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Abstract − A surface integral formulation is used for a 
broad-band characterization of wire interconnects. A 
suitable definition of effective impedance accounts for 
the penetration of currents and charges inside lossy 
conductors. The results are successfully compared to a 
volumetric integral approach. 
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I.  INTRODUCTION 
 
The high-frequency operating conditions in digital 

high-speed circuits require an accurate electromagnetic 
modeling of all the physical components of the overall 
system, such as interconnects, packages, discontinuities, 
and devices. Effects related to the three-dimensional (3D) 
nature and finite size of the interconnects, are less and 
less negligible as frequency goes up. For this reason 
several efforts are made in literature to propose efficient 
full-wave simulators able to model adequately the high-
frequency behavior of such structures. Efficient full-wave 
models may be obtained starting from integral 
formulations of the electromagnetic problem: a typical 
example is the popular EFIE (Electric Field Integral 
Equation) approach [1]. All the integral approaches 
benefit from the possibility to reduce the mesh to the 
conducting regions only and to impose rigorously the 
boundary conditions at infinity. When dealing with high-
conductivity materials or when characterizing high-
frequency behavior we can assume that the sources lie 
only on the conductor surfaces. In this case it is useful to 
introduce a surface integral formulation.  

The most common way of discretizing a surface 
integral formulation is based on the use of the so-called 
RGW basis functions [2]. This approach suffers from the 
so-called low-frequency breakdown problem [1], i.e., an 
ill-conditioning of the problem at frequencies low enough 

to make the conductors size small as compared to the 
wavelength. To overcome this problem, a loop-star or 
loop-tree decompositions are commonly used [3], able to 
decouple the solenoidal component of the current density 
from the non-solenoidal one. This cannot be 
automatically done for multiconnected domain or in the 
presence of electrodes. This point has been stressed since 
the very early applications [4], and has received 
considerable attention in the last years [5-6]. The Authors 
have recently proposed a surface integral formulation 
able to deal with arbitrary topologies thanks to a null-pinv 
decomposition of the basis functions that can be seen as a 
generalization of the loop-star and loop-tree 
decompositions [7-11]. 

This paper deals with the inclusion in such a 
formulation of a suitable surface impedance for broad-
band characterization of lossy interconnects. A correct 
evaluation of the broad-band behaviour of ohmic 
conductors is essential to accurately predict the overall 
performances of high-speed digital circuits. When testing 
the signal integrity, for example, the signalling system is 
forced by a random sequence of bits and the quality is 
checked by observing the corresponding “eye-diagram”. 
This requires a time-domain analysis performed by 
representing the interconnects through equivalent circuits, 
often extracted from a frequency domain characterization 
(e.g., in terms of S parameters). The equivalent circuits 
have to be able to reproduce accurately fast transients as 
well as the DC response, hence the frequency 
characterization should be accurate for a wide range, 
from DC to microwave.  

The surface approach for perfect conductors is fully 
consistent at any frequency. On the contrary, when 
dealing with ohmic conductors the electrical charges and 
currents do not necessarily lie on the conductor surfaces. 
This hypothesis is a good approximation when the skin 
effect is strong (high frequency and or high conductivity). 
In this case a suitable surface impedance can often be 
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used [12]. On the contrary, the definition of such an 
impedance should be changed to account for the 
penetration of sources at low frequency [13-14]. In this 
work we derive a consistent definition of the surface 
impedance, able to describe correctly both the low and 
high frequency behaviour, by solving analytically the 
axial diffusion problem in ohmic conductors of circular 
cross section. 

The paper is organized as follows. In Section II the 
surface integral formulation is briefly reviewed and in 
Section III the theory for the equivalent surface 
impedance is described for cylindrical conductors. 
Section IV presents some results with particular reference 
to Unshielded Twisted Pairs (UTPs). This demonstrates 
the potentiality of the approach in broad-band modelling 
of conducting structures of arbitrary topology. Finally, 
Section V draws the conclusions. 

 
II.  MATHEMATICAL AND NUMERICAL 

FORMULATION 
 

This section briefly illustrates the features of the 3D 
surface integral formulation used in this paper, and the 
related code SURFCODE. A more detailed derivation can 
be found in [9]. 

We solve Maxwell’s equations in the frequency 
domain, assuming that some good conductors are present 
in the free space. The formulation can be extended to 
stratified dielectric media, as illustrated in [11]. Let Σ be 
the external surface of the conductors (see Fig. 1); we 
assume that ∂Σ is made of NE linear equipotential 
electrodes lj, through which the current can flow.  

 

Fig. 1. Reference geometry. 
 
Assuming that the current density lies on the surface 

Σ, we must satisfy the condition, 

ΣΣ
×ζ=× nJnE ˆˆ sS  (1) 

where E is the electric field, n̂  is the unit vector normal 
to Σ, Sζ  is the surface impedance of the conducting 
body, and Js is the surface current density. The above 
assumption is rigorously satisfied in case of perfect 

conductors ( Sζ  → ∞) at any frequency. It can be 
considered as a good approximation at sufficiently high 
frequencies due to the skin effect. At very low 
frequencies as well as in intermediate range condition. 
Equation (1) may still be imposed, provided that a 
suitable definition of the surface impedance is adopted. 

Introducing the magnetic vector potential A and the 
scalar electric potential ϕ, we express E as follows, 

ϕ∇−ω−= AE i . (2) 

Using equation (2), we impose equation (1) in weak form 
using the weighted residual approach and the surface 
divergence theorem, 
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where p is a vector weighting function tangent to Σ, m̂ is 
the normal to ∂Σ over Σ (exiting from Σ), and the operator 
∇s=∇– n̂ ∂/∂n. Using Lorenz gauge, the potentials are 
related to the surface current density Js and the surface 
charge density σ through the Green function G as 
follows, 
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The sources must further satisfy the charge conservation 
law, 

ΣΣ
ωσ−=⋅∇ iss J . (5) 

To solve the problem numerically, we give a 
triangular finite elements discretization of Σ, with e 
edges, n nodes, and t triangles. We expand the surface 
current density Js in terms of div-conforming basis 
functions wk, having a continuous normal component all 
over the mesh [9]. The resulting degrees of freedom 
(DoF) Ik are the currents flowing across the edges. The 
surface charge density σ is expanded in terms of 
piecewise constant functions qm, so that the resulting DoF 
Qm are the charges in the triangles. It can be easily seen 
that 
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where D is a suitable sparse matrix, which can be seen as 
the discrete divergence. Using equation (6), equation (5) 
becomes, 
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QID ω−= i , (7) 

where I and Q are the vectors of the DoF Ik and Qm. 
Assuming that Σ is an open surface, the rank of D is full, 
hence we can automatically satisfy equation (7) by 
writing, 

QRIKI s ω−= i , (8) 

where K is a matrix whose columns are a basis for the 
null space of D, R is a pseudoinverse matrix of D, and Is 
are unknowns which give no contribution to the current 
density divergence (and hence to the charge). We are in 
fact using the following “null-pinv” basis functions [9], 
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where nx is a number depending on the topology of the 
solution domain. The null-pinv decomposition of 
equation (9) is a generalization of the loop-star 
decomposition [3], hence, it allows avoiding the so-called 
“low-frequency breakdown”. Furthermore, the proposed 
decomposition also provides the possibility to deal with 
topologically complex geometries (via holes, bends, and 
electrodes).  

Using equation (9) as weighting functions in 
equation (2), we have, 
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where ϕ is a vector containing NE electrode potentials and 
the other elements are defined as follows, 
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Equation (10) can be rewritten in a compact form as, 

ϕ−= FTZ , (12) 

with a suitable definition of the matrices Z, T.  From this 
point, simple algebraic manipulations [9] allow the 
computation of any matrix describing the behavior of the 

interconnect at its terminals. For instance the admittance 
matrix Y is simply given by, 

FZFY 1−= T . (13) 

 
III.   EQUIVALENT SURFACE IMPEDANCE FOR 
CYLINDRICAL CONDUCTORS OF CIRCULAR 

CROSS SECTION 
 
Let us consider cylindrically-shaped straight 

conductors with circular cross section of radius a. In 
order to derive a possible expression for the surface 
impedance ζS, for each conductor we consider a single 
straight cylindrical wire with a volumetric current density 
Jvol directed along the conductor axis. In ohmic 
conductors of resistivity η  the amplitude of the electric 
field E is related to the volumetric current density Jvol 
through, 

volJE η=  (14) 

in the whole conductor domain, including its surface Σ. 
Neglecting the displacement current in the conductor, the 
amplitude of the magnetic field on Σ is related to the total 
current I flowing in the wire by, 

a
IH
π

=
Σ 2

. (15) 

It is possible to prove that the volumetric current density 
depends on the radial coordinate r as follows [15], 
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where δ is the penetration depth, 

ωµ
η

=δ
2 , (17) 

and Jα is the Bessel function of order α. On the surface Σ 
this volumetric current density is equal to,  
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where the quantity T  can be approximated as, 

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

<<δ
δπ

+

>>δ
π≅

⎟
⎠
⎞

⎜
⎝
⎛

δ

⎟
⎠
⎞

⎜
⎝
⎛

δ

δπ
=

a
a
i

a
a

aiJ

aiJ

ai
T

2
1

1

2

2

2
2 2

23
1

23
0

25
. (19) 

Consequently, the relation between the electric and 
magnetic fields on Σ becomes, 
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ΣΣΣΣ
ζ=πη=η=η= HHaTITJE Svol 2 , (20) 

where the surface impedance is defined as, 
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Note that the high frequency limit of equation (21) 
reduces to the standard Leontovich expression.  
In the range of frequency in which δ and a are 
comparable, instead of the exact expression of equation 
(21) it is often used the following heuristic coth law [14, 
16], 
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that provides the values of equation (21) in the high and 
low frequency limits, since, 
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Note that the impedance of equation (21) is spatially 
homogeneous. 

 
IV.    NUMERICAL RESULTS 

 
The analyzed test-case is a typical broad-band wire 

interconnect, namely an unshielded twisted pair (UTP) 
cable, made of cylindrical copper conductors. Let us 
assume Cu resistivity m107.1 8 Ω⋅=η − , twist pitch 10 
mm, radius a = 0.1 mm, center-to-center distance of 0.5 
mm, and a total length equal to 2 twist pitches.  

The surface mesh used for the computation is plotted 
in Fig. 2. The mesh is made of 576 triangular elements, 
giving up to 876 degrees of freedom (DoFs). We have 
evaluated the impedance, Zin computed at one end when 
the other one is short-circuited. This has been done both 
using the exact formula of equation (21), and the coth law 
of equation (22), so to compare the error introduced by 
using the latter approximated law.   

The results are further compared to those obtained by 
the 3D volumetric code CARIDDI [17-19] in two 
different discretization conditions. The mesh for the case 
“CARIDDI 1” (7448 points, 6600 elements, giving rise to 
12688 DoFs) is characterized by a fine discretization 

along the longitudinal and radial directions of the 
cylinders, as depicted in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Surface mesh used for the UTP (a); detail (b). 
 

 
(a)   

 
(b) 

 
Fig. 3. Volume mesh (a), detail (b) for the case 
“CARIDDI 1”. 

(b) 

(a) 
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Conversely, in case “CARIDDI 2” the mesh is 
characterized by a fine discretization in the poloidal 
direction of each cylinder (3796 points, 3200 elements, 
giving rise to 6128 DoFs). 

Figure 4 shows the comparison between the surface 
and volume approaches in a transition region. The results 
agree satisfactorily, being the displacement between the 
related curves within 8%. For f < 40 kHz, we have a ratio 
δ/a > 3, hence, the conductors can be considered as fully 
penetrated. As clearly shown, the low frequency 
behaviour of the resistance is correctly modelled. Indeed, 
the real part of the impedance approximates the DC 
resistance of the wire. For f >10MHz we have δ/a < 0.2 
and the solution CARIDDI 2 suffers for a lack of 
precision, due to the discretization along the conductor 
radius, too coarse to describe the skin effect. This may 
also explain the (even small) mismatch of the results at 
higher frequencies. Note that the solution obtained by 
using the coth law approximates the exact one within a 
20% error. 
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Fig. 4. Input impedance of a UTP in a transition region. 
Real (a) and imaginary (b) parts. 

Figure 5 shows the broad-band frequency behaviour 
of the input impedance computed by our code. The 
considered range deeply enters the asymptotic regions δ/a 
>> 1 and δ/a << 1.  

Finally, in Fig. 6 it is plotted the current density 
pattern computed at 20 MHz, highlighting a non-uniform 
distribution due to proximity effect. 
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Fig. 5. Input impedance of a UTP in broad interval of 
frequency. Real (a) and imaginary (b) parts. 

 

 
Fig. 6. Current density pattern at 20 MHz. 

(a) 

(b) 

27MAFFUCCI, RUBINACCI, VENTRE, VILLONE, ZAMBONI: BROAD-BAND CHARACTERIZATION OF WIRE INTERCONNECTS



 V.   CONCLUSIONS AND PERSPECTIVES 
 

In this paper a surface integral formulation is used to 
obtain a broad-band characterization of 3D wire 
interconnects. The use of null-pinv basis functions in the 
numerical model allows an automatic treatment of 
arbitrarily complex geometries, while retaining all the 
benefits of a decomposition that does not suffer from 
low-frequency breakdown problems. The presence of 
lossy conductors is correctly taken into account at any 
frequency by introducing suitable surface effective 
impedance, obtained by solving the diffusion problem. 

The test case (characterization of a UTP cable) 
shows the consistency of the approach with volumetric 
techniques in the low frequency region, and the 
inaccuracy of the approximated coth law is often used to 
describe lossy conductors. 

In principle, the definition of an effective impedance 
presented here could be extended to the case of more 
complicated geometries. This could be achieved by 
solving numerically the internal diffusion equation inside 
the region occupied by the conductors, e.g., with a 
differential code. 
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