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Abstract − This paper presents an effective permittivity 
scheme to treat the dispersive media interfaces in ADI-
FDTD method so as to avoid significant error due to 
improper assignment of media permittivity. In order to 
reduce the extra memory storage and computation 
operation required, a reduced-order modeling method is 
introduced to our scheme, which can simplify the 
programming work as well and therefore has a significant 
practical meaning. One numerical experiment will be 
performed to illustrate the procedure and effect of this 
effective permittivity scheme. The stability analysis of 
the updating equations will also be discussed. 
 
Keywords: ADI-FDTD, biological tissues, dispersive 
media, and material interfaces. 
 

I. INTRODUCTION 
 

For accurate modeling of material interfaces in the 
conventional finite difference time domain (FDTD) 
method [1], the effective permittivity scheme has been 
proposed for the interfaces of non dispersive media [2, 3] 
and dispersive media [4]. In this paper, the effective 
permittivity scheme is presented for the alternating-
directional-implicit (ADI) FDTD method [5] at the 
interface of dispersive media. During recent years a lot of 
research works related to the ADI-FDTD method have 
been carried out due to its unconditional stability, which 
means the time step size of this method would not be 
constraint by the mesh size any more. For example, the 
three-dimensional ADI-FDTD method as well as its 
stability analysis was proposed in [6]. The higher order 
[7] and parameter-optimized ADI-FDTD methods [8, 9] 
have also been developed. The discussion here is based 
on the ADI method for dispersive media in [10], where 
the treatment for the interface of dispersive media has not 
been mentioned. This scheme is also applicable to the 
cases of non dispersive-non dispersive and dispersive-non 
dispersive media interfaces. To the best of our 
knowledge, the treatment of media interfaces in ADI-
FDTD method has not been discussed in the literature. 

In the next section, the formulas for the effective 
permittivity scheme are provided. Section III performs 

one numerical experiment to illustrate the procedure and 
effect of our proposed scheme. This experiment is about 
the wave propagation in different biological tissues and 
the reflection coefficient at the interface of muscle and 
bone is evaluated, which are both Debye dispersive 
media. To reduce the extra memory storage and 
computation operation required, a reduced-order 
modeling method for discrete system will be applied to 
deal with the effective permittivity at the interface of two 
neighboring dispersive media, which can also simplify 
the programming work and therefore has a significant 
practical advantage. It can be seen that this scheme can 
avoid the significant error due to improper assignment of 
media permittivity. Thus it is meaningful to investigate 
the treatment of media interface in ADI-FDTD method 
since it will be useful for many practical problems, such 
as the one about bio-electromagnetics discussed here.  
The stability analysis of the updating equations of this 
scheme is discussed in Section IV, which provides the 
approach to investigate the stability based on the reduced-
order model of the permittivity obtained. 
 

II. FORMULATION 
 

Following [10], we consider the case of two-
dimensional (2-D) TE wave propagation in dispersive 
media. The permittivity ε (ω) is related to the frequency 
ω and the permeability µ. is assumed to be constant. 
Therefore we will focus the discussion on solving 
Maxwell’s equation from Ampere’s law, whose integral 
form is represented as, 

 

S C
D dS H dl

t
∂

⋅ = ⋅
∂ ∫∫ ∫ . (1)

 
The electric flux density D can be related to the 

electric field intensity E in s domain by, 
 

( ) ( ) ( )D s s E sε= . (2)
 

According to the second order temporal 
approximation of equation (1), it can be obtained that, 
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Here ∆t is the time step size and n is the temporal 

index. The D and E in discrete time domain can be 
related in z domain by, 

 
( ) ( ) ( )D z z E zε= . (4)

 
Equation (4) can be derived from equation (2) by 
substituting, 
 

1/ 2

1/ 2

4 1
1

zs
t z

−

−

−
=
∆ +

. (5)

 
Henceforth, all the poles, zeros and orders of the 

representation for the media permittivity in z domain are 
in relation to the term z-1/2, because each field component 
is marching one half time step for each update sub-
procedure. 

Considering the field components arrangement in 
Fig. 1 and splitting equation (3) into two sub-procedures 
in discrete spatial domain, we can obtain the equations in 
equation (6) for the treatment of the interface of two 
different dispersive media in ADI-FDTD method. 

 

 
 
Fig. 1. TE wave field components arrangement at the 
interface. 
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where ∆x is the mesh size in x direction, d∆x (–0.5 ≤ d ≤ 

0.5) is the displacement of the media interface relative to 
the nearest parallel FDTD mesh edge, and the subscripts 
1 and 2 denote the field components in media 1 and 2, 
respectively. Dy12 can be related to the electric field 
component Ey12 at the mesh edge by the effective 
permittivity scheme as, 
 

1 1( ) ( ) ( ) ( ) ( )
2 2

1 1( ) ( ) ( ) ( ) ( ) ( ).
2 2

y12 1 2

1 12 2 12

D z d D z d D z

d z E z d z E zε ε

= + + −

= + + −

 (7)

 
In practice, the mesh edge is usually set to overlap 

with the interface of different media. So here we mainly 
consider this case, where d = 0 and we obtain, 

 
( ) ( )( ) ( ) ( ) ( )

2
1 2

y12 y12 12 y12
z zD z E z z E zε ε ε+

= = . (8)

 
Based on equations (6) and (8), the update equations 

for the interface of dispersive media can be derived as in 
[10]. The symbols ε1(z) and ε2(z) are the permittivity of 
these two neighboring media in z domain. The ε12(z) is 
the effective permittivity at the material interface and is 
related to the sum of ε1(z) and ε2(z). One can find that the 
number of the poles of ε12(z) is increased when the poles 
of ε1(z) and ε2(z) are different, which is in accordance 
with the statement in [4]. Since the order of the numerator 
and denominator of the representation for the effective 
permittivity will grow with the increase of the number of 
poles, extra memory storage and computation operation 
will be required. In order to reduce the extra memory 
storage and computation operation, here we introduce a 
reduced-order modeling method of discrete system [11] 
to deal with the effective permittivity. Through this 
method, the order of both the numerator and denominator 
of the effective permittivity in z domain can be reduced. 
We can select the order of the reduced-order model to be 
no higher than the maximum order of either neighboring 
media. The whole procedure of the simulation can be 
summarized as: 

1) Determine the conditions of the simulation, such as 
mesh size, time step, boundary condition, and 
properties of media. 

2) Derive the representation of each medium 
permittivity in z domain. 

3) Derive the relation between D and E in the z 
domain at the interface of different media. 

4) Apply the reduced-order modeling method to 
achieve the reduced-order model of the effective 
permittivity at the interface if there are different 
poles of the permittivity for the neighboring media. 

5) Obtain the update equations in a similar way as in 
[10] and run simulation. 

121 ACES JOURNAL, VOL. 23, NO. 2, JUNE 2008



When one or both of neighboring media are replaced 
by non dispersive media permittivity, equation (8) will 
represent the effective scheme for interfaces of 
dispersive-non dispersive and non dispersive-non 
dispersive media, respectively, where the permittivity of 
the non dispersive media is a constant and in a simpler 
form compared with that of dispersive media. In the next 
section, numerical experiment will be performed to 
illustrate the procedure and effect of our scheme for the 
case of dispersive-dispersive media interface. 
 

III. NUMERICAL EXPERIMENT 
 

To show the procedure and benefit of this effective 
permittivity scheme for ADI-FDTD method at the 
interface of dispersive media, let us assume a Gaussian 
pulse propagating normally through the interface of the 
muscle (assumed to be medium 1) and bone (assumed to 
be medium 2), and study the reflection coefficient at this 
interface, which is parallel to y axis. The continuous 
function of the pulse is 

( )( )2( ) 100exp ( 320 ) 64= − − ∆ ∆g t t t t , where ∆t = 10ps 

is the simulation time step. The uniform mesh size is set 
to be 0.5 mm and the thickness of both tissues is assumed 
to be 1 cm. The structure to be analyzed is truncated by 
10-cell PML. 

To start the illustration for the procedure of the 
effective permittivity scheme, the parameters of the 
Debye equation for the muscle and bone are obtained 
from [12] and [13], respectively. The Debye equation of 
relative permittivity can be presented in s domain as, 

 

( )
1 1

1 2
r

1 2

A As
s s∞ε ε
τ τ

= + +
+ +

. (9)

 
For the relative permittivity εmsl(s) of muscle, ε∞=19, 

A1=10000, τ1=1.13×10-7s, A2=42, and τ2=1.19×10-11s. For 
the relative permittivity εbon(s) of bone, ε∞=3.4, A1=309.4, 
τ1=4.625×10-8s, A2=3.71, and τ2=9.07×10-11s. Their 
representations in z domain, ε1(z) and ε2(z), can be 
derived by the bi-linear transform in equation (5), 

 
1/ 2

1/ 2
4 1

1
1/ 2 1

1/ 2 1

( ) ( )

26.512901-31.324797 4.966468 ,
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z1 msl s
t z

z s

z z
z z

ε ε −

−
−

=
∆ +

− −

− −

=

+
=

+

 (10)
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( ) ( )
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z2 bon s
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z z
z z
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−
−
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− −

− −

=

+
=

+
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Here all the numbers are kept to six digits after the 
decimal part in order to distinguish them. It should be 
noted that in this section we only talk about the process of 
the relative permittivity for simplicity, and the final 
permittivity in the updating equation should be the 
relative permittivity obtained times the vacuum 
permittivity ε0.  

According to equation (9), the effective permittivity 
at the material interface can be achieved. One can find 
that the poles of the muscle permittivity in z domain are 
0.999955 and 0.652778, and those of the bone 
permittivity are 0.999892 and 0.946352. Therefore the 
effective permittivity will possess four different poles and 
zeros, rather than two poles and zeros like the 
permittivity of each neighboring medium. So the field 
components D and E at two extra time steps need to be 
saved and processed. When the reduced-order modeling 
method is applied to reduce the order of the effective 
permittivity, a discrete model for the effective 
permittivity at the interface can be deduced, which 
possesses the same number of poles and zeros as these 
two media. Therefore the memory and computation 
operation for the extra field components of two time steps 
are not needed any more. Here if we assume that the 
number of the nodes on the interface is Nd and the 
memory occupied by each field component value is Nm 
bytes, the scheme adopting reduced-order modeling at 
least can save 4NdNm bytes memory and the computation 
operation on the extra field components is also 
eliminated. In addition, this reduced-order modeling 
process simplifies the programming work, which has a 
significant practical advantage.  

If z1/2 in equations (10) and (11) is replaced by 
z1/2=exp(jω∆t/2)=exp(jθ), where ω is the frequency we 
are interested in and ∆t is the time step size of the FDTD 
scheme, the system response before the reduced-order 
modeling can be obtained from equation (8). Since the 
reduce-order model of the permittivity at the interface is 
supposed to possess two poles and zeros as the two 
neighboring media, let us substitute z1/2=exp(jθ) into the 
reduced-order model of equation (12), 

 
1/ 2 1 1/ 2

1/ 2 1 1/ 2( ) 0 1 2 0 1 2
12

1 2 1 2

p p z p z p z p z pz
q z q z z q z q

ε
− −

− −

+ + + +
= =

+ + + +0 0q q
(12)

 
where p0, p1, p2, q0, q1, and q2 are the parameters to be 
achieved in this reduced-order model. Based on the 
model in equation (12) and the system response from 
equation (8) mentioned above, an equation similar to the 
equation (8) in [11] can be achieved and the reduced-
order modeling can be carried out accordingly [11]. The 
result of the reduced-order model of the effective 
permittivity in z domain reads, 
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1/ 2 1

1/ 2 1

24.397910-44.359457 19.991045( )
1-1.877082 0.87708812

z zz
z z

ε
− −

− −

+
=

+
. (13)

 
With all these permittivity representations in z 

domain, the relation between D and E in z domain 
everywhere in the computational domain can be derived, 
and then the update equations can be obtained in a similar 
way as in [10]. 

The magnitude and phase angle (in degree) of the 
reflection coefficients at various frequencies are 
evaluated by three different schemes, which include the 
effective permittivity scheme, and the permittivity at the 
boundary simply assigned to either one of the two media. 
The numerical results are compared with the exact values 
in Figs. 2 and 3.  

 

 
 
Fig. 2. Comparison of the magnitudes of reflection 
coefficients. 
 

 
Fig. 3. Comparison of the phase angles of reflection 
coefficients. 
 

From these two figures, one can find that the results 
of the effective permittivity scheme agree with the exact 
values very well, however, the results of the other two 
cases obviously disagree with the exact value. In order to 
highlight the difference between the numerical results and 
exact value, ErrordB in equation (14) defines the error of 
the numerical results in decibel for each sampling point, 

( ) ( )
( ) 20 log

( )
m 0 m

m
0 m

F f F f
ErrordB f

F f
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

. (14)

 
F(fm) is the numerical result at the m-th frequency 

sampling point fm while F0(fm) is the corresponding exact 
value. 

  

 
 
Fig. 4. Comparison of Error (dB) of various schemes. 
 

Figure 4 plots ErrordB of the three schemes 
mentioned above and it can be found that this effective 
permittivity scheme in ADI-FDTD successfully avoids 
the significant error due to improper assignment of media 
permittivity. 
 

IV. STABILITY ANALYSIS 
 

In order to analyze the stability of the updating 
equations for the ADI-FDTD method at the interface of 
dispersive media discussed in the previous section by the 
von Neumann method [14], the trial solutions of the field 
components in the form of equation (15) are substituted 
into the updating equations, 

 
( )

,
x yn j k I x k J yn

I J
V V e− ∆ + ∆=  (15)

 
where V represents various field components, I and J are 
the spatial indexes. Then the updating equations can be 
written in a matrix form as, 
  

1/ 2

1L 1R

n n
u u

+
=M M , (16a)

1 1/ 2

2L 2R

n n
u u

+ +
=M M  (16b)

 
where 
 

1/ 2 1/ 21/ 2 1/ 2 ,
Tn n n n nn n n n n

x x y xx x y x zu D E D E D E D E H
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where Dξ =εrEξ and ξ can be x or y. 

According to the von Neumann method, the 
magnitudes of all the eigenvalues of the updating matrix 
M in equation (17) need to be no greater than 1 to make 
sure the updating equations to be stable, as shown 

( ) ( )1

2L 2R 1L 1R

n n n
u u u

+
= = -1 -1M M M M M . (17)

 
However, for the case of dispersive media, it is 

difficult to achieve the analytical solutions of the 
eigenvalues as in [6]. Therefore the combination of von 
Neumann method and Routh-Hurwitz criterion [15] is 
adopted here to investigate the stability. The reduced-
order model of the dispersive media permittivity in 
equation (13) needs to be substituted into equation (17) to 
analyze the stability. If the bilinear transformation in 
equation (3) of [15] is applied to the eigenpolynomial of 
M and then the steps in [15] are followed to build the 
Routh table, it can be found that all the entries of the first 
column of the Routh table are non-negative quantities 
regardless of the time step size, which means the 
updating equation is still unconditionally stable for this 
case. One can analyze the stability of the updating 
equations by this approach. 

The detailed procedures and the result of the Routh 
table will not be presented here due to the limit of paper 
length since they are very lengthy. But it is not difficult to 
work it out with the help of some mathematical software 
such as Matlab. 
 

V. CONCLUSION 
 

This paper has presented an effective permittivity 
scheme to treat the dispersive media interfaces in ADI-
FDTD method. The approach to analyze its stability has 
been discussed as well. This scheme is also applicable to 
the cases of the dispersive and non dispersive media 
interfaces. To reduce the extra memory storage and 
computation operation generally required, a reduced-
order modeling method for discrete system is applied to 
deal with the effective permittivity at the interface of two 
neighboring dispersive media, which can also simplify 
the programming work and therefore has a significant 
practical advantage. The numerical experiment, which is 
about wave propagation in different biological tissues for 
the demonstration of the case of dispersive-dispersive 
media interfaces, has been performed to illustrate the 
procedure and effect of our scheme. One can find that this 
scheme works well for avoiding the significant error due 
to improper assignment of media permittivity, as well as 
reducing the extra memory storage and computation 
operation required. Meanwhile the programming work is 
simplified. So the investigation on the treatment of media 
interfaces in ADI-FDTD method is meaningful since it 
will be useful for many practical problems.  
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