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ABSTRACT 
 

With recent increases in operating frequencies, 
the modeling and extraction of on-chip 
inductance is becoming an increasingly 
significant consideration. The inductance models 
include the “loop inductance” models and the 
“partial inductance” models. In this paper, we 
develop a stochastic solution methodology for 
the extraction of partial inductances in IC 
interconnect structures. An important advantage 
of this approach is that it requires no 
discretization meshing of either the volume or 
the surface of the problem domain. As a result, it 
has very low memory requirements compared to 
the more conventional deterministic techniques. 
Another advantage of this approach is that it is 
inherently parallelizable and a linear increase in 
speed is expected with the increase in the 
number of processors. Excellent agreement has 
been obtained with analytical benchmark 
solutions.  
 
Keywords: IC Interconnect modeling, Partial 
Inductance, Stochastic algorithm, Monte Carlo.  
 

INTRODUCTION 
 

As a consequence of scaling in sizes, the 
interconnect model used in the chip industry has 
undergone several changes. Presently, low 
resistance nets are described by purely capacitive 
models, while high resistance nets are described 
by relatively more accurate RC models. 
However, with operating frequencies reaching 
the multi-GHz range, the role of on-chip 
inductance is becoming increasingly important, 
as the inductive impedance is directly 
proportional to the frequency of operation. The 
inclusion of inductance in the interconnect model 
is particularly necessary in clock distribution 

networks, signal and power lines, which have 
wide wires and hence low resistance. The 
detrimental effects of inductive impedance on 
system performance include increase in signal 
delay times and signal overshoot which can 
cause breakdown of the gate-oxide layer. The 
introduction of low resistance copper 
interconnects has further increased the 
significance of inductance in IC design and 
accurate modeling and extraction of inductance 
is necessary. 
 
The principal complexity in the extraction of 
inductance is that one needs to have the 
knowledge of currents in advance. However, the 
current distribution in today’s complicated 
interconnect structures depends on the device 
and interconnect resistances, inductances and 
capacitances. Therefore, the modeling of the 
current distribution is a difficult proposition. The 
conventional approaches to inductance extraction 
involve loop inductance models [1], which make 
various simplifying assumptions in determining 
the current distribution. In these loop inductance 
models, typically the capacitive effects are 
omitted during resistance and inductance 
extraction. A RLC model is then constructed by 
adding lumped or distributed interconnect 
capacitance to the extracted resistance and 
inductance.      
 
A radically different approach [2] to the 
modeling of inductance has been suggested in 
literature, which precludes the need to determine 
the current distribution in advance. This 
approach is based on the Partial Element 
Equivalent Circuit (PEEC) [3] method. In this 
approach, the interconnect lines are divided into 
wire segments and self and mutual inductances 
are extracted for these “partial elements”. These 
extracted inductances are then glued together 
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with various resistances and capacitances to form 
an effective RLC circuit model. It has been 
demonstrated [2] that this PEEC-based approach 
is more accurate than the loop inductance models 
in that the latter overestimates the signal delay 
time and the undershoot. The primary reason 
behind this lies in the fact the PEEC-based 
models take into account the mutual inductances 
between the different “partial elements” of a 
particular loop, while the loop inductance models 
take into account only the mutual inductance 
between different loops. The subject of this 
paper is a stochastic extraction of the self and 
mutual inductance of these partial elements. 
 
IC interconnect structures are rectilinear in 
nature. At low frequencies, when the wire 
segments are parallel to each other, exact 
analytical expressions [4] exist for the self and 
mutual inductances of the wire segments, 
assuming uniform current distribution across the 
wire cross sections. However, there is absence of 
such expressions for arbitrary wire-geometry, 
and even in the case of parallel rectangular wire 
segments, these analytical expressions for mutual 
inductance are numerically unstable for wire 
segments separated by a large distance. 
 
In this work, we develop a novel stochastic 
algorithm [5] for the extraction of the self and 
mutual partial inductances. This algorithm is 
characterized by the absence of discretization 
meshing of either the volume or the surface of 
the problem domain. Hence, for today’s 
complicated interconnect structures, the memory 
requirements are expected to be significantly less 
than discretization based algorithms. Another 
advantage of this proposed stochastic algorithm 
is that it should be completely parallelizable and 
the speed of computation is expected to increase 
linearly with the increase in the number of 
processors. The fundamentals of the algorithm 
were briefly presented in Ref. [6], along with its 
applications to frequency-independent 
inductance extraction. In this work, we present 
the details of the algorithm, along with its 
applications to both frequency-independent and 
frequency-dependent problems.  
 

INTEGRAL FORMULATION FOR 
INDUCTANCE 

 
The most general formulation [7] for self and 
mutual inductance in conductor systems follows 
from a definition of inductance based on 
magnetic energy. The magnetic energy stored in 

a two-conductor system, where the two 
conductors are designated as i and j is given as 
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Above, W represents the magnetic energy stored 
in the two-conductor system; iL  and jL  
represent the self-inductances of the i-th and the 
j-th conductor; iI  and jI  represent the 
respective currents, while ijM  represents the 
mutual inductance between the conductors. The 
total magnetic energy can also be written in an 
integral formulation involving the current 
densities in the two conductors and equating that 
to the expression for current density in equation 
(1), the following expressions for self and mutual 
inductances are obtained [7]: 
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Above, the self inductance is formulated as a six-
dimensional integral over the position 
coordinates of the i-th conductor, while the 
mutual inductance is formulated as a six-
dimensional integral over the position 
coordinates over the i-th and the j-th conductor; 
x, v, J  with an appropriate suffix represent the 
position coordinate, volume and current density; 

xd 3  with an appropriate suffix represents an 
infinitesimally small volume element and 0µ  is 
the magnetic permeability of free space. 
 
The current density J, is given as a solution of 
Maxwell-Helmholtz equation [8] and in the 
frequency-domain is written as 
 

0,JJ =−∇ 22 γ                          (3)                                   
 
where, γ is the propagation constant of the 
medium given by µσωµεωγ i+−= 22 ; 

σεµ ,, andω are the permeability, permittivity, 
conductivity and frequency respectively. The 
current density, )(rJ at a given point r, subject 
to appropriate Dirichlet boundary conditions, can 
be written as a surface integral over the surface 
of the problem domain [9]: 
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Above, ),( 'rrG  represents the volumetric 
Green’s function to equation (3), and is a 
solution to equation [9] 
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Above )( 'rr −δ  is a dirac-delta function 
centered at 'r  and homogeneous Dirichlet 
boundary conditions are imposed in calculating 
the volumetric Green’s function. The integral 
formulation given in (4) can be substituted in 
equation (2) for the calculation of self and 
mutual inductances. As a result, the task of 
inductance extraction involves evaluating a 
multi-dimensional integral, which in this work 
has been done stochastically. At low frequencies, 
the current densities in equation (2) can be 
assumed to be constant. Hence the stochastic 
evaluation of self and mutual inductances is in 
effect a Monte Carlo integration [10] of the 
integrals given in equation (2) over the position 
coordinates of the respective conductors. We will 
now describe briefly the fundamentals of the 
Monte Carlo integration technique used in this 
work, known as the Sample Mean Monte Carlo 
[10]. 

 
Let us consider a function f(x) defined over the 
interval .bxa ≤≤  Our desire is to estimate the 
integral 
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In the event, the integral is improper, absolute 
convergence [11] is assumed. We select an 
arbitrary probability density function p(x). A 
random variable ξ  is defined corresponding to a 
probability density function )(xp . We now 
introduce another random variable κ  defined as 
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Then, the expectation value of the random 
variable κ , written as ( )κM , is an estimate of 
the integral I , which can be rewritten as 
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The integral can be evaluated by sampling the 
quantity )()( xpxf  within box brackets 
according to the probability density function p(x) 
with the help of a random-number generator [12] 
and averaging over a statistically large number of 
such samples. It can be noted that the Monte 
Carlo integration technique is ideally adapted to 
the estimation of multi-dimensional integrals 
such as the ones in equation (2), as only the 
integrand needs to be sampled irrespective of the 
dimensionality of the integral. Also, the 
integration technique is inherently parallelizable, 
as the stochastically independent samples can be 
sampled in different processors with very little 
inter-processor communication. 
 
For the extraction of frequency-dependent 
inductance, an expression for the volumetric 
Green’s function to the Helmholtz equation in 
(3) needs to be obtained in heterogeneous 
problem domains. However, there is an absence 
of an analytical expression for the volumetric 
Green’s function in materials of arbitrary 
heterogeneity. Keeping that in mind, we have 
developed an approximate expression for the 
solution of equation (5) based on iterative 
perturbation theory. The details of this work 
have been published [13, 14] and we will discuss 
it briefly within the context of two-dimensional 
problems.    
 
The Green’s function ),( 'rrG  is estimated over 
a circular problem domain and is assumed to be 
zero on the boundary of the circular domain, as 
the frequency-dependent problem studied in this 
work is a Dirichlet problem.  
 
 
Let us define the zeroth-order approximation G(0) 
for G , subject to Dirichlet boundary conditions. 
Therefore, 
 

).(2 )0(
orr −=∇ δG                   (9)                  

Above, r(ρ, θ) is the point where the zeroth-order 
approximation is calculated given a delta 
function centered at ro(ρo, θo). Using (5) for 
iteration, we can then generate a first-order 
approximation G(1) in terms of G(0): 
 

.)( )0(2)1(2 GG γδ +−=∇ orr          (10)                                    
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Figure 1. A circle of arbitrary radius R over 
which the Green’s function given by the solution 
of equation (5) is estimated.  
 

                                                   
The solution to Poisson equation (9) is well 
known; it has the form, in polar coordinates [9] 
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Now, we are in a position to evaluate )1(G  from 
equation (10). Using the expression for 

)0(G from equation (11) and with the right hand 
side of equation (10) as the Poisson source term, 
we find an expression for the first-order 
approximation to the solution of equation (5) 
given by 
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Note that )1(G given by equation (12), is an 
approximate expression for G as given by the 
solution of equation (5). The integration variable 
in equation (12) represents an infinitesimal area 
element on the circular-domain surface S in Fig. 
1. It can be noted that homogeneous Dirichlet 
conditions are satisfied by the approximate 
Green’s function expression in Eq. (12). 
 
We next use this approximate Green’s function 
G(1) to develop a general solution to equation (3) 
within our circular domain in Fig. 1. In our 

problem, the two-dimensional problem domain is 
in x-y plane, and a time-harmonic current at a 
given frequency is impressed in the z-direction. 
Based on [9] and equations (4) and (12), the 
current density at the center of the circular 
domain is given by a line integral about the 
domain circumference C as 
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For simplicity, above, we take 2γ  to be 

piecewise constant with respective values qγ in 
θ -quadrants q = 1, 2, 3, and 4. The quantities 
within square brackets in equation (13) are 2D 
versions, respectively, of surface and volume 
Green’s functions encountered in 3D problem 
domains. The function Wq represents 
perturbative corrections arising from the J2γ  
term in the original Maxwell-Helmholtz equation 
(3). In equations (13) and (14), η  and ξ are 
variables of integration. η  takes values between 
0 and R, while θ  assumes values between 

2/)1( π−q  to 2/πq  for a particular quadrant. 
Equations (13) and (14) constitute the starting 
point for defining a random-walk [13, 14] 
algorithm for solving (3) in 2D domains with 
arbitrary piecewise-constant spatial variation in 
γ , subject to arbitrary Dirichlet boundary 
conditions.  
 
The total current, ZI , through the cross section 
can be calculated by integrating the current 
density given in equation (3) over the problem 
domain (ds being an infinitesimal area unit) and 
can be written as 
 

.z
S
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The integral expression for the current density 
from equation (13) is substituted in equation (15) 

S: 
C: ρ =R 
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to obtain a multi-dimensional integral expression 
for total current through the conductor surface.  
 
The internal impedance per unit length is defined 
as [8] 
 

.
)(
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valuedcE

Z z
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At this point, the crucial thing to note is that for 
estimating frequency-dependent impedance, we 
need not estimate electric field or current density 
at any point within the problem domain. The 
problem of impedance extraction is reduced to 
estimating the overall multi-dimensional integral 
expression for current obtained from (15) using 
the floating random-walk method [13, 14] and 
then using (16) to evaluate the internal 
impedance per unit length. We will now discuss 
the details of the floating random-walk method. 
 
The floating random-walk algorithm is a Monte 
Carlo evaluation of an infinite series of multi-
dimensional integrals. In our chosen benchmark 
problem, a time-harmonic current density in the 
z-direction at a single frequency is impressed on 
a circular conductor in the x-y plane. Our goal is 
to calculate the current through the conductor as 
given by equation (15). The starting point of a 
random-walk is based on a pre-determined 
probability distribution. 
 
The random-walks propagate as “hops” of 
different sizes from circle centers to 
circumferences, consistent with a statistical 
interpretation [13, 14] of equation (15). 
Maximally sized circles, subject to limitations 
imposed by iterative perturbation theory, are 
used with hop-location probability rules again 
consistent with equation (15).  
 
We define, with each hop, a numerical weight 
factor derived from equation (15) in conjunction 
with equations (12), (13) and (14). The product 
of these weight factors over a walk, multiplied 
by the solution at the problem boundary—where 
the walk must terminate—gives a statistical 
estimate for zI . We can thus obtain an accurate 
statistical estimate for zI  by averaging over a 
statistically large number of random-walks. 
Mathematically, we can write such an estimate 
as 

 ,1
1

)(∑≈
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n

n
zz I

N
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where N is the number of walks and )(nI  is the 
contribution from the nth-walk. The error in the 
result has two components: 

1) A deterministic error arising from the 
truncation of the iterative perturbation based 
Green’s function in equation (12) and can be 
controlled by controlling the radius of the hop. 

 2) A statistical 1-σ error, σ , given by [15] 

 

,
N
Eσ

σ =                                 (18)                                             

where Eσ  is the standard deviation of the 
estimates from different random-walks and N is 
the number of random-walks. As a result, the 
statistical error can be controlled by controlling 
the number of random-walks.  
 
It can be seen that computational resources need 
not be wasted in evaluating the currents or fields 
at any point in the problem domain. Instead one 
just needs to evaluate the multi-dimensional 
integrals given by equation (15).  It can again be 
noted that similar to the situation of the 
frequency-independent problem, the approach is 
completely parallelizable, as the integrand can be 
sampled in different processors at the same time. 
We now give the details of the benchmark 
problems that have been handled in this work.  
 

Figure 2. A schematic diagram of a circular cross 
section is shown. One-, two-, and three- hop 
random-walks are represented.  

 
RESULTS 

 
Frequency-independent benchmark problems: 
The algorithm has been benchmarked against 
several mutual inductance extraction problems in 
one, two and three dimensions. The numerical 

A (n)

r1

r1

r1

r2

r3

r2
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results have been matched with analytical 
solutions given in Ref. [4] and excellent 
agreement has been obtained. The results are 
given in Table 1 and the benchmark problem 
geometries are presented in Figures (3) to (7). In 
these benchmark problems, A = B = C = D = R = 
T = 5 µm and Q = S = U = V = 1 µm. For each 
of these problems, we have taken 5000 sample 
points and the error from the analytical solution 
has been restricted to a fraction of one percent in 
each case. The computational time for each one 
of these benchmark problems has been seen to be 
a fraction of a second in MATLAB 6.1 on a 1.8 
GHz Intel Pentium IV personal computer. The 
exact and statistical errors are computed and they 
are seen to be in close agreement. 
 
 
Table 1. Analytical and numerical results for the 
benchmark problems. Columns: A = Benchmark 
problems, B = Analytical results (pH), C = 
Numerical results (pH), D = Exact errors 
normalized to the analytical results, E = 
Statistical errors normalized to the analytical 
results. 
 
A B C D E 
1. 0.35844 0.35859 0.0004 0.0005 
2. 0.28797 0.28830 0.0011 0.0010 
3. 0.28698 0.28630 0.0023 0.0025 
4. 0.21326 0.21323 0.0001 0.0002 
5. 0.28800 0.28878 0.0027 0.0024 
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Figure 3. Two parallel filaments of negligible 
width and thickness. The current is in the x-
direction. 
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Figure 4. Two parallel tapes of negligible 
thickness. The current is in the z-direction.  
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Figure 5. Two tapes of negligible thickness, 
whose axis are parallel and widths are 
perpendicular. The current is in the z-direction. 
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Figure 6. A thin filament of negligible width and 
thickness is placed parallel to a rectangular bar. 
The current is in the z-direction. 
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Figure 7. Two rectangular bars placed parallel to 
each other. The current is in the z-direction. 
 
Frequency-dependent benchmark problem: For 
the frequency-dependent problem, a z-directed 
time-harmonic and spatially invariant current is 
impressed on a single circular conductor. The 
frequency-dependent impedance contains a 
resistive term and an inductive term. Table (2) 
shows the results for the frequency-dependent 
self impedance of a cross section of radius 1.0 
µm at frequencies ranging from 1 GHz to 25 
GHz. The resistivity for conducting material is 
given by cm8.1 −Ω= µρ  and the magnetic 
permeability is assumed to be that of free space. 
For extracting impedance, a total of only 1000 
random-walks were performed at each 
frequency. It can be seen from Table (2), that the 
error in the estimate of frequency-dependent 
resistance and inductive impedance is around 1 
percent and the absolute error is comparable to 
the statistical error. The resistance and inductive 
impedances are plotted as a function of 
frequency in figures (8) and (9) respectively. As 
in the case of the frequency-independent 
problem, numerical computations have been 
performed in MatLab 6.1 on a 1.8 GHz Intel 
Pentium IV personal computer, and the 
computation time at 25 GHz frequency is of the 
order of a few seconds. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Numerical results for the frequency-
dependent self-impedance of a conducting 
circular cross section. Columns: A = Frequency 
(GHz), B = Skin depth as a fraction of radius, C 
= Analytical result (ohm/meter), D = Random-
walk result (ohm/meter), E = Exact error 
(ohm/meter), F = Statistical error (ohm/meter). 
 

 
 

A 

 
 

B 

 
 

C 

 
 

D 

 
 

E 

 
 

F 
 

1 2.14 5735+ 
314i 

5738+ 
312i 3-2i 1+1i 

5 0.96 5870+ 
1552i 

5917+ 
1534i 47-18i 40+1

5i 

10 0.68 6262+ 
2997i 

6315+ 
2962i 53-35i 55+3

0i 

15 0.55 6827+ 
4268i 

6888+ 
4225i 61-43i 59+4

1i 

20 0.48 7482+ 
5347i 

7549+ 
5297i 67-50i 70+4

5i 

25 0.43 8159+ 
6252i 

8234+ 
6193i 

75- 
59i 

72+5
1i 

 

 
Figure 8. Frequency-dependent resistance per 
unit length for a conductor of 1 µm radius with a 
resistivity of  cm8.1 −Ωµ  and magnetic 
permeability of free space. 
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Figure 9. Frequency-dependent inductive 
impedance per unit length for a conductor of 1 
µm radius with a resistivity of  cm8.1 −Ωµ  and 
magnetic permeability of free space. 

 
 

CONCLUSION & FUTURE WORK 
 

Summarizing, a stochastic algorithm for the 
extraction of partial inductances in IC 
interconnect structures has been developed. The 
algorithm has been validated with the help of 
frequency-independent and frequency-dependent 
benchmarks. The extension of this algorithm to 
more complicated frequency-dependent 
benchmark problems will form the basis of 
future work. Stochastic solution of the PEEC-
based RLC circuit matrix will also be 
emphasized. It is believed that with additional 
development, this algorithm can be developed 
into an IC CAD tool for inductance extraction. 
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