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Abstract − An analytic solution to the problem of 
scattering of a plane electromagnetic wave by a lossy or 
lossless dielectric confocal elliptic shell loading a semi-
elliptic channel is derived. The incident, scattered and 
transmitted fields in every region are expressed in terms 
of complex Mathieu functions. Applying the boundary 
conditions at various faces and interfaces along with the 
partial orthogonality properties of angular Mathieu 
functions, the unknown scattered and transmitted field 
coefficients are obtained. The presented numerical 
results show a good agreement with the published data 
especially for the case of a lossless dielectric shell 
loading a semi-circular channel.  
 

I.   INTRODUCTION 
 

The electromagnetic scattering from grooves, 
channels and cracks have been investigated by many 
researchers. The investigations have shown that when 
these structures are loaded with dielectric materials, the 
overall scattering patterns significantly change and thus 
it is important to obtain an analytic solution to predict 
the new scattering behavior of the target.  

Lately, there have been many analytic studies 
available in the literature on the scattering by hollow 
and lossless dielectric loaded semi-circular or elliptic 
channels [1-9].  Most of these studies were based on the 
exact series eigen-function solution. On the other hand, 
numerical solutions based on the coupled integral 
equations for the induced currents were obtained by 
Senior et. al. [10-11]. 

To the best of our knowledge, there has been no 
analytical or numerical solution to the problem of 
scattering from a lossy or lossless dielectric elliptic 
shell loading a semi-elliptic channel in a ground plane.   

In this paper, we present the solution to the 
scattering by a semi-elliptic channel loaded by two 
lossy dielectric layers.  The presented solution will be 
the most general one available in the literature and the 
special lossless circular case may be deduced by 
making the axial ratios almost equal to unity [5], while 

the lossless dielectric coated conducting elliptic 
cylinder may be deduced by making the relative 
permittivity of the inside dielectric layer very high [9].  

 
II.   THEORY 

 
Consider the case of a linearly polarized 

electromagnetic TM plane wave assumed to be incident 
on a lossy or lossless dielectric elliptic shell loading a 
semi-elliptic channel in a ground plane at an angle 

iφ with respect to the x axis, as shown in Fig. 1. The 
major axis of the outer dielectric coating is denoted by 
a2 and the minor axis is denoted by b2.  Furthermore, the 
major axis of inner dielectric elliptic cylinder is denoted 
by a1 and the minor axis is denoted by b1. The ground 
plane is assumed to be perfectly conducting. 

Fig. 1. Scattering geometry of a semi-elliptic channel in 
a ground plane loaded by a lossy or losslessconfocal 
dielectric elliptic shell.  

 
The time dependence tje ω  is assumed and omitted 
throughout. The elliptical coordinate system (u,v,z) is 
defined in terms of the Cartesian coordinate system 
(x,y,z) by )cos()cosh( νuFx = and )sin()sinh( νuFy = , 
where F is the semi focal length of the elliptical cross 
section [12]. The electric field component of the TM 
polarized plane wave of amplitude 0E  is given in terms 
of polar coordinates ρ , φ  by, 

)cos( ieEE jk
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where k=2 λπ /  and λ  is the wavelength. The 
incident electric field may be expressed in terms of 
Mathieu functions in elliptic cylindrical coordinatesξ , 
η as follows [12], 
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emA  and )( o

om
em cN  are defined in [9], kFco = , mSe  

and mSo  are the even and odd angular Mathieu 
functions of order m, respectively, )1(Re m  and )1(

mRo  are 
the even and odd radial Mathieu functions of the first 
kind of order m, while emN  and omN are the even and 
odd normalized constants of order m. It should be noted 
that ucosh=ξ  and νη cos=  [12]. The reflected field 

( 1ξξ >  and πη ≤≤0 ) due to the presence of the 
ground plane can bewritten as,  
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The scattered field ( 1ξξ >  and πη ≤≤0 ) due to the 
presence of the channel can be written as, 
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where omB  are the unknown odd scattered field 

expansion coefficients and )4(
mRo  is the odd radial 

Mathieu function of the fourth kind.  The transmitted 
electric field inside the outer dielectric layer 
( 21 ξξξ ≤≤ ) can also be written also in terms of 
Mathieu functions as, 
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where Fkc 11 = , 
11 rkk ε= , ''

1
'
11 rrr jεεε −= , emC , emD  

and omC , omD are the even and odd unknown 
tansmitted field expansion coefficients, and )2(Re m

 and 

)2(
mRo  are the even and odd radial Mathieu functions of 

the second kind [12]. Furthermore, the transmitted 
electric field inside the inner dielectric layer ( 20 ξξ ≤≤ ) 
can also be expressed in terms of Mathieu functions as,  
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where Fkc 22 = , 22 rkk ε= , ''
2

'
22 rrr jεεε −=  while 

emG  and 
omG  are the even and odd unknown transmitted 

field expansion coefficients. The magnetic field in 
every region can be obtained using Maxwell’s 
equations. The unknown field expansion coefficients 
given in equations (4) to (6) are yet to be determined 
using the boundary conditions. The boundary 
conditions at 2ξξ =  require the tangential electric and 
magnetic field components in the inner and outer 
dielectric layers to be continuous. Enforcing this 
boundary condition along with orthogonality property 
of the angular Mathieu functions, we obtain  
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The prime in equation (8) denotes derivative with 
respect to u . Similar equations can be written 
corresponding to the odd solution. To eliminate Gen, we 
solve for Gen from equation (8) and substitute into 
equation (7). This leads to  
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We can write a similar equation for the odd solution, 
i.e, 
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The boundary condition at 1ξξ = ( πηπ 2<< ) requires 
the tangential electric field component to vanish at 
surface, and the total tangential electric and magnetic 
field components to be continuous across the interface 
at 1ξξ =  ( πη <<0 ). Enforcing these boundary 
conditions along with the partial orthogonality property 
of the angular Mathieu functions, we get  [7, 9] 
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Equations (13) to (15) are evaluated for m=0,1,2… and 
n=0,1,2,.... In case of co=c1, equation (16) reduces to 
Wmn=

mnδπ )0.2/( , where mnδ  is the Kronecker delta. 
Equations (10), (11), and (13) to (15) may be written in 
matrix form to solve for the unknown scattered and 
transmitted field expansion coefficients [9]. 
The lossy case requires the computation of Mathieu 
functions with complex argument and more details on 
the computation of Mathieu function can be found in 
[13-14]. 
 

III.   NUMERICAL RESULTS 
 

The scattered near and far fields can be calculated 
once the scattered field expansion coefficients are 
computed. The scattered far field expression may be 
written as follows, 
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In order to solve for the unknown scattered field 
coefficients, the infinite series are first truncated to 
include only the first N terms, where N in general is a 
suitable truncation number proportional to the channel 
electrical size. In the computation, the value of N has 
been chosen to impose a convergence condition that 
provides solution accuracy with at least four significant 
figures, The accuracy of the numerical results is checked 
against the special case of a semi-circular channel 
loaded with a lossless dielectric shell [4].  
Figure 2 shows the normalized backscattered field 

|)cos,(| iocP φ  for a lossy or lossless dielectric shell 
loading a semicircular channel versus ka2 with ka1=1.0, 
a1/b1=1.0, εr1 = 1.5, εr2 = 12 and φi = 90o. The solid line 
represents the calculated numerical results while the 
circled curve represents the solution in [4]. For example, 
the convergence for this is achieved for N=9. It can be 
seen that the calculated results agree very well with [4] 
for ka2 < 3.2, the range given by [4].  Further, high peak 
resonances occur at different values of ka2 and the 
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amplitude of these peaks becomes even larger with the 
channel size. The strong resonant behavior may be due 
to the multiple scattering between the circular shell and 
channel. Finally, the dotted line represents the lossy 
dielectric case with εr1 = 1.5- j0.5 and εr2 = 12-j0.5. For 
example, the convergence for this is achieved for N = 7. 
The presence of lossy material seems to have little effect 
on the normalized backscattered field especially for ka2 
< 2.0, and attenuates the amplitude of the high peak 
resonances for ka2 > 2.0. Figure 3 shows the normalized 
backscattered field for a lossy or lossless confocal 
dielectric elliptic shell loading a semi-elliptic channel 
versus the major axis of electrical size ka2 . The major 
axis electrical size of the inner elliptic dielectric shell is 
kept constant at ka1=1.0 with axial ratio a1/b1=1.43 and 
φi = 90o. The solid line represents the lossless dielectric 
case, εr1 = 3.0 and εr2 = 5.0. The circled line represents 
the weakly lossy case, εr1 = 3.0-j0.1 and εr2 = 5.0-j0.1, 
while the dotted curve represents the strongly lossy case 
of εr1 = 3.0-j0.5 and εr2 = 5.0-j0.5.    
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Fig. 2. Normalized backscattered field versus electrical 
size ka2 for a lossy or lossless dielectric circular shell 
loading a semi-circular channel with ka1=1.0, a1/b1=1.0 
and φi = 90o. 
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Fig. 3. Normalized backscattered field versus electrical 
size ka2 for a lossy or lossless confocal dielectric 
elliptic shell loading a semi-elliptic channel with 
ka1=1.0, a1/b1=1.43 and φi = 90o. 

In Fig. 4 we have plotted the normalized echo pattern 
width |)cos,(| φocP against the scattering angle φ  for a 
lossy or lossless dielectric circular shell loading a semi-
circular channel with ka1=2.0, a1/b1=1.0, ka2=2π , 
a2/b2=1.0 and φi =60o. The solid line represents the 
lossless case with εr1 = 4.0, εr2  = 2.0. A strong resonance 
with high amplitude is located at φ =120o, as expected, 
in addition to other resonances located at φ =40o and 90o. 
It seems that the presence of lossy dielectric material has 
little effect on the amplitude of the resonance at φ =120o 
while strong effect may be observed on the amplitude of 
the resonances located at φ = 40o and 90o.  Figure 5 
shows normalized echo pattern width for a lossy or 
lossless dielectric elliptic shell loading a semi-elliptic 
channel with ka1=5.73, a1/b1=5.73, ka2=2π , a2/b2=2.3 
and φi = 60o. The solid line represents the lossless case, 
εr1 = 4.0, εr2 = 2.0, which seems to have strong 
resonances at different scattering angles and the 
strongest resonance peak is located at φ = 120o. It can 
also be observed that the presence of the lossy dielectric 
material has a significant effect on the amplitude of the 
high peaks resonances, but has no effect on the location 
of resonances.   

Figure 6 shows the normalized backscattered far 
field versus the incident angle φi for a lossy or lossless 
dielectric elliptic shell loading a semi-elliptic channel 
with ka1=2.0, a1/b1=2.0, ka2=4.36 and a2/b2=1.1.  It 
seems that the normalized backscattered field of the 
elliptical channels is highest at the incident angle φi = 
90o. It can also be observed that the presence of lossy 
dielectric material has shifted the resonance peaks at φi = 
30o and 55o. 
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Fig. 4. Normalized scattered field versus the scattering 
angle φ for a lossy or lossless dielectric circular shell 
loading a semi-circular channel with ka1=2.0, a1/b1=1.0, 
ka2 = 2π , a2/b2 = 1.0 and φi = 60o.  

417 ACES JOURNAL, VOL. 22, NO. 3, NOVEMBER 2007



 

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

φ, degrees

|P
(c

o,c
os

 φ
)|

εr1 = 4.0, εr2 = 2.0          
εr1 = 4.0-j0.1, εr2 = 2.0-j0.1

 
Fig. 5. Normalized scattered field versus the scattering 
angle φ for a lossy or lossless dielectric elliptic shell 
loading a semi-elliptic channel with ka1 = 5.73, a1/b1 = 
5.73, ka2 = 2π , a2/b2 = 2.3 and φi = 60o.  
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Fig. 6. Normalized backscattered field versus the 
incident angle φi for a lossy or lossless dielectric elliptic 
shell loading a semi-elliptic channel with ka1 = 2.0, 
a1/b1 = 2.0, ka2 = 4.36, a2/b2 = 1.1. 
 
 

IV.    CONCLUSIONS 
 

An analytical solution and numerical results for the 
electromagnetic scattering by a lossy or lossless 
dielectric circular or elliptic shell loading a semi-
circular or semi-elliptical channel in a ground plane is 
obtained. The presence of lossy or lossless dielectric 
shell has significantly affected the appearance and 
attenuation of the channel resonances. Finally, the 
presented solution is the most general one available in 
the literature and special cases can be deduced by 
choosing the appropriate axial ratio and dielectric 
constant.     
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