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 Abstract—An efficient hybrid Mode Expansion- 
(ME) Moment Method (MM) or ME-MM is proposed 
to simulate the eigenvalue problem of multi-layer 
dielectric resonators (DRs) within cylindrical and 
rectangular cavities. Resonant frequencies and field 
distributions for several DRs are presented. The 
method’s efficiency and accuracy are validated by 
comparison with commercial software, such as the 
HFSS, and other numerical methods. Finally, an air 
gap tunable DR analyzed via shows the ME-MM 
potential to design tunable DRs and filters. 
 
Index Terms—Mode Expansion, Moment Method, 
Multi-layer Dielectric Resonators, Resonant 
Frequency, Field Distribution 

I. INTRODUCTION 
Resonators, filters and multiplexers play 

critical roles in many telecommunication systems, such 
as satellite and mobile communications [1], [2]. The 
size of these components is directly related to the 
wavelength and varies from less than one inch to more 
than a foot. Strip-line and micro-strip-line structures 
have been successfully adopted to avoid the bulkiness 
of waveguide structures. However, when high power-
handling capability and/or low loss are needed, 
waveguide remain choice devices Since materials of 
high dielectric constant, high quality factor, and low 
coefficient of thermal expansion have been developed 
in the mid 70s [3], homogeneously and 
inhomogeneously-filled waveguide components have 
been studied and used in communications, navigation 
and various types of radar systems. With so much 
interest in dielectric structures, this paper presents a 
new methodology, referred to as a hybrid  Mode 
Expansion Moment Method (ME-MM), to analyze 
dielectric resonator (DRs) loaded cavities. The 
efficiency and accuracy are compared with HFSS or 
other numerical methods.  
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Analysis and modeling of waveguide resonant 
and transmission structures have been research topics 
in the past decades, especially for DR loaded cavities. 
When a DR is placed in an open space, the analysis is 
usually performed under the assumption that the fields 
are completely restricted inside the dielectric materials 
due to its high dielectric constant. As such, the DR 
edges can be treated as perfect magnetic walls (PMW) 
and the modes and field distribution can be easily 
determined by calculating the field variations in each 
direction [4]-[6]. Obviously, this type of configuration 
is not practical and the PMW treatment is too 
approximate. A more accurate model was suggested by 
taking away the PMW on the two ends of a cylindrical 
DR, while keeping the PMW on the side of the DR and 
extending to infinity along the DR axial direction [7], 
[8]. In this case, the fields outside the DR decay 
exponentially along the axial direction.  To represent 
these fields, an extra subscript δ is added to the 
normal  and TM modes as     and 01TE 01 01TE δ    TM 01δ . 
Further modifications assuming imperfect magnetic 
walls on all the surfaces were also suggested, but the 
analysis is still approximate with axial symmetric 
modes only [9-11].  

Placing the DR between two parallel 
conducting plates provides a partial configuration. The 
resonator is formed by cutting a piece of cylindrical 
dielectric waveguide with a conducting plate at each 
end. This configuration is important for dielectric 
material measurement applications [12-14]. Rigorous 
modal analysis, including the axially symmetrical 
modes and the non-axial-symmetric modes for this 
geometry, was given in [13] In any practical 
applications, conducting enclosures for      the DR are 
unavoidable. This is because fields the DR must be 
shielded and also for packaging because the DR array 
interact with circuits components outside.  

A popular analytical method is the finite 
difference method [15], [16] which transforms the 
D.E. into a system of algebraic equations by simply 
replacing derivatives with finite differences. The finite 
element method is another popular approach and when 
making it more efficient and accurate for neural bars 
where Green’s functions are used, an electromagnetic 
boundary value problem can be converted in a surface 
or volume integral equation in terms of the equivalent 
electric and/or magnetic currents. The integral 
equation itself is then transformed to a set of linear 
equations by expanding the unknown currents as a 
superposition of a set of basis functions and by 
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evaluating the inner products to get the equations with 
a set of testing functions (MM) [17-20].  

The most popular configuration is the 
cylindrical, solid DR or ring DR coaxially loaded in a 
cylindrical enclosure. Recently, a configuration of 
cylindrical DRs loaded in a rectangular box was 
studied [21], [22]. In these cases, conductor loss was 
minimized by placing the enclosure conductor walls at 
some distance away from the DR. However, if the 
cylinder size is the major concern, those distances may 
be partially or completely eliminated.  

The mode matching method is often 
employed to further characterize the guided modes in a 
waveguide and to find the scattering properties of a 
waveguide discontinuity. The configuration is 
typically divided into regions that the fields in each 
region can be typically expressed as a summation of its 
eigenmode functions. By matching the boundary 
conditions and using the orthogonal properties of the 
eigenmode functions, a set of linear equations then 
generated for the coefficients of the eigenmode 
functions.  The resonant frequencies are then found by 
equating the determinant of the equation matrix to zero 
[23].  In this paper, a new method combining the Mode 
Matching and Moment Method (ME-MM) is proposed. 
The key advantage of the approach is that the matrix 
dimensions are determined by the number of basis 
functions used on the inter-surface rather than the 
number of modes in the expansion mode.   

II. CONFIGURATION AND ANALYSIS 

A typical configuration of the dielectric 
resonator is shown in Fig. 1. It depicts a dielectric 
cylinder of radius  and height , supported by a 

concentric circular dielectric ring of radius  and 

height . The entire configuration  may be separated to 

two sections: 
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Here,  for the rectangular case with 2b 
representing the long-side length (Fig.1b).  

b a≥

 The linear system for the fields and 
eigenvalues in the resonator is constructed by 
introducing a modal function representation of the 
fields with linear multi-layer parallel plate waveguides. 

At ( 1, 2 ...)kz L k= =  and  ( 1, 2 ...)ir iρ = = , 

the tangential field components are then enforced to be 
continuous along the axial and radial directions. After 
mode matching, this gives rise to the linear system of 
equation in the modal field coefficients in the outer 
region [22], 
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Fig.1. Configurations of Dielectric resonators: 
(a) Cylindrical enclosure, (b) Rectangular enclosure. 

 
The submatrices Wij and their element expressions are 
listed in [22]. Their dimensions are J J×  with J  
representing the number of roots that the characteristic 
equation in the cylindrical post region.  is the index 
number along 

n
ϕ  direction. And  and  

are the field coefficients in the

, , ,e e h
n n nR T R h

nT

IP  region. The 

superscripts  and h  represent TM  and  
eigenmodes, respectively.  

e TE

 The fields in the region (I=2 for the 

cylindrical configuration, and I=3 for rectangular 
configuration in Fig.1) can be expressed as: 

IP

(1) (2)( ) ( )
P e Ie e IeI
t nj n j nj n j tnj

n j

IeE R B a T B a eξ ξ⎡ ⎤= +∑ ∑ ⎣ ⎦
(1) (2)( ) ( )h Ih h Ih Ih Ih
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n j
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14 ACES JOURNAL, VOL. 20, NO. 1, MARCH 2005



(1) (2)( ) ( )P h Ih h Ih IhI
t nj n j nj n j

n j
tnjH R B a T B a hξ ξ= +∑ ∑  

(1) ( 2)( ) ( )e Ie e Ie Ie
nj n j nj n j j

n j
R B a T B aξ ξ′ ′ + +∑ ∑  

Ie
tnjhξ     (3) 

where,  

( )
sin cos

ˆˆ ( ) ( )
2cos sin

Ie Ie Ie ie Ie
tnj zj j zj j

Ie
j

n n ne z e z e z
n n r

ϕ ϕ
γ ϕ γ

ϕ ϕ ξ

    ′= +   −   
 

        (4)                                                                                         

( )
cos 1ˆ (

2sin
Ih Ih Ih

tnj zj j
Ih
j

n
e

n
ϕ

ϕ
ϕ ξ

 
=  − 

)h zγ                 (5) 

( )

2sin ( )ˆ (
2cos

Ie Ie Iei
tnj zj j

Ie
j

n k z
j h e z

n
ϕ

ωµ ϕ γ
ϕ ξ

 
=  

 
)                      (6) 

( )
cos sin

ˆˆ ( ) (
2sin cos

Ih Ih Ih Ih Ih
tnj zj j zj j

Ih
j

n n n )j h z h z h z
n n .r

ϕ ϕ
ωµ γ ϕ γ

ϕ ϕ ξ

−    ′= +   − −   

   

(7)        

 We should note that in (16), here 'ijG s  are 
sub-matrices whose dimensions are determined by the 
number of basis functions ( , )zN Nϕ .  Detailed element 

expressions for G  can be found in [25]. The resonant 
frequency of the DR loaded cavity is obtained by 
solving 0G = . Substituting the resonant frequency 

back into (2), (3), (10) and (11), the field distributions 
in different regions are readily obtained.  

As usual  
are the eigen-functions in the parallel-plate 
waveguides [25]. The values for 

( ), ( ), ( ),  and ( )Ie Ie Ih Ie Ie Ih Ih Ih
tnj j tnj j tnj j tnj je z e z h z hγ γ γ γ

, , ,  and 

z

Ie Ih Ie Ih
j j j jξ ξ γ γ

2 2 2kξ γ= +
( )k
nB

 
in each region can be easily obtained by solving its 
characteristic equation subject to . We 
also remark that  is the stk  Bessel function or 
modified Bessel function given by: 
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The field expressions in the waveguide region 
can also be represented with a modal superposition. 
For the cylindrical configuration, the field expressions 
are the same as in (2) and (3) with different 
coefficients. For rectangular structure, the fields in the 
waveguide region are 
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On the inter-surface between the post and the 
outer waveguide region, we expand the tangential 
electrical field  as ( ,t zε ϕ

( )( , ) cos sin ( )S z z
z ni ni
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where the basis functions and can 
take different forms, including triangular, sinusoidal, 
or other sub-domain representations. Here we choose 
the sinusoidal full domain basis functions for 

and since they closely represent the 
actual field distributions. 

z
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For the rectangular geometry (Fig.1b), similar 
procedures are applied and given in [25]. It is 
important to point out the analytical integration cannot 
be carried out  from the mutual inner products, because 
of the different coordinate systems at the post region 

( ), ,ρ ϕ  and the waveguide region ( ), ,y zW x . To 
reduce the CPU time spent on the numerical integrals, 
Bessel-Fourier series are used to translate the 
numerical integrations into simple summations as 
follows: 
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( ) ( )2 2 242 miT mρ aρ ππ= − γ          (20) 

( ) ( )2 2
2 2

2mi
m ik a L

π πγ + = +            (21) 
2 2

0k ω µ ε= .           (22) 
Using the above transformation technique, 

rectangular-configuration is the same as that for the 
analysis for the circular-configuration. In the following 
section, several numerical examples for DRs inside a 
cylindrical or rectangular enclosure are presented.  

III. NUMERICAL RESULTS 
A FORTRAN program was developed to 

compute the resonant frequencies and field patterns of 
the cylindrical multi-layers DRs loaded inside a 
cylindrical or a rectangular waveguide junction. 

Table 1 shows the convergence and accuracy 
of the ME-MM in comparison with HFSS for a two-
layer DR (Fig.1 (a)). We can readily see that the ME-
MM is convergent and very fast (only six basis 
functions needed).  

Table 2 gives the calculation time and 
computer memory (the number of tetrahedrons in 
HFSS and basis functions number in ME-MM) in the 
HFSS and the new method for two different cases: 

 
Table 1 Resonant Frequency Convergence Testing  

1 2

1 2 1 2

2 1.6 ; 3.0 ;2 1.6 ;2 1.6 ;
0.55 ; 0.8 ; 10.; 35.7r r

a cm L cm r cm r c
l cm l cm ε ε

= = = =
= = = =

m  

0Nϕ =  (TE case) 

Nz rf (GHz) HFSS 
result Error (%) 

4 3.3162 0.29 

6 3.3208 0.15 

8 3.3210 0.14 

12 3.3212 

3.3258 

0.14 
 

  
Fig. 2. Cross-sectional View of a DR loaded cavity. 

Case A: 
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0.275 ; 0.23 ; 1.; 38 .r r

a L r r
l l ε ε

′′ ′′ ′′ ′′= = = =
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From this table, it is seen that in order to reach the 
same accuracy, HFSS needs at least 100 times more 
memory and 50 times more CPU time as compared to 
the ME-MM.  

Fig. 2 shows the dimensions and material 
parameters of another DR configuration in a cavity 
without substrate. The resonant frequencies for 
different modes using FEM [29], modal matching [30] 
and the new method are listed in Table 3. It is clear 
that ME-MM obtains results closer to the more 
accurate modal matching method. For the rectangular 
configurations, the resonant frequencies for two simple 
cases of dielectric rods within the cavities’ are 
calculated and compared with HFSS in Table 4. 
 
 
 

Table 2 Computer Resource Comparison  

 

 

Calculating 

Time/No. of 

Tetrahedrons or 

Basis Function) 

Resonant 

Frequency

(GHz) 

HFSS 896 16′ ′′ /(10492) 3.3258 
Case A: 

TE 
ME-MM 1 05′ ′′ /(6) 3.3208 

HFSS 896 16′ ′′ /(10492) 3.733 
Case A: 

TM 
ME-MM 1 27′ ′′ /(16) 3.763 

HFSS 149 46′ ′′ /(2894) 4.1264 
Case B: 

HE 
ME-MM 3 05′ ′′ /(12) 4.1545 
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Table 3 Resonant-Frequency Comparison  

 

 

Ref [29] 

(GHz) 

Ref [30] 

(GHz) 

ME-MM 

(GHz) 

TE01 3.435 3.428 3.433 

TE02 5.493 5.462 5.322 

TM01 4.601 4.551 4.537 

HE11 4.271 4.224 4.227 

HE12 4.373 4.326 4.316 

 
Table 4 Resonant Frequencies for Rectangular 

Configurations  

 

 

 

Finally a tunable air-gap DR (resonant 
variable to the air gap d) model in Fig. 3 is 
investigated. As in Table 5, the resonant frequency 
increases 1.6% when the air gap changes from 0.3 cm 
to 0.45 cm. Also, we observe that the CPU time using 
ME-MM is at least 30 times faster and also with much 
less memory  needs than HFSS. 

  The tangential field distributions of 
and ~Eϕ r ~zH z are shown in Fig. 4, and again it is 

obvious that the boundary conditions are matched 
perfectly by ME-MM with very few unknowns, and 
have much reasonable trend in comparison to HFSS 
curves. Accurate field distributions are essential for 
DR filters design. Typically they determine the 
excitation position, and coupling-windows choosing 
for multi-cavity DR filter [24]. 
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Fig. 4. Field distribution comparison (TE): 
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Fig. 3. Tunable DR with air gap, 
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Table 5 Tunable Resonance Frequency by Air Gap 
 

HFSS 3.14346 

ME-MM 
d=0.3cm 

3.1247 

HFSS 3.17595 

ME-MM 
d=0.35cm 

3.1440 

HFSS 3.21151 

TE 

ME-MM 
d=0.45cm 

3.1757 

 

IV. CONCLUSION 
A new analysis method (ME-MM) was 

proposed to analyze the multi-layer DR loaded 
cavities. Accurate resonant frequencies and field 
distributions for several different dielectric resonators 
were evaluated by ME-MM. As compared with HFSS 
and other numerical methods, our ME-MM saves 
substantial CPU time and memory, without loss of 
accuracy. Accurate field distributions can also be 
obtained by the proposed method essential to provide 
sufficient details for DR filter design. An air-
substantial tunable DR was analyzed using the ME-
MM, showing the capability of this methodology to 
design tunable cavity-loaded DR filters. 
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