
Multiresolution Time Domain Based Different Wavelet Basis Studies of 
Scattering of Planar Stratified Medium and Rectangular Dielectric Cylinder 

 
Qunsheng Cao and Kumar K. Tamma 

AHPCRC,University of Minnesota, Minneapolis, MN 55415 
 
Abstract – In this paper, several wavelet bases, 
namely, the Daubechies, the biorthogonal Coiflet, 
the Deslauriers-Dubuc interpolating functions, and 
the cubic spline Battle-Lemarie, are applied to the 
multiresolution time domain (MRTD) technique 
for planar stratified media and electromagnetic 
scattering.  These MRTD schemes are studied via 
field expansions of the scaling functions in one-
dimensional (1D) and two-dimensional (2D) cases. 
A rigorous treatment method for inhomogeneous 
media structures is given. We have focused here 
on the study of reflected and transmission 
coefficients for an electromagnetic wave 
propagation on a stratified slab media and the 
scattering width (SW) of a rectangular dielectric 
cylinder. The 1D propagation characteristics of 
single and periodical stratified media and the 2D 
scattering width of the MRTD schemes are 
compared with the results of the FDTD method. 
Finally, we describe the computational accuracy of 
the relative peaks and shifting position errors, via 
a comparison of the results of the MRTD scheme 
based on the different basis with those of the 
FDTD method. 
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I.    INTRODUCTION 
In recent years, the multiresolution time-

domain (MRTD) method [1]-[6] has been applied 
successfully to various electromagnetic field 
analyses.  The fields of the MRTD scheme are first 
expanded as a summation of scaling functions and 
wavelet in space and rectangular pulse in time. 
Although many different orthogonal and bi-
orthogonal families of wavelets in theory are 
available, there are a few fundamental 
requirements that restrict us to use the wavelet 
families: (i) Smoothness and differentiability, (ii) 
orthogonality, (iii) compact support, (iv) symmetry 

or asymmetry, and (v) explicit analytic expression 
[7] in the choice of the scaling functions and 
wavelet in the Multiresolution Analysis (MRA) 
used in the MRTD scheme. 

In application of the MRTD method, we can 
frequently choose and use different families of 
scaling functions and wavelets.  The cubic spline 
Battle-Lemarié (BL) orthogonal wavelet family 
[8]-[9] is very desirable in the applications of the 
multiresolution time domain analysis.  The Battle-
Lemarié family of wavelets has good regularity 
and symmetry, the basis functions are orthogonal, 
and although the scaling functions and wavelet of 
BL don’t have compact support, the functions 
decay exponentially. The Battel-Lemarié wavelet 
family was first introduced into the time-domain 
analysis for electromagnetic field applications [1], 
which is based on Galerkin’s procedure of the 
method of moments (MOM) [10]; and later it 
progressed towards the introduction of the MRTD 
scheme in 1996 [1].  Another basis family used in 
the MRTD scheme is the Daubechies’s compact 
support orthogonal wavelets [3], [7], and the 
family is with compact support and orthogonality, 
but they are far from being symmetric. The 
Daubechies’s family is characterized as the one 
with an external phase and with the shortest 
support length for the given number of vanishing 
moments [7].  As a typical biorthogonal wavelet 
family, namely, the Cohen-Daubechies-Feauveau 
(CDF) wavelet family [5] used in the MRTD 
method, the CDF can be thought as a product of 
the marriage between the spline family and 
Daubechies’ construction.  The CDF spline family 
is therefore indexed by the pair  and denoted 
by CDF , n is order of B-spline function and 

 is the vanishing moments of the wavelet.  Yet 
another wavelet basis used in the MRTD scheme, 
the spline biorthogonal Coiflet wavelets family, a 
variation of the Daubechies family [6], is with 
almost symmetric properties, orthonormal and 
compactly supported on limited intervals.  The 
MRTD schemes also adopt the Deslauies-Dubue 
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interpolating wavelets family [4], and the Haar 
wavelet family [6] as field expansion basis.  The 
MRTD schemes based on these different wavelet 
bases have shown a good potential to approximate 
the exact solutions.  For example, the cubic spline 
Battle-Lemarie scaling and wavelet basis, which is 
the first wavelet basis used in the MRTD scheme, 
can even obtained near Nyquist sampling limit in 
using the Galerkin’s sampling procedure with high 
computing accuracy [1].  In the MRTD scheme a 
reduction of grid density is inherent in the 
computations; however, there is a need to ensure 
adequate computing accuracy compared with the 
traditional finite difference time domain (FDTD) 
method.  We note that different wavelet basis used 
in the MRTD schemes, because of the different 
wavelet bases; they have different properties of the 
compact support, and decay exponentially with 
symmetry.  Therefore, there exist varied indexes 
of summation in the field expansions and for 
convergence for the different basis, which leads to 
some differences in computing accuracy for 
practical structures. 
 

In this paper, we present exact algorithms of 
the MRTD scheme based on different wavelet 
basis, and the functions of field expansion are 
chosen as the scaling functions of the various 
wavelet bases in one-dimension (1D) and two-
dimensions (2D), respectively.  We provide the 
expansion functions of a different wavelet family, 
and give the exact formulations of the dielectric 
regions of the MRTD for an inhomogeneous 
lossless media.  Finally, we calculate the wave 
reflected and transmission coefficients in the 1D, 
and the scattered width (SW) of a rectangular 
dielectric cylinder in the 2D case, respectively. We 
also compare the computing accuracies of the 
MRTD scheme based on the different wavelet 
bases with those of the FDTD method, and discuss 
the implementation aspects and approximations 
that are employed in providing simplification of 
the formulations. 
 

II.  FORMULATION AND WAVELET 
BASES CHOSEN 

Firstly, we consider a 2D scattering analysis of 
an inhomogeneous lossless medium with the 
permittivity εr.  For the MRTD scheme, we adopt 
a pure scattered-field formulation employed in the 

FDTD technique [11], in which the incident field 
incE  is added only to the targets to describe time-

domain electromagnetic fields.  The Maxwell’s 
equations for 2D TMZ mode can be written as 
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where scatE  indicates the scattered E-field.  The 
relative permittivity rε  is given as 
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where N is the total number of participating media, 

 and  are the x (y)-coordinates of 
lower and upper limits of the κ-th dielectric 
medium. Next, the field values are expanded as 
separable combination for the orthogonal scaling 
functions 
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where ( )ξφi  denotes dual scaling shifted by i 
units.  Similarly, the expansion forms of the 
incident field are similar with that of the scattering 
field.  The functions  and  or )(thn )(ξφi )(~

ξφi  
are generated from the basic functions by dilation 
and translation as 
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and 
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If the scaling function )()( ξφ=ξφ ii

)(ξφ

, then the 
expansion is called an orthogonal expansion, 
otherwise it is called a biorthogonal expansion.  In 
this paper, we have considered a variety of 
different scaling functions  and its shifted 

functions  (or shifted dual functions )(ξφi )(~
ξφi ), 

that is, the cubic spline Battle-Lemarie scaling 
function, the compact support Daubechies scaling 
function D4  [12], the compact support 
spline biorthogonal (Coiflet wavelet) scaling 
function 

( 2=

(

)p

)2~  ,2 p ==p  [13], the compact 
support spline biorthogonal (Coiflet wavelet) 
scaling function ( 4)~  ,4 =p

)(

=p
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 [13], and the 
Deslauriers-Dubuc interpolating functions [14] as 
a scaling function, respectively. As examples, 
Figs. 1 give the distributions of the cubic spline 
Battle-Lemarie scaling function and Daubechies 
scaling function D4, and their corresponding shift 
functions. In particular, the Deslauriers-Dubuc 
scaling function has its dual scaling function, 
where the dual function can be chosen as the Dirac 
delta function: 

~
ξδ=ξφ  [14]-[16], and the 

interpolating scaling function constructed as the 
autocorrelation function of the Daubechins’ 
orthogonal scaling function with N=2 [14]-[16]. 
 
 
 

 
 
 

 
 (b)  

 
 
 
 
 
 
 

Fig. 1. The scaling function  and its
shifted functions  (or dual

shifted functions 

)(xφ
)(x

)
iφ

(~ xiφ ).  (a) The
cubic spline Battle-Lemarie basis,
and (b) the Daubechies D4 basis. 

 
Substitution of the field expansions into the 

Maxwell equations (1)-(3), and then sampled 
using the basis function as the test function by the 
standard a Galerkin’s procedure leads to the 
following two update equations of the H-fields: 
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Table I.  Connection coefficients ( )να , 

 
ν Daubechies Coiflet 
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Coiflet  
( )4~,4 == pp

 
0 1.22953239 1.23464519 1.31103170 
1 -0.09358996 -0.09715386 -0.15600966 
2 0.01025133 0.01162914 0.04199606 
3 0.00003558 -0.00019002 -0.00865439 
4   0.00083094 
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The coefficients α  connecting the scaling and 
their derivative functions are obtained by a 
numerical integral method in the Fourier domain 
[1] and Table I lists the coefficients 

( )ν

( )να  of the 
Daubechies D4 and biorthogonal Coiflet scaling 
functions. 
 

The derivation of the update equation for the E 
fields is quite involved, since all orthogonal 
relations of the bases functions are not valid due to 
the introduction of the inhomogeneous region.  
Staring from the time domain equation (3), we 
derive the following update equation for the E 
field: 
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and the coefficients  and β are defined as: κα ',ii
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where ( ) and ( ) are the lower and 
upper limits of the κ-th dielectric medium along 
the x- and y-directions, respectively.  N is the 
number of dielectric media in the computational 
domain, and Λ  is an adjustable constant, which is 
determined by the size of stencil effect, the 
computing accuracy requirement and the 
localization property of the scaling functions.  
Usually the constant  is chosen as 6 to 9 for the 
cubic spline Battle-Lemarie wavelet basis, and 4 to 
6 for the Daubechies D

κκ
21 , xx κκ

21 , yy
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4 and Biorthogonal Coiflet 
basis.  Equation (11) indicates that for the κ-th 

scattering target, the distribution of E-field has 
relation with that of the fields within an extended 
r gion, which is covered by the region: e
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In the derivation process we have used the 

main diagonal approximation in the evaluation, 
i.e., we replace α  by .  This 
approximation is justified because of the compact 
support of the bases functions and the fact that the 
main diagonal coefficients are larger than those of 
the non-diagonal coefficients [17]. 

', j

 
Equation (12) involves the scaling and its dual 

functions and the products of them.  From these 
multiplicative products of functions )(~

' xiφ  of 
the different wavelet bases we can obtain roughly 
the extended dielectric region for different wavelet 
bases, that is, we can estimate an adjustable value 

 according to different accuracy requirements. 
 

Now we consider one-dimensional wave 
propagation TEM mode. Considering the 
constitutive relation for the E-field, yEε  we 
derive the update equation of the E-field in the 
dielectric region, that is, 
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Employing an inverse matrix technique, equation 
(14) can be re-written as a typical update equation 
as given by 
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Numerically, for the MRTD solver we can pre-
calculate the coefficients α ,  and dielectric 

matrix 
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the MRTD code. Due to the requirement of a 
square matrix, the dimensions of the connected 
dielectric matrix [  in (16) are ]χ
( ) ( )Λ+ 2

t =∆
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−×Λ+− 2 2222
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 for each dielectric 
region.  As an approximation, we can only 
consider the main diagonal element in (16) as 
explained previously; and as a further 
approximation we can reduce the dielectric region 
to a real dielectric region, and make the dielectric 
width equal to the slab width by decreasing 

. 

170
90
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III.  NUMERICAL RESULTS 

As a first example, we consider a TEM plane 
transient pulse with a maximum frequency 

, generated by an exciting Ey field 
that is incident on a dielectric slab characterized 
with a relative permittivity , and the width 

is  and . The 
computational domain and the grid configuration 
are listed in Table II, in which NX is the total 
computing dimension, i

4=
25. × s1210−

1, i2 are the slab positions, 
and ir1, ir2 are the record positions for the reflected 
and transmission wave, respectively.  

ir1 
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150 70  60 100 
75 35  30 50 
60 28  24 40 
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Fig. 2. Magnitudes of reflection coefficient
11S  and transmission coefficient 

versus frequency in a single-laye
21S
r

dielectric slab system.  (a) the cubic
spline Battle-Lemarie basis, and (b)
the Daubechies D4 basis. 

 
Figures 2 show the results of the reflected and 

transmission coefficients for one dielectric slab for 
the cubic spline Battle-Lemarie wavelet basis and 
the Daubechies wavelet basis, respectively.  In 
order to compare the computing accuracy for 
different wavelet bases, we have to define two 
relative errors. One is the relative peak error 
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with the value change of the reflected coefficient 
curve at a specified peak position, where  is 
the corresponding value of the reflected coefficient 
at the n-th peak in the reflected coefficient curves.  
The other one is the relative shifting error 
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f
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, which is involved the 

frequency position shifting changes along the 
horizontal axis in the coefficients curves, where 

 is a corresponding frequency value of the 
analytical solution along the horizontal axis. 

Table II.  Configuration of dielectric slab

 
In Table III are given the relative peak errors 

pΣ  corresponding to the third peak, and the 

relative shifting error sΣ  corresponds to the 
frequency value along the horizontal position  (a) 
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GHzf 98.90 =

GHzf 98.90 =

 for the different MRTD wavelet 
basis compared with the analytical solution with 
increasing cell unit .  From Figs. 2 and Table 
III, it is found that the reflected and transmission 
coefficients of the MRTD scheme based on the 
cubic spline Battle-Lemarie wavelet are of 
reasonable accuracy and within the limits of the 
computational relative peak error and the relative 
shifting error.   

x∆

x

Daubechies
(%) 
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Lemarie 

(%) 
 sΣ  
7 -0.1

Figures 3(a) and 3(b) show the enlarged local 
peak portion of the reflected coefficient curve and 
the enlarged local horizontal portion that 
correspond to the third peak and the frequency 
value along the horizontal position with the 
frequency value of the analytical solution 

 with 5
minλ=∆ , respectively. 
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Fig. 3. Enlarged magnitudes of the reflection

coefficients versus frequency in
a single-layer dielectric slab system.
(a) at the third peak position, (b) a

11S

t
the 10GHz frequency position with
cell size 5

minλ=∆x . 

 
 
 
 
 Table III.  Relative peak error at the third

peak and shifting position error of the
reflected coefficients at  GHzf 98.9=

 
 
 

For the reflected coefficients obtained with 
only the main diagonal elements in the dielectric 
matrix, that is, the matrix elements that only 
correspond to the same units as , the 
Daubechies D

k
iiα

4 scaling basis, the reflected 
coefficients show a smaller computational relative 
peak error and smaller relative shifting position 
error than that of the other bases for the ‘coarse’ 
cell size.  Therefore, as a simplification of the 
main diagonal approximation, the Daubechies D4 
scaling basis can be chosen as a basic basis to be 
used in the MRTD expansion. 
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Figure 4 give the reflected coefficients of a 

periodical dielectric stratified 10 layer media using 
the MRTD scheme based on the Battle-Lemarie 
scaling functions; the width of the slab is 

, the width between slabs is 
, and the values are compared 

with the analytic solution. It can be seen that the 
MRTD scheme exhibits high computing accuracy 
and larger savings in computing memory, and 
nearly the same computing time compared with 
the FDTD method for a complicated periodic 
structure.  The total lengths of the periodic slabs 
are 

mw 2
1 103 −×=

mw 2
2 103 −×=

1020=NX  for the FDTD and 204=NX  for 

 (a) 
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the MRTD.  The CPU time is about 92.5 seconds 

for the FDTD with 20
minλ=∆x , about 107.2 

seconds for the MRTD based on Battle-Lemarie 

scaling functions with 4
minλ=∆x , and about 

110 seconds for the MRTD based on the 
Daubechines D4 scaling functions with 

4
minλ=∆x

sσ

GHzf 5max =

. A total of 40,000 time steps were 

used for the same 500 MHz Pentium III (Katmai) 
computations. 

yx ∆×∆ 6060

x×∆ 160160

Next, we investigate the scattering width 
(SW), , for a square dielectric cylinder with a 
plane wave incident with a maximum frequency of 

. The dimension of the target is 
0.18×0.18m2 with the relative permittivity 4=εr

s1210−

, 
and the discretization employs , 
and the total number of steps is 4000 for the 
MRTD scheme and the FDTD method. Ten layers 
of the APML boundary are used. In Fig. 5 is 
plotted the SW of the MRTD scheme based on 
different wavelet bases with that of the FDTD 
method for the TM

t 5.2 ×=∆

z mode. The results of the 
MRTD scheme are in good agreement with that of 
the FDTD for a specified frequency at a specified 
incident and scattering angle. However, the 
computational space for the MRTD scheme is 

, and is only about 14.1% of that 
employed in the FDTD, which is given by 

. y∆

 
 Fig. 4. Magnitudes of the reflection

coefficients are for a periodical
dielectric stratified ten layer medi

11S
a

by the cubic spline Battle-Lemarie
wavelet basis. 

 
 

In order to compare the accuracies of scattered 
width of the MRTD scheme based on different 
wavelet basis, we again employ the concept of the 

relative peak error 
)(

)()(
n

nn

FDTD

MRTDFDTD
p σ

σ−σ
=Σ , 

where )(nσ  is the value of SW at the specified n-
th peak in the scatter width curve, and the relative 

shifting position error 
0

0

f
ff MRTD

s
−

=Σ , where 

 and are corresponding frequency values 
of the FDTD method and the MRTD scheme in 
the horizontal axis for the n-th peak in the SW 
curve, respectively.   

0f MRTDf

 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Magnitudes of the scattering widths
as a function of frequency ( =30iφ

0,

sφ =300) for the different wavelet
bases and FDTD method are for a
TMz wave incident on a square
dielectric cylinder, where  and iφ sφ
are the incident and scattering angles
of the wave, respectively. 

 
Table IV lists the two relative errors, in which 

the relative peak errors are for the third curve peak 
and shifting position errors are for the specified 
frequency value along the horizontal position. For 
example, for the FDTD method the value of 
frequency along the horizontal position is about 

GHzf 646.40 = . 
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Battle-
Lemarie 

(%) 

Daubechies  
(%) 

Coifelt  
( 2~,2 == pp

(%) 

Coifelt  
( )4~,4 == pp

(%) 

Deslauriers
-Dubuc 

(%) 

 
 

x∆  
(mm) 

fΣ  sΣ  fΣ  sΣ  fΣ  sΣ  fΣ  sΣ  fΣ  sΣ  

1.00 -1.88 0.78 13.11 1.92 3.28 1.02 3.69 -3.22 5.98 -0.26. 
0.75 -1.00 0.73 10.49 2.90 2.05 1.01 -0.33 -0.30 4.92 -0.74 
0.50 -0.57 0.39 9.18 -1.02 0.41 0.17 -1.97 0.56 3.44 -0.04  

 
  A careful study of the SW with varied cell 

sizes of different MRTD wavelet bases and from 
Table IV, we find that the scattering widths of the 
cubic spline Battle-Lemarie wavelet basis have 
reasonable accuracy within the limits of the 
computational relative error, and higher accuracy 
than that of other wavelet bases relative to the 
results of the FDTD method with different cell 
sizes.  Figs. 6(a) and (b) are the enlarged scattered 
width curves corresponding to different wavelet 

bases with the cell size 6
maxλ=∆l . From Figs. 

6(a)-(b) and Table IV, the results of the 
Daubechies D4 basis show a larger peak and 
shifting position errors than that of the other 
wavelet bases. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV.  CONCLUSIONS 
In this paper, a multiresolution time domain 

scheme based on different wavelet bases have 
been explored, and have been applied to 
electromagnetic analysis of a 1D wave with 
reflected and transmission, and a 2D scattering 
problem in an inhomogeneous dielectric region.  
The formulations of the update equations of the E-
field were derived.  We have calculated the 
reflected, transmitting coefficients, and the 
scattered width in 1D and 2D for the MRTD 
schemes, respectively, corresponding to different 
wavelet bases.  The computed results have been 
compared with those derived from the FDTD and 
analytical solutions. We have also estimated the 
values of the relative peak errors and the shifting 
position errors at a specified horizontal frequency 
for the different MRTD schemes.  The different 
MRTD wavelet schemes show the comparative 
accuracies of the different wavelet bases at 
specified frequency and peak positions. 
 

 (b) 
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 Battle Lemarie
 Deslauriers Dubuc
 Daubechies
 Coiflet 22,
 Coiflet 44,
 FDTD (. =(. min)/20)

Table IV.  Relative peak and shifting
position errors of the scattered width for
the third peak curve 

Fig. 6. Enlarged scattering widths as a
function of frequency (φ =30i

s

0,
φ =300) for different cell sizes are
for a TMz wave incident on a square
dielectric cylinder.  (a) at the third
peak position (b) at the 5.0GHz
frequency position with cellsize

. 41075.0 max2 λ=×=∆ − m

 (a) 
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