navier-Stokes equations for the fluid

dynamic problems in the early 80s [4]. A decade later,

Shang employed this method to solve the time-domain

Maxwell’s equations [5] through the application of

explicit central-difference scheme. The implicit

formulation was developed for the same purpose and its

results were found to agree with data produced by FDTD 

[6]. Unlike MoM and FDTD, all field quantities are 

placed in the center of grid cell in the characteristic- 

based approach. It directly solves Maxwell’s equations by

balancing the net flux across all cell faces within each

computational cell. The present numerical method is then

considered a better approach over MoM and FDTD for

problems involved with time varying cells, such as cases

where object is moving or vibrating.

Governing Equations: 

The governing equations for electromagnetic

problems in source-free region are the time-dependent

Maxwell curl equations:

0E
t
B (1)

0H
t
D . (2)

Since one-dimensional models are used, we can only

consider a two-dimensional numerical formulation. To

begin with, the characteristic-based algorithm requires

the transformation of the governing equations from the

151

1054-4887 © 2005 ACES

ACES JOURNAL, VOL. 20, NO. 2, JULY 2005



Cartesian coordinate system (t, x, y) into the body-fitted

coordinate system ( , , ). We rewrite (1) and (2) as 

0GFQ
(3)

where

Q = J q (4)

F = J ( x f + y g) (5)

G = J ( x f + y g) (6)

and

J = yxyx . (7)

The symbol J in above equations stands for the Jacobian

of the inverse transformation, and the three variable

vectors are respectively given by 

q = [ Bx , By , Dz ]T (8)

f = [ 0 , –Ez , –Hy ]T (9)

g = [ Ez , 0 , Hx ]T. (10)

Shown as in (3) is called the Maxwell’s equations

in form of the Euler equation. The numerical procedure

is formulated by applying the central difference operator 

k( ) = ( )k+½  ( )k ½ (11)

to (3). Then it becomes

0
GFQQ ji

n1n
. (12)

In (11) the half-integer index represents the interface

between two adjacent computational cells where flux is 

evaluated. The superscripts “n” and “n+1” on variable

vector Q in (12) are two consecutive time levels. The

numerical method approximates Maxwell’s curl equation 

in curvilinear coordinate system by solving for the flux

change for each grid cell within each numerical time step. 

The flux vector splitting technique and the Newton

iterative method are also applied followed by the

lower-upper approximate factorization scheme for the

solution of the system of linear equations.

Boundary Conditions:

The boundary conditions (BC’s) used in the present

method are derived from the concepts of characteristic

variable (CV) boundary conditions and the relativistic

boundary conditions. According to the definition, every

CV associates with one particular eigenvalue and is

defined as the product of the instantaneous variable

vector and the eigenvector corresponding to that

particular eigenvalues [4]. Since every eigenvalue

indicates the direction and velocity of the information

propagating across the cell face, the use of CV for the

evaluation of boundary variables should increase the

accuracy of scheme. In order to incorporate the

relativistic effects on the perfectly conducting surface, we

combine the characteristic variable boundary conditions

and the relativistic relation to evaluate the boundary

values of variables. The relativistic boundary conditions

are given by
bb B)vn̂(En̂ (13)

where v  and are the velocity and unit vector normal

of the perfectly conducting surface, respectively. The

superscript “b” stands for the boundary values of the

electric and magnetic field variables evaluated right on 

the perfectly conducting surface. By definition, the CV

arriving on the boundary is given by

n̂

DBn̂CV o
b (14)

with o being the impedance of free space and B  and

D are variables of the cell next to the boundary. Note

that, this CVb is tangential to the perfectly conducting

surface and contains information propagating from the

adjacent cell as indicated by the corresponding

eigenvalue.

The Problem:

The incident electromagnetic pulse used in the

simulation is specified as follows. It is a Gaussian- 

windowed plane electromagnetic pulse with a cutoff level

of 100 dB from the peak value, initially propagates in the

positive x-direction in source-free region, and normally

illuminates upon a perfect plane that is either at rest or in 

motion. This Gaussian electromagnetic pulse with its

electric intensity being normalized to unity has a width of
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about 1.902 ns measured from the center to e -0.5.

For a motionless boundary, the grid system is 

stationary where the cell number and cell dimension are

constant and uniform as shown in Figure 1(a). In the

present simulation, due to the motion of boundary, both

cell number and cell size are changing as time advances.

As shown in Figures 1(b) and 1(c), provided that the cell 

immediate next to the moving boundary is the cell N,

portion of the Nth cell may be truncated by the boundary

at certain instance of time; and a moment later an extra

fractional cell, the (N+1)th, may be introduced into the

grid system. The number of cells eliminated from or 

added into the grid system may be multiple and subjects

to the oscillation amplitude and the grid density. These

variations must be taken into account by updating the

effective cell area and the resultant numerical time step to

maintain decent accuracy of scheme.

(a) (b) (c)

… N-1 N … N-1 N … N-1 N N+1

Perfect
plane

In order to easily observe the effects of the moving

object on the induced currents, we make the following

arrangements. The perfectly conducting surfaces are set

to constantly move at a velocity of 10 percent of the

speed of light (C = 3  108 m/s), and/or vibrate with a

constant frequency and a constant amplitude so that the

extreme instantaneous velocity equal to ± 0.1 C. The

vibration frequency and amplitude are set to be 1 GHz

(an impractical high value) and 4.775 mm to result in an

extreme speed of 0.1 C near the equilibrium position. The

resulting velocities of conductor are illustrated in Figure 

2 where they are superposed if conductor moves and

vibrates simultaneously. The two ratios of the

translational velocity and oscillatory instantaneous

velocity to the light speed are  and , respectively.

Since the latter ranges from –0.1 C to +0.1 C, symbol

is used for the magnitude. The value of||  and  is 

positive if conductor and the incident pulse move in the

same direction and negative if they approach each other.

The numerical setups are as follows: the numerical

electromagnetic pulse is plane and only has the

components Ez and By. The excitation pulse is three 

meters in spatial span from the peak to the cutoff point;

the number of grid cell for a six meters span is 800 points;

the numerical time step is set so that the numerical

electromagnetic pulse takes forty steps for one grid cell.

Note that, for an oscillation amplitude as previously

stated the moving boundary covers 1.273 cells peak-

to-peak.

Instantaneous Velocity

ns

Figure 1. Computational cell indexing: (a) stationary grid

system, (b) the Nth cell is truncated, (c) the

(N+1)th cell is introduced.

Figure 2. Instantaneous velocities of moving and/or
vibrating conductors.

The induced currents are computed by taking the

cross product of the unit vector normal and the magnetic

field intensity where the latter is the resultant boundary

values. Another field quantity sampled at the same

location is the electric field intensity. If conductor is 

stationary the electric field is always zero in magnitude.

Yet, the electric field is no longer vanished if conductor

moves so that the relativistic effects cannot be dismissed.

Under such circumstances, if the resultant velocity of

conductor is v , the boundary values of the field
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components can be solved directly from equations (13)

and (14) and are respectively given

bb CV
1v

1B (15)

bb CV
1v

vE . (16)

To obtain above expressions, we take the convenience

that both unit vector normal of the surface and velocity

are along the x-axis. Note also that v used in (15) and

(16) is the combined velocity of conductor and that the

sign of this velocity is dependent upon the relativistic

motion between the electromagnetic pulse and conductor

as previously mentioned. The induced current flows in

the positive z-direction can be computed as 
b

z Hn̂J (17)

where bH is the magnetic field intensity evaluated on 
the boundary.

Results:

To illustrate the interaction between the

electromagnetic pulse and the moving/vibrating perfect

conductor, two time sequences of the electric field 

intensity are given in Figure 3. It is observed that on the

perfectly conducting surface the electric fields are not 

always zero in strength due to the application of the

relativistic boundary conditions. Plotted in Figures 4 and 

5 are the boundary values of the electric and magnetic

fields computed through (15) and (16). Note that all field

quantities are normalized to unity henceforward and that

the induced currents are similar to those of Figure 4 since

it can be obtained by (17). If we take the difference

between (15) and (16), we expect by the mathematical

expression that the oscillatory behaviors of the fields

would be cancelled out. The computational results are 

calculated and shown in Figure 6. 

The Doppler effects on the induced current can be

investigated on both magnitude and pulse width. The

magnitude of the induced current is predictable by the

relation
)(1

2 and the resulted pulse width by

1
1

where the oscillatory behavior is ignored for

easy estimation. Listed in Tables 1 and 2 are the

calculated maximum shifts in magnitude along with the

theoretical values. For instance, if the boundary moves

and vibrates at the same time, when the maximum

instantaneous velocity is –0.2 C, the corresponding

magnitude is equal to 2.5; the pulse width is 1.2247 times

that of the incident pulse, which is 1.7208. It is noted that

the computational results are in good agreement with the

analytical calculations. 

 = –0.1
|  | = 0.1

(a)

 = 0.1
|  | = 0.1

(b)

Figure 3. Interaction of electromagnetic pulse with
moving perfect planes: (a) Vibrating and
approaching, (b) Vibrating and receding
(only electric fields are shown).

Boundary Values ( Electric Field )

ns

Figure 4. Calculated electric field using equation (3).

154HO: INDUCED CURRENTS ON A MOVING AND VIBRATING PERFECT PLANE



Boundary Values ( Magnetic Field )

ns

| Electric - Magnetic | ( Boundary Values )

ns

Table 1: Doppler shifts in pulse width.
Velocities From center to e–0.5

|  | Calculated Theoretical
0 0.0 1.9028 1.9024

– 0.1 0.0 1.7294 1.7208
+ 0.1 0.0 2.1153 2.1032

Table 2: Doppler shifts in the induced current.
Velocities Maximum | Jz | 

|  | Calculated Theoretical
0 0.0 1.9999 2.0000

– 0.1 0.0 2.2223 2.2222
+ 0.1 0.0 1.8176 1.8182

0 0.1 2.2220 2.2222
– 0.1 0.1 2.5001 2.5000
+ 0.1 0.1 1.9908 2.0000

Conclusion:

This paper has shown that the characteristic-based

algorithm successfully simulates the induced currents on

the surface of moving and/or vibrating perfect conductors

in one dimension. The computational results of the 

induced current magnitudes and pulse widths as

consequences of the moving conductors are compared

with the theoretical values. They are in good agreement.

It is our future work to develop the existing code to 

problems with objects of finite dimension and problems

involved with moving medium.

Figure 5. Calculated magnetic fields using equation (4).
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