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Abstract −  A rigorous technique based on the transverse 
Wave Concept Iterative Procedure (WCIP) and a Fast 
Mode Transformation (FMT) is used to analyze the 
Frequency Selective Surface (FSS). These structures are 
used as filters and reflector antenna as well as deep-space 
exploration for multi-frequency operations. In order to 
initialize the iterative procedure, an incident wave is 
defined in spatial domain with arbitrary angle of 
incidence. The numerical complexity is studied and 
compared to the classical MoM. The good agreement 
between simulated and published data justifies the design 
procedure. 
 
Keywords: Arbitrary incidence, single-layer, 
multilayered, and 2D-FFT algorithm. 

 
I. INTRODUCTION 

 
Frequency Selective Surface structures have played 

an important role in the recent development of antennas 
and microwave device technology. They are used as 
spatial filters [1], artificial surfaces [2] and a deep- space 
exploration for multi-frequency operations [3]. Typically, 
FSS structures consist in two-dimensional periodic 
resonant element supported by one or multilayer of 
dielectrics. Performances depend on their substrate 
characteristics, element type, dimensions and the spacing 
between elements. 

To design the FSS arrays, a number of analytical and 
numerical techniques has been developed. One of the 
most popular is the Method of Moments (MoM) and its 
derivatives [4-6]. Yet, one can compute the unknown 
current distribution on the FSS screens in one-step. Then 
the small dimensions of the circuit cause some problems 
in result precisions thus coupling conditions between the 
different elements must be taken into account. The Mode 
Expansion Method [7] and the Spectral-Domain Method 
[8] have been developed to analyze the FSS structures. 
However, the efficiency, memory consumption and time 
requirement usually make these methods unsuitable for 
optimization. For its simplicity, the Equivalent- Circuit 
Method is used to design the FSS structures [9-10], but its 
application is limited only for known simple forms [9]. 

During the last few years, the FMT-WCIP method 
has been applied in wide variety of microwave structures 
[11-13]. It consists in successive reflections between the 
FSS screens and their two sides. It has also an alternative 
behavior between space and spectral domains. There are 
several procedures to change wave domains. In [14], The 
Galerkin technique is used. In each stage of analysis, the 
transformation passage from spatial to spectral (and vice 
versa) is long. As in [11-13], we combine the wave 
concept with the 2D-FFT algorithm to change the 
domain. The use of the 2D-FFT algorithm is required to 
mesh the circuit plane into 2D small rectangular cells. 
Hence, the boundary conditions are satisfied at each cell. 
By using the 2D-FFT algorithm, a high computational 
speed can be achieved. This method is simple since it 
involves neither basic functions nor matrix inversion. 
Thus, it not only over comes the limitation of the above 
methods, but it is also suitable for general structure. In 
[11-13], the circuit under studied is deposed on one 
dielectric layer surrounded by four perfect electric walls, 
and is defined in the spatial domain. The source 
excitation consists in an electric filed E0 placed between 
the circuit and an electric wall of the cavity. In reference 
[15], the WCIP is used to study a stratified 
isotropic/anisotropic FSS structure with a normal 
incidence angle. 

The purpose of this paper is to extend the Wave 
Concept Iterative Process method WCIP to the analysis 
of a Frequency Selective Surfaces FSS structures with an 
arbitrary incident angle in the multilayer configuration. 
The numerical complexity of the iterative procedure is 
studied and compared to the classical MoM. Two 
different examples are studied; single simple layer and 
multilayer. For the two cases, our simulated results are 
validated with those of other methods and measurements. 

 
II. THEORY 

 
Let us consider a periodic arbitrary multilayer 

structure, as shown in Fig. 1. Figure 2 shows the unit cell 
at the Ωi interface. This interface can support the circuit 
and includes two sub-domains Metal Mi and Dielectric 
Di. We suppose that the electromagnetic field is known 
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on all points of the interface plane. The solution of the 
problem has to satisfy the following boundary conditions, 
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In the last equation, ETi and ET(i+1) are respectively, 

the spatial tangential components of the electric field at 
medium i and (i+1) with HTi and HT(i+1) as their 
corresponding magnetic fields. 

The wave concept is introduced by writing the 
tangential electric and magnetic fields (ETi,HTi) in terms 
of incident (Ai) and reflected (Bi) waves, as shown in Fig. 
3 [13]. It leads to the following equation, 

 

iiT

iT

i0

i0

i0i

i

nH

E

1y
1y

y2
1

B
A

∧−
= .               (2) 

 
The symbol ni is the unit vector orthogonal to Ωi 

giving the direction of the incident and reflected waves 
and y0i is an intrinsic admittance characterizing the 
medium. It is often chosen as 0 0ε ε µri  in which ε0, µ0 
and εri are respectively, the permittivity and permeability 
of the vaccum and the relative permittivity of the medium 
‘i’. 

 
Fig. 1. General periodic multilayer structure. 
 

 
Fig. 2. Unit cell of the periodic structure with arbitrary 
incidence A00. 

This last equation allows us to write the boundary 
conditions given by equation (1) as the following general 
spatial equation, 
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Hence, we deduce the global spatial equation relating 

the reflected waves to the incident ones on all the 
interfaces, 
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Between two consecutive interfaces (i and i+1 for 

example), the waves are defined in the spectral domain 
(TE and TM modes), and are led by the following 
spectral equation, Fig. 3.  
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For the TEmn or TMmn mode, the elements of the 
matrix Li become L1mnα and L2mnα, which they have the 
following partitioned form, 
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a and b are respectively the periodicity along (ox) and 
(oy), θ  and φ  define the angle of incidence. 
 

 
 

Fig. 3. Definition of waves for the multilayer structure. 
 
On the upper and lower parts of the multilayer 

structure (medium 1 and medium N), the higher-order 
modes are shunted by their reactive impedance Zi, which 
relates the tangential electric field ETi to the total current 
density Ji. Consequently, we obtain, 

 
ETi= Zi Ji .                                    (6) 

Thus, with equation (2), we can define a reflection 
operator in modes. Hence, we deduce the reflected 
spectral wave Ai from the incident spectral Bi as, 
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Consequently, with equations (5) and (7), we deduce 
that the global spectral equation relates the diffracted 
wave Ai to incident wave Bi in the spectral domain. 
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In the above equation, we have included the 

excitation wave
oy

ox

A
A

A =00 . A00 is defined in the 

spectral domain and has the following expression: 
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For TM polarization: 
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Equations (9) and (10) are derived from the 
characteristic functions of periodic waveguide. 

The implementation of the iterative procedure 
consists in establishing a recursive relationship between 
the two spatial and spectral equations, respectively 
equations (4) and (8). 

In addition, this iterative procedure has an alternative 
behavior between the spatial (on the circuit) and spectral 
domain (in the two sides). At each iteration, it is 
necessary to change the type of domain. In the present 
study, we combine the Wave Concept with the 2D-FFT 
algorithm, which is called Fast Mode Transformation 
FMT [15]. The iterative procedure is summarized in Fig. 
4. A successive set of iteration is considered to determine 
a relationship between (k) and (k+1) interaction waves. 
This is illustrated in the following way. 

First, we take the spectral equation (8) and deduce 
the spectral incident waves (Ai)ΤΕ, ΤΜ. In the same 
iteration, we take the IFMT transformation (Inverse Fast 
Mode Transformation) to calculate the spatial waves, this 
transformation is expressed as, 
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The matrix [T] is the transformation matrix from the 

classical 2D-FFT to 2D-FFT in modes, which is derived 
from periodic waveguide chrematistic functions and has 
the following partitioned form, 
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a, b, βxm and βyn are defined in equation (5). 
 

The second step consists in taking the spatial 
equation (4) and deducing the reflected spatial wave 
(Bi)x,y from the incident (Ai)x,y. 

In the third step, we come back to the spectral 
domain using the direct FMT. This should be done as 
follows, 
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Finally, we calculate the scattered matrix parameters, 
and then we test the convergence and return to the fist 
step if the convergence is not obtained. 

 
 

 
 
Fig. 4. Schematic description of the iterative process. 

 
 

III. APPLICATIONS 
 
To evaluate the numerical complexity procedure 

described in section II, we will make a comparison with 
the Method of Moments MoM. In terms of the WCIP 
method, the numerical complexity depends on the 
interfaces number and the spatial mesh of the circuit 
plane, whereas in the classical Method of Moments 
MoM, this complexity depends on the rate of 
metallization [16]. In order to compare the numerical 
complexity of these two methods, let us consider Q as the 
number of cells meshing the whole interface and Qm the 
number of cells on the metallic domain. Qm corresponds 
to the number of rooftops in the MoM. For the WCIP, the 
total number of operations for T iterations is 

( )24 1 3logWCIPOper QT Q= +  and for the MoM is 
3 33MoMOper Q R=  where mR Q Q=  [12]. Figure 5 

shows the evolution of the operation numbers as the 
metallic rate function. The intersection point ‘M’ of the 
two curves corresponds to 30% of metallization and 
0.9011 107 operations, is calculated with 32x32 cells and 
200 iterations. We see that the WCIP is very speedy if the 
metallization is as large as in the FSS structures. 
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Fig. 5. Comparison in number of operations.  

 
The convergence of the resonance frequency as mesh 

size thinness ∆ is studied. Figure 6 shows that before the 
convergence, the resonant frequency increases if ∆ 
decreases. At the convergence, the resonance frequency is 
about 10.3 GHz, is obtained from ∆=0.2 mm. In this 
study, the source excitation used in this application is the 
fundamental TM mode with normal incidence                 
(θ = φ = 0).  
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Fig. 6. Convergence of resonance frequency as function 
of mesh size thinness ∆ where: h = 3mm, εr =3.5, a = b = 
20 mm and Lx = Ly =10 mm.  
 

In order to validate our method, we consider again 
the structure of Fig. 6. The results of our method are 
compared to those calculated with Method of Line [17] 
and depicted in Fig. 7. In the two cases, a good agreement 
is obtained between results. 

The second example consists in studying two layers 
structure as shown in Fig. 8. A TM source with arbitrary 
incidence is considered in this application.  
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Three cases of ф are studied: E-plane ( ф = 0 ),        
D-plane ( ф = 45º )and H-plane ( ф = 90º ). In the case of 
E-plane the evolution of power reflection coefficient as 
function of θ is plotted in Fig. 9. At all range of θ, a good 

agreement is observed between our results and measured 
data [17], a maximum discrepancy is less than 2 %. The 
total reflection is observed for θ = 83º. 

In the two other cases [D-plane] and [H-plane], the 
power reflection variation is plotted, respectively in Figs. 
10 and 11. Only measured data [18] presents a total 
reflection at the predicted angle. In our simulation, the 
total reflection is 0.73 in D-plane and ≈ 0.865 in H-plane. 
The discrepancy is due to mode excitation. In practice, 
[17], the excitation is realized by coaxial cable. Then, a 
field of symmetric cylindrical is produced and the TM 
mode is coupled at all directions. 
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Fig. 7. Power coefficients S11
2 and S21

2as function of 
frequency where: h = 3mm, εr=3.5. a = b = 20 mm and Lx 
= Ly =10mm. 
 

 
a: Side View 

 

 
b: Interface Ω1                                 c: Interface Ω2 

 
Fig. 8. Slot coupled periodic antenna. 

 
IV. CONCLUSION 

 
In this paper, the transverse wave concept iterative 

procedure FMT-WCIP is proposed for the analysis of the 
frequency selective surface (FSS) with arbitrary angle of 
excitation. The numerical complexity is studied and 
compared to the classical MoM. As a result, a minimum 
computation time is required and the number of 
operations is reduced by using the FMT based on the 2D-
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FFT algorithm. The comparison between the simulation 
and the measurement results has proved the efficiency of 
our proposed design procedure of a simple and multilayer 
FSS.  
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Fig. 9. Amplitude of power reflection coefficient versus θ 
for E-plane. 
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Fig. 10. Amplitude of power reflection coefficient versus 
θ for D-plane. 
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Fig. 11. Amplitude of power reflection coefficient versus 
θ for H-plane. 
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