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Abstract − In the present work, a Galerkin’s electric 
field integral equation (EFIE) solution is applied to get 
the current flowing on a conducting surface of 
arbitrary shape when excited by a gap generator as 
well as when illuminated by an incident plane wave. 
The main objective of this work is to get a fast, 
accurate and efficient computer algorithm that 
optimizes the use of computer resources and reduces 
the computational time and to accurately evaluate the 
input impedance of conducting surface antennas. The 
singular integrals arising in such a Galerkin’s 
formulation are accurately evaluated and obtained as 
analytic expressions. An efficient method is described 
for accurate evaluation of the input impedance for 
antennas of arbitrarily-shaped conducting surface. The 
efficiency of the applied Galerkin’s algorithm is 
examined by calculating the input impedance of well 
known antennas of conducting surfaces such as the 
strip-dipole, bow-tie and planar equiangular spiral 
antennas. To investigate the accuracy of the applied 
technique the results concerning these antennas are 
presented and compared with some published results. 
 

I.     INTRODUCTION 
 

Among the electromagnetic techniques used for 
treating the problems of scattering, antennas and 
discontinuities in waveguides, the integral equation is 
one of the most widely used techniques. In 
electromagnetic integral equation methods, the original 
boundary value problems for Maxwell equations are 
reformulated as integral equations over the boundary 
interfaces of homogeneous domains. If the object is 
inhomogeneous, integral equation over the entire 
volume of the object has to be considered. 

One of the most powerful techniques used in the 
electromagnetic modeling of conducting bodies is 
based on the EFIE formulation of the Maxwell 
equations [1 - 7]. The EFIE solution for scattering 
from conducting surfaces of arbitrary shape was 
developed by Rao, Wilton and Glisson (RWG) in [8]. 
In the same paper, triangular basis functions, 
commonly known as RWG basis functions, were 
introduced for current expansion on the conducting 

surface. Since that time, this formulation of EFIE 
together with the triangular-patch surface modeling 
have become one of the most widely used techniques 
for solving electromagnetic scattering and radiation 
problems.  

A point-matching method of moments (MoM) 
solution was applied in [8] to get the current on an 
arbitrary surface. This technique ensures the 
satisfaction of the boundary conditions (that yield the 
vanishing of the tangential electric field on the 
conducting surface) at the centroids of the triangular 
patches forming the conducting surface. However, 
residual errors remain at the other points of the 
surface. 

In [9] and [10], the problems that arise when a 
Galerkin technique is applied for the formulation and 
solution of the EFIE for conducting surfaces are 
treated. Their main purpose was to evaluate accurately 
the singular integrals arising in such a Galerkin 
formulation rather than the description of a 
computational algorithm for the application of 
Galerkin’s technique on an arbitrarily shaped 
conducting surface. 

In the present work, the Galerkin solution is 
applied to the EFIE to get the current flowing on the 
conducting body surface in a way to get a complete 
description of a fast, accurate and efficient algorithm 
that optimizes the use of computer resources and 
reduces the computational time. 

The singular integrals encountered when 
Galerkin's formulation is used are classified and 
evaluated analytically. The integrals involved are 
carried out on planar triangular patches and, hence, 
they can be evaluated by first transforming from the 
3D Cartesian coordinates to the so-called simplex 
coordinates. The analytic expressions for the singular 
integrals provided in [11] are used here to accurately 
evaluate the singular integrals.  

Three types of singular integrals appear in 
Galerkin’s formulation. The first type results when the 
source and observation triangular patches are the same. 
The second type results when the two patches share a 
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common edge. The third type of such singular 
integrals results when the source and observation 
patches share a common vertex. These singular 
integrals are reduced to a standard form, which is 
evaluated analytically by the expressions provided in 
[11]. 

An efficient method is described for accurate 
evaluation of the input impedance for antennas of 
arbitrarily-shaped conducting surface. The efficiency 
of the applied Galerkin’s algorithm is examined by 
calculating the input impedance of well known 
antennas of conducting surfaces such as the strip-
dipole, bow-tie and planar equiangular spiral antennas. 
To investigate the accuracy of the applied technique 
the results concerning these antennas are presented and 
compared with some published results. 

It may be worth noting that the characteristics of 
a conical equiangular spiral antenna were investigated 
in [12] using the EFIE. However, the work of [12] 
employs a point matching technique and not a 
Galerkin’s one, which arrives at different singular 
integrals. The method presented here (section 5) for 
evaluating the input impedance was not included in 
[12]. Furthermore, the present work uses a method of 
calculating the singular integrals, which is more 
accurate than that used in [12]. 

 
II.    FORMULATION OF GALERKIN’S EFIE 

 
It is required to deduce the current flowing on a 

conducting surface due to an exciting source, which 
may be an incident wave or a generator attached to the 
conducting surface. The formulation of the EFIE that 
is to be solved for the current distribution on the 
conducting surface requires, first, modeling the 
scatterer or antenna surface by triangular patches. 
Then, the linear density of the current on the surface is 
expanded using the appropriate basis functions with 
unknown amplitudes. A Galerkin’s testing procedure 
is then applied to get the unknown amplitudes. 
 
A.  Modeling the Surface of the Scatterer 
 

As shown in Fig. 1-a, the surface is divided into a 
number of triangular patches. Each patch has three 
edges; an edge which belongs to only one triangular 
patch is called a boundary edge. Such an edge exists 
only on the rim of an open surface and hence, it has no 
electric current component flowing normal to it. As 
shown in Fig. 1-b, an edge which belongs to two 
adjacent triangular patches is called a non-boundary 
edge. Only non-boundary edges can have electric 
current components flowing normal to them.  

 

 
(a) Triangular-patch Model.      
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(b) Two triangular patches sharing an edge. 

 
Fig. 1. Triangular-patch model for surfaces of 
arbitrarily-shaped scatterers and antennas. 

 
Let the number of the triangular patches 

constituting the surface model be Q and the number of 
the non-boundary edges be N. Let Pq denote the 
triangular patch whose index (number) is q; q = 
0,1,2,……Q-1. Two adjacent triangular patches 

+n
P  

and 
−n

P  sharing the edge number n are shown in Fig. 1-
b, where n+ and n- are, respectively, the patch indices. 
It should be noted that both the values of n+ and n- 
have no relation to the value of n. This notation is used 
only to indicate that the triangular patches whose 
indices are q=n+ and q=n-  are adjacent patches and 
share the edge number n, with a plus or minus 
designation determined by the choice of a positive 
current reference direction for the shared edge number 
n. This direction is assumed to be from 

+n
P  to 

−n
P . That 

is, n+ is the number of the patch of which the current 
component associating the edge number n is assumed 
to be flowing out, whereas n- is the number of the 
patch into which this current is flowing. This means 
that n+=1,2,3,…..,Q and n-=1,2,3,…,Q whereas 
n=1,2,3,…..,N. A point in 

+n
P  can be specified by the 

position vector +n
r  defined with respect to the origin 

O, or by the position vector +
nρ  defined with respect to 

the free vertex, 
nf

+r , of the triangular facet 
+n

P  (i.e. the 

vertex of 
+n

P  which does not  belong to 
−n

P ). Similarly, 
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a point in 
−n

P  can be specified by −n
r  or −

nρ . It should 

be noticed that the position vector +
nρ  is directed from 

the free vertex, 
nf

+r , of 
+n

P  toward the point in the 

patch whereas the position vector −
nρ  is directed from 

the point to the free vertex, 
nf

−r , of 
−n

P . Thus one can 
write, 

            )(
nfnn

±± −±= ± rrρ .                         (1) 
 
B.   Representation of the Current on the Scatterer 
 

The current flowing on the conducting surface is 
expressed as a summation of vector basis functions 
with unknown amplitudes. The most suitable basis 
function for describing the current flowing on the 
triangular patches used for modeling the conducting 
surface is the Rao-Wilton-Glisson basis function given 
in [8]. For each non-boundary edge, a vector basis 
function is defined as follows, 
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where ln is the length of the non-boundary edge 
number n, 

+nS  and 
−n

S  are the areas of the triangular 
patches +n

P  and −n
P , respectively. It can be shown that 

the normal component of fn(r) at the nth edge is unity 
[8]. Using the basis function   fn(r), the linear current 
density on the conducting surface can be expressed as,  

∑
=

=
N

n
nnI

1

)(rfJ                              (3) 

where In; n = 1,2,3…N are unknown amplitudes of the 
basis functions and to be determined by the following 
procedure. 
 
C.   Application of the Galerkin’s Testing Procedure 
 

The electric field radiated by a surface charge 
density σ and linear current density J flowing on a 
conducting surface, S, can be obtained by the 
following expression, 

)()()( rrArE Φ∇−−= ωjs                     (4) 

where A(r) is the vector magnetic potential defined as, 

∫
′

′−−

′
′

=
S

jk

Sde
r-r

JrA
rr

π
μ

4
)(  ,                   (5) 

and Φ(r) is the scalar electric potential defined as, 

∫
′

′−−
′

′
=Φ

S

jk

Sde
r-r

r
rr

σ
πε4
1)(                     (6) 

where r' is a point on S and r is a point in the near or 
far zone of free space. The surface charge density σ is 
related to the surface divergence of the current J 
flowing on S through the equation of continuity, 

ωσjs −=⋅∇ J .                              (7) 

On the conducting surface, the tangential electric field 
must vanish yielding the following equation, 

)()()( rrArE Φ∇−−=− stan
i
tan jω .               (8) 

Define the product 

∫ ⋅=
S

dSbaba, .                       (9) 

This product can be applied to (8) to get 

r)frrfrArfrE (),()(),()(),( mmm
i j Φ∇+= ω (10) 

where the surface S in equation (9) is the combined 
area of the two patches sharing the non-boundary edge 
m. The product in the first term on the right-hand side 
of equation (10) can be expressed as, 

∫∫
−+

⋅+⋅=

mm
P

m
P

mm dSdS )()()()()(),( rfrArfrArfrA .   

(11) 
The vector magnetic potential A can be expressed 

as the summation of its components which are 
attributed to the currents associating the non-boundary 
edges as follows, 

[ ]∑
=

−+ +=
N

n

n
n

n
n

1

)()()( rArArA                       (12) 

where n
n±

A is the vector magnetic potential due to the 

current flowing through the patch ±nP  and associated 
with the non-boundary edge n. Substituting equation 
(12) in equation (11), one gets 

( )∑
=

−−+−−+++ +++=
N

n

mn
nm

mn
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nm

mn
nmm AAAA

1

)(),( rfrA  

(13) 
where       

           ∫
±

±±± ⋅=

m
P

m
n
n

mn
nm dSA )(rfA .                      (14) 
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According to equation (5), n
n±

A  can be expressed as 

∫
±

± ′′=
n

P
Rn

nn
n

SdF
I

)(
4

)( rfrA
π

μ
                 (15) 

where            

                 
R

eF
jkR

R

−
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Substituting equation (15) into equation (14), one gets 

∫ ∫
± ±
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m n
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Substituting  )(rf ′n  and )(rfm  into equation (17), one 
gets  
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+ +
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 ∫ ∫
− −

−−
−− ′⋅= −−

m n
P

m
P

nR
nm

nmnmn
nm dSSdF

SS
llI

A ρρ
π
μ

16
.   (18-d) 

The product in the second term on the right-hand 
side of equation (10) can be expressed as follows [8],  

=Φ∇ )(),( rfr m                                    

∫ Φ∇
S

m dS)()( rf.r ∫ ∇Φ−=
S

ms dS)()( rf.r .      (19) 

Taking S in equation (19) as the combined area of the 
triangular patches +mP  and −mP , equation (19) can be 
written as  

=Φ∇ )(),( rfr m  

∫
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∇Φ−
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P
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(20) 
The scalar potential Φ can be expressed as the 

summation of its components which are attributed to 
the currents associating the non-boundary edges as 
follows, 
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where n
n±

Φ  is the scalar potential due to the current 

flowing through the patch ±nP  and associated with the 

non-boundary edge number n. Substituting equation 
(21) into equation (20), one gets, 
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Substituting )(rf ′n  in equation (25), one gets the 
expressions,  
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Equation (13) can be rewritten as,                                                             
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Equation (20) can be written as,  
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where,       
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nm
mn

nm
mn

nm
mn

nm
mn

−−+−−+++ +++= βββββ ,         (31) 

∫ ∫
+ +

++
++ ′=

m n
P P

R
nm

mn
nm dSSdF

SS4
1β ,            (32-a) 

∫ ∫
+ −

−+
−+ ′=

m n
P P

R
nm

mn
nm dSSdF

SS4
1β ,            (32-b) 

∫ ∫
− +

+−
+− ′=

m n
P P

R
nm

mn
nm dSSdF

SS4
1β ,            (32-c) 

∫ ∫
− −

−−
−− ′=

m n
P P

R
nm

mn
nm dSSdF

SS4
1β .           (32-d) 

The product in the left-hand side of equation (10) can 
be expressed as, 
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Equation (33) can be written as,    
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Making use of equations (27), (30) and (34), equation 
(10) yield, 
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Equation (37) can be written in a matrix form as, 

[ ] [ ] [ ]VIZ =  .                        (39) 

The last matrix equation constitutes a linear 
system of N equations in N unknowns which are the 
amplitudes of the basis functions in the current 
expansion series of equation (3). It should be noticed 
that due to the Galerkin’s formulation, the matrix [Z] is 
symmetric. The evaluation of the elements of [Z] 
requires the calculation of the integrals in equations 
(29) and (32), which are singular when the observation 
point coincides with the source point. The evaluation 
of such integrals requires, first, their transformation 

from the Cartesian coordinates to the so-called simplex 
coordinates. 

 
III.   TRANSFORMATION OF INTEGRALS TO 

SIMPLEX COORDINATES 
 

The integrals in equations (29) and (32) are 
carried out on planar triangular patches, and hence, 
they can be evaluated by, first, transforming from 
ordinary 3-D Cartesian coordinates to the so-called 
simplex coordinate system, which is a 2-D coordinate 
system. Referring to Fig. 2, a point rq that lies in the 
triangle whose vertices are described in the Cartesian 
coordinates as r1q, r2q, r3q can be mapped to the 
simplex coordinate system to lie inside a standard 
triangle, shown in Fig. 3, defined by 

)10,10:),( ηξηξη −(<<<<                (40) 

where the new coordinates are determined by, 

qq S
S

S
S 21 , == ξη .                            (41) 

Define a third coordinate ζ  as, 

qS
S3=ζ .                                (42) 

Since 1321 =++
qqq S

S
S
S

S
S , one gets,  

 
 1=++ ζξη .                                   (43) 

 

q3r  

q1r  

q2r S1

S2 
S3

l2 

l1

l3

qr  

      
(a) Triangle in Cartesian coordinate system.     

 

  

 

(1, 0, 0) 

ξ

η  

ζ

(0, 1, 0) 

(0, 0, 1)

(0, 0, 0)

 
 (b) The same triangle in simplex coordinate system. 

 
Fig. 2. Transformation from Cartesian to simplex or 
normalized-area coordinates. 
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For this reason, the triplet (η, ξ ,ζ) describes the so-
called normalized-area coordinate system shown in 
Fig. 2-b, which is equivalent to the simplex coordinate 
system (η, ξ)  described by equations (40) and (41). 
Thus, a point rq that lies in the triangular patch Pq and 
described in the simplex coordinate or normalized-area 
coordinate system as (η, ξ) or (η, ξ ,ζ) respectively, can 
be mapped to the 3D Cartesian coordinate system with 
the vertices r1q, r2q, r3q of Pq using the transformation. 
 

qqqq 321 )1( rrrr ξηηξ −−++=              (44) 
or         

               qqqq 321 rrrr ζξη ++= .                   (45) 

ξ  

η  
ζ  

(0, 1, 0)

(1, 0, 0) 
(0, 0, 0) 

ξη −  plane 

ηd

ξd  

ηξ −=1  

ξη dd  

 
Fig. 3. Triangle transformed to simplex η-ξ plane. 

 
 

It is required to express an infinitesimal element 
of area dS in terms of dη and dξ. Using η, ξ as 2D 
Cartesian-like coordinate as shown in Fig. 3, the 
triangular patch (of area S) is mapped to the right-
angle triangle shown in the figure. If we express the 
area element in the η-ξ plane as dηdξ, then integrating 
this element over the entire range of η, ξ results in the 
area of this triangle. To get the surface integrals in the   
η-ξ plane equivalent to the surface integrals in the 
ordinary 3D-Cartesian coordinates, the element dηdξ 
should be scaled; thus, we must have, 

SddS f =∫ ∫
−

ηξ
η1

0

1

0

                      (46) 

where Sƒ is unknown scale factor that can be 
determined by carrying out the integration in 
equation(46). This leads, 

SS f 2= .                              (47) 

Thus, the surface integrals over Pq can be evaluated in 
the simplex coordinates by replacing dS by 2Sdηdξ, as 
follows, 
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Making use of equation (48), equations (29) and (32) 
can be written as, 
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where P = m+, m- ; q = n+, n-. The remaining integrals 
can be calculated from the above integrals as follows. 

pqpqpqpq IIII ξηηηηζη ′′′ −−= ,                        (60) 
pqpqpqpq IIII ξξηξξζξ ′′′ −−= ,                        (61) 
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pqpqpqpq IIII ηξηηηηζ ′′′′ −−= ,                        (62) 
pqpqpqpq IIII ξξξηξξζ ′′′′ −−= ,                         (63) 
pqpqpqpq IIII ζξζηζζζ ′′′′ −−= ,                        (64) 

pqpqpqpq IIII ξηζ ′′′ −−= ,                         (65) 
pqpqpqpq IIII ξηζ −−= .                         (66) 

Thus, only nine independent integrals from 
equation (51) to equation (59) must be numerically 
evaluated for each combination of pairs; p and q. The 
nine integrals, in turn, contribute to up to nine 
elements of [Z] in equation (39). For a closed surface 
with N edges, the number of independent integrals 
computed is 24N . By contrast, the edge-by-edge 
approach would require the evaluation of 36N2 
integrals or nine times as many. 

Due to the Galerkin’s EFIE procedure applied as 
described above, and since the basis and testing 
functions chosen are identical, the Z matrix would then 
satisfy the symmetry property Zmn=Znm. Also, the 
integrals in equation (51) to equation (66) are 
symmetric; i.e. Ipq=Iqp and the same is true for the 
other integrals. Thus the number of the independent 
integrals that must be computed are reduced to 
N(2N+3) instead of 24N . Using the same coordinate 
transformation, equation (36) can be expressed as 

∫ ∫
−

±=±

1

0

1

0

(
η

r)E im
mv  

       [ ] ηξξηη ddξ
mfmmm

±−−−++⋅ ±±± rrrr 321 )1( . 
         (67) 

Equation (67) can be written as, 
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(68) 
where, 
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(70) 

∫ ∫
−

−−++=
1

0

1

0
321 ])1([

η

ηξηξηξ ddppp
ip rrrEI ,   

(71) 
pppp
ξηζ IIII −−= .                      (72) 

IV.  EVALUATION OF SINGULAR INTEGRALS 
 

Integrals of equation (51) to equation (59) are 
singular for p=q i.e., when the source and observation 
patches are the same. In this case, each of these 
integrals can be divided into two parts one of which is 
non-singular and can be evaluated numerically 
whereas the other is weakly singular and can be 
evaluated analytically. The integral in equation (51) 
can be rewritten as, 

qq
R

qq ddddGI ηη

η η

ηη ηξηξηη ′
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    (73) 

where                

          
R

eG
jkR
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1−=

−

 ,                             (74) 
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1
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1η η

ηη ηξηξηη dddd
R

qq .        (75) 

It should be noted that the first term on the right 
hand side of equation (73) is a non-singular integral 
and can be evaluated numerically whereas qq

ηη ′Γ  is 
weakly singular and should be evaluated analytically. 
The same can be repeated for equations (52) to (59), 
where these singular integrals appear, 
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Closed form expressions for the singular integrals 
in equations (76) to (84) are given in Appendix A. 
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V.   ANTENNA EXCITATION AND INPUT 
IMPEDANCE 

 
In this section, a method is described for accurate 

computation of the input impedance of antennas 
composed of conducting surfaces using the EFIE 
technique. 

For antennas composed of complex or curved 
conducting surfaces, the EFIE technique is preferable 
to the FDTD method [2]. The accuracy of the latter is 
often limited by the computer memory requirement 
and the “staircase” approximation of the antenna 
geometry. In antenna problems, the staircase 
approximation could become a major drawback for 
accurate impedance calculation since in this case very 
fine discretization of the antenna region near the feed 
point is required, which may be difficult for curved or 
complex surfaces. The EFIE technique employing 
triangular-patch model does not suffer from the 
staircase approximation and, moreover, the density of 
the triangular patches can be simply increased near the 
feeding point, as shown in Fig. 4, to get accurate 
evaluation of the impedance [13]. 

 

 
 

Fig. 4. Increasing the density of triangular patches near 
the feeding point of the antenna. 

 
In scattering problems treated by the EFIE 

technique applied on a triangular-patch model of the 
scatterer, all the facets (triangular patches) are 
illuminated by the incident field. To excite an antenna 
by a delta-gap voltage generator, the delta gap is made 
as a cut along one or more of the non-boundary edges 
of the surface model. A voltage generator is then 
applied across the excitation edge(s). In this case, only 
the facets on the sides of each of the excitation edges 
have voltage difference applied on them. However, the 
method of evaluating the input impedance in the case 
of a conducting surface antenna excited by 
infinitesimal-gap voltage generator can be obtained 
from the model of scattering problem as detailed in the 
following analysis. Let mx be the edge at which a 
delta-gap voltage source is applied and let +

xm  and −
xm  

be the numbers of triangular patches sharing this edge 
(the current is assumed to flow from +

xm  to −
xm ). 

Consider the element number mx in the excitation 
vector [V], which is expressed as,  

∫∫
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2
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2
1 .  (85) 

For the purpose of physical interpretation of 
equation (85), this expression can be approximated as, 

22
/

−+

⋅+⋅≈ −+
x

x
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mc
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i
c

mc
m

i
cmm lV

ρ
E

ρ
E            (86) 

where, +
xm

i
cE  and −

xm
i
cE  are the values of the incident 

electric field at the centroids of the patches +
xm

P  and 

−
xm

P , respectively, and +
xmcρ  and −

xmcρ  are the position 

vectors of the centroids of the triangles +
xm

P  and −
xm

P  

relative to the vertices +

xmfr  and −

xmfr , respectively. 

Thus, by the aid of Fig. 5, the quantity between square 
brackets in equation (86) can be interpreted as, 
approximately, the voltage difference between the 
centroids of the patches +

xm
P  and −

xm
P  or, in other 

words, the voltage drop across the excitation edge (i.e., 
the voltage applied at the input port of the antenna). It 
should be noted that the value of 

xmV used in the 
present analysis is the exact one that is given by 
equation (85) and not equation (86). The purpose of 
obtaining the approximate expression is, only, to get a 
clear physical meaning of equation (85). According to 
equation (86), the voltage applied at the antenna input 
(i.e., the voltage across the excitation edge) is 
expressed as, 

xx mmin lVV /= .                            (87) 

As discussed before, the coefficient 
xmI  in the 

current expansion series is the normal component of 
the linear current density flowing past the edge mx. 
Since this current density component is constant along 
the edge number mx, the input current can be expressed 
as, 

 
xx mmin IlI = .                           (88) 
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1

 
+
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Fig. 5. The voltage drop across a non-boundary edge. 
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Using a triangular-patch model for the antenna, 
the input impedance can be defined as the voltage drop 
across the excitation edge, divided by the current 
flowing past this edge. Employing equations (87) and 
(88), one gets the following expression for the input 
impedance of the antenna,  

x

x

x m

m

min

in
in I

V

lI
V

Z 2
1== .                       (89) 

It has been found that for an accurate calculation 
of input impedance, it is essential to use very fine 
discretization in the antenna region near the feed point. 
To reduce the number of unknowns, the region that is 
further away from the feed point can be descritized by 
less fine patches without essentially affecting 
accuracy. The mesh of a bow-tie antenna descritized 
with higher resolution in the region near the feeding 
point to get accurate value of the input impedance is 
shown in Fig. 4 [13]. 

 
VI.   RESULTS AND DISCUSSION 

 
The input impedance is one of the antenna 

parameters whose accuracy is strongly dependent on 
the efficiency of the computational technique through 
which it is evaluated. Hence, the evaluation of the 
antenna input impedance is one of the most stringent 
tests of the efficiency of a computational technique. 
Therefore the Galerkin’s EFIE algorithm described in 
the present work is examined by its application to 
compute the input impedance of well-known 
conducting surface antennas such as the planar 
strip-dipole, bow-tie dipole and planar equiangular 
spiral antennas and comparing the obtained results 
with other published results concerning the same 
antennas. 

A.   Strip Dipole Antenna 

The triangular-patch model for a straight strip-
dipole antenna of length L and width W is shown in 
Fig. 6. A delta-gap generator of unity voltage is 
applied at the cut A-A’. The applied voltage is 
maintained constant along the feeding edge, which is 
the non-boundary edge at the center of the dipole. In 
this case, the input impedance can be obtained by 
calculating the current crossing the non-boundary edge 
A-A’, and then employing equation (89). 

 
 
 

      

A 

A’ 

Excitation edge 

L

W

 
 
Fig. 6. Triangular patch model of a strip dipole 
antenna. 

Figure 7 presents plots of the resistive and 
reactive components of the input impedance of a strip-
dipole antenna against the operating frequency. The 
dipole length is 27 cm and its width is 0.001 of its 
length. The triangular-patch model of this antenna has 
36 patches and 35 non-boundary edges. The results 
show agreement with those of [14]. Figure 8 shows a 
plot of the VSWR of the strip dipole with respect to 75 
Ω source impedance against the frequency.  It is clear 
in the Figure that the bandwidth of this antenna can be 
considered as 10%, a feature which is well-known for 
a half-wavelength straight dipole. 

 
 

Fig. 7. Input Impedance of a planar strip dipole, L=27 
cm and W= 2.7 mm. 

 
 

Fig. 8. VSWR of a planar strip dipole, L=27 cm, and 
W= 2.7 mm. 

B.   Bow-Tie Antenna 

The main advantages of the bow-tie antenna are 
simple design and broad-band impedance. For this 
reason, a planar bow-tie antenna is used in many 
challenging recent applications such as ground 
penetrating radar (GPR) and global position system 
(GPS) applications and cellular-based mobile 
communication services [13], [14 - 20]. Figure 9 
shows a triangular-patch model for a bow-tie antenna. 
The length of the antenna is 27 cm and the flare angle 
is 90º. The neck width of the antenna (length of the 
excitation edge) is 1.35 cm. The triangular-patch 
model of this antenna has 96 patches and 125 non-
boundary edges. A delta-gap generator of unity voltage 
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is applied across the cut A-A’, i.e. across the non-
boundary edge at the center of the antenna. The current 
crossing this edge is calculated to get the input 
impedance via equation (89). 

                                  
 

                                    

A 

A’ 

Excitation edge 

L

Neck width 
Flare angle 

(θf) 

 
 

Fig. 9. Triangular patch model of a bow-tie antenna. 
 

 

The dependence of the input impedance of a 
bow-tie antenna with the frequency is shown in Fig. 
10. The results show good agreement with those of 
[16]. It should be noted that the antenna of the given 
dimensions is resonant at about 800 MHz where the 
input impedance is pure resistive. The VSWR of this 
antenna is plotted against the frequency as shown in 
Fig. 11, where the source impedance is assumed 300 
Ω. It is clear in the figure that the bandwidth of the 
bow-tie antenna can be considered as about 400 MHz 
around its resonant frequency, i.e., about 50%. Thus, 
the bow-tie antenna exhibits a much wider bandwidth 
than the dipole antenna, a feature which is well-
established and is attributed to the fact that the width 
dimension of the bow-tie is described as an “angle” 
rather than a “length” but, however the bow-tie length 
is the dimensional parameter that limits the bandwidth 
of such an antenna. 

 
 

Fig. 10. Input Impedance of a bow-tie antenna, L=27 
cm, and W= 1.35 cm, θƒ = 90o. 
 
C.  Planar Equiangular Spiral Antenna 

One of the ultra wideband (UWB) antennas used 
in recent applications that require a well-suited 
transient antenna response is the planar equiangular 
spiral antenna. Due to its circular polarization, this 
antenna finds important applications such as short-

pulse GPR systems that detect the objects buried in 
anisotropic ground. It also finds application in stepped-
frequency GPR (SF-GPR) to detect buried non-
metallic anti-personnel mines in humanitarian mine 
detection system [22]. Due to their characteristics of 
quite broad bandwidth and circular polarization, the 
spiral antennas are widely used in mobile-
communication, early-warning and direction-finding 
systems [23]. The spiral antenna is also suitable as a 
wideband illuminator for a parabolic reflector working 
in ultra wideband of frequencies [24]. 

 
Fig. 11. VSWR for a bow-tie antenna, L=27 cm, and 
W=1.35cm, θƒ = 90o. 
 

The radiation of spiral elements at the selected 
operating frequency comes from the active region 
where spiral circumference is approximately one 
wavelength. This means that the active region moves 
from the outermost circle to the innermost one as the 
frequency increases. Low frequency cutoff fL is equal 
to c/πD (c is the speed of light and D is the outermost 
diameter), but the upper frequency is determined by 
the feed point separation [20], [23] and [25].A 
triangular patch model for the equiangular spiral 
antenna surface model and the EFIE technique 
constitute the most efficient electromagnetic modeling 
of such an antenna. The triangular-patch model for this 
antenna is shown in Fig. 12. 

Let us consider an equiangular spiral antenna of 
the following dimensions: the innermost diameter of 
the spiral (d) is 3 mm, the outermost diameter (D) is 29 
cm, the wrapping angle (α) is 70º and the angular 
width of the spiral arm (δ) is 90º. The spiral arms are 
wound to make 4 complete revolutions. Figure 12-b 
shows the detailed triangular patch arrangement at the 
location of the antenna excitation. The triangular-patch 
model of this antenna has 138 patches and 177 non-
boundary edges. A delta-gap generator of unity voltage 
slot generator is applied across the non-boundary edge 
at the cut A-A’, where the voltage is maintained 
constant along this edge. 
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Outermost
diameter (D)

  
(a) Complete antenna.    

 

 
 

 
 

Excitation 
Edge 

A’ 

A 

Innermost 
diameter (d) 

 
(b) Part of the antenna at the excitation. 

Fig. 12. Triangular-patch model of an equiangular 
spiral antenna. 
   

The input impedance is evaluated using equation 
(89). The variations of the resistive and reactive parts 
of the input impedance of the antenna described above 
with the frequency are presented in Fig. 13. It is clear 
that the input impedance is stable along a very wide 
range of the frequency; a fact that is well-known for 
such an antenna. The VSWR with respect to a source 
impedance of 150 Ω is plotted against the frequency as 
shown in Fig. 14. It is evident that this antenna is ultra-
wideband; a feature which is attributed to the fact that 
the dimensions of such a spiral are mainly described as 
“angles” rather than “lengths”. 

 
 

Fig. 13. Input Impedance of an equiangular spiral 
antenna, d = 3 mm, D = 29 cm, α = 70º and δ = 90º. 

 
Fig. 14. VSWR of an equiangular spiral antenna, d = 3 
mm, D = 29 cm, α = 70º and δ = 90º. 
 

VII.   CONCLUSION 
 

A robust and efficient Galerkin's EFIE algorithm 
is developed to get the current distribution on 
arbitrarily-shaped conducting surface that act as 
scatterers or antennas. A new method is applied for 
accurate evaluation of the input impedance of antennas 
composed of conducting surfaces which are modeled 
by triangular patches when the antenna is excited by 
delta-gap voltage generator. The singular integrals 
arising when the source and observation points 
coincide are accurately evaluated. The efficiency of 
the algorithm is examined by calculating the input 
impedance and the VSWR of well-known types of 
antennas, where the results show good agreement with 
the already well-known characteristics of these 
antennas and are also in good agreement with some 
published results concerning the same antennas. The 
antennas examined in the present work are the strip-
dipole, bow-tie and planar equiangular spiral antennas. 
Appendix A: Analytic Evaluation of Singular 
Integrals 

The following expressions for the singular 
integrals are given in [11] after making the corrections 
in [26], 
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where       
          ( ) ( )igbf +−+= lnln1γ ,                       (A-5) 

( ) ( )bfhe −−+= lnln2γ ,                      (A-6) 
( ) ( )ighe +−+= lnln3γ  ,                      (A-7) 
( ) ( )heig −−−= lnln4γ ,                      (A-8) 
( ) ( )bfig −−−= lnln5γ ,                      (A-9) 
( ) ( )hebf −−+= lnln6γ ,                    (A-10) 

)()( 1313 rrrr −⋅−=a ,                     (A-11) 
)()( 2313 rrrr −⋅−=b ,                     (A-12) 
)()( 2323 rrrr −⋅−=c ,                     (A-13) 

cbad +−= 2 ,                          (A-14) 
dae = ,                              (A-15) 

caf = ,                              (A-16) 

dcg = ,                              (A-17) 
bah −= ,                              (A-18) 
cbi −= .                               (A-19) 

It can be shown that 
qqqq
ηηξξ ′′ Γ=Γ ,                            (A-20) 

qqqq
ηξξη ′′ Γ=Γ ,                           (A-21) 

qqqqqqqq
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