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Abstract − The electrical properties of polymeric 
composite materials were extracted from measured data 
using optimization techniques in Advanced Design 
System (ADS), a circuit simulation tool. A vector 
network analyzer was used to measure the S-parameters 
of the composite materials. The materials were inserted in 
an X-band waveguide and measured from 8 GHz to 13 
GHz. The measured data was used to reconstruct the 
relative permittivity and loss tangent against a modeled 
setup in ADS. Two techniques were implemented in the 
reconstruction of the permittivity, one with the 
permittivity and loss tangent assumed to be constant and 
the other with them considered to be a function of 
frequency. The results show that for both techniques the 
modeled data does converge to the measured data 
yielding an optimized permittivity and loss tangent.  
 
Keywords: Permittivity, loss tangent, optimization, and 
composite materials. 
 

I. INTRODUCTION 
 

Polymeric composite materials have gained a 
growing interest in the electromagnetic community. 
These materials can be tailored to provide desired effects, 
such as being transparent or conductive in the microwave 
frequency range. In order to make these composites with 
the desired effects, one must know the electrical 
properties of such materials. Thus, it is important to find 
new ways to take more accurate and efficient 
measurements from these materials in the microwave 
frequency range.  

Material measurements are a broad and growing field 
in the microwave community. There are many methods 
for measuring electrical properties of materials such as 
resonant cavity methods or reflection methods [1].  

In the experimental setup for this study, a 
reflection/transmission waveguide method was used to 

measure the S-parameters of the composite material. The 
Nicholson Ross Weir (NRW) algorithm and other 
variation of this method have been traditionally used to 
reconstruct the permittivity and/or permeability from the 
measured data [2-7]. Instead of using one of those 
approaches, ADS was used to extract the permittivity and 
loss tangent of these materials through optimization.  

The measurement setup and ADS layouts will be 
shown and discussed in detail in the experimental setup 
section. A comparison between the optimizing 
permittivity and loss tangent as a constant and as a 
function of frequency will be made in the results and 
discussion section. Then, conclusions will be drawn from 
the results about the extraction of the permittivity for 
these low loss composite materials.  

 
II. EXPERIMENTAL SETUP 

 
The S-parameters of the composite materials were 

measured with an HP 8510C vector network analyzer. 
Composite materials were placed in a brass waveguide. 
The waveguide itself was X-band, with a length of 15.88 
cm. A relatively low loss composite that was made with 
E-glass fiber and polyester resin was used as the material 
under test (MUT) for this investigation. This composite 
filled the entire 15.88 cm of the test fixture. Having a 
MUT of this length is known to cause difficulties with the 
NRW algorithm, but there is not a problem using the 
optimization technique. A Thru-Reflect-Line (TRL) two 
port calibration was done on the network analyzer. Once 
the composite was measured, the data was imported into 
ADS to find the permittivity and loss tangent. 

The goal of the design was to determine values for 
permittivity and loss tangent so that the measured S-
parameters matched the S-parameters from a circuit 
simulation model. The modeled setup consisted of a 
dielectric filled waveguide that has the same dimension 
as the actual waveguide that was used to take the 
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measurements. For the electrical properties, it was 
assumed that the composite material was homogenous 
and isotropic, only the reflection and transmission are 
needed to satisfy the experimental goals. 

 

 
 
Fig. 1. Photograph of the waveguide used to measure the 
reflection/transmission behavior of the composite 
samples [8]. 

 
Two different types of setups were made in ADS to 

reconstruct the permittivity of the materials. In these two 
setups, it was also assumed that these composite materials 
were not magnetic. The first setup considered the 
complex permittivity to be constant along the span of the 
tested frequency range. The second setup allowed the 
permittivity and loss tangent to vary linearly or 
quadratically as a function of frequency. Equations (1) 
and (2) are the permittivity and loss tangent for the linear 
setup, respectively. Equations (3) and (4) are the 
permittivity and loss tangent for the quadratic setup. This 
allowed the permittivity and loss tangent to be unique in 
the given frequency range. Note that constants A, B, C, 
D, E, and F were considered as variables that ADS was 
solving for in the optimization process. The variables 
were optimized to meet the goal requirements at each 
frequency. These goals, which are seen in Fig. 2, were to 
minimize the difference between the measured and 
modeled reflection (S11) and transmission (S21) 
coefficients. The weights of each goal could be varied, 
and this could be of importance for a lossy composite, but 
for this investigation, the weights were equal.  

 
 91 *( /10 ) ,Er A B freq= + +                  (1) 

 9*( /10 ) ,TanD C D freq= +                 (2) 

 9 9
2

10 10
1 *( ) *( ) ,freq freqEr A B C= + + +           (3) 

 9 9
2

10 10
*( ) *( ) .freq freqTanD D E F= + +           (4) 

 
 ADS has several built-in optimization types 

available such as the random, gradient, or genetic 

algorithm methods. Random optimization was applied 
first to help narrow the optimization range. It also was 
important to use this optimization technique because it is 
not susceptible to convergence to a local maximum or 
minimum solution. Once the optimization range was 
reduced, the gradient technique was applied to further 
satisfy the goals. The gradient technique was also chosen 
because of its speed in converging to the minimum.  
 

III. RESULTS AND DISCUSSION 
 

A comparison between the measured and modeled S-
parameters will be made in the following figures. The 
permittivity and loss tangent will also be shown for each 
method to finalize the results. 

Figures 3 and 4 show the optimized real permittivity 
and loss tangent of an air filled waveguide using a linear 
model for the frequency dependence. 

This data was generated to insure that the program 
was working properly by investigating air as a known 
standard. As it can be seen in Fig. 3, the program 
optimized the real permittivity to one. The loss tangent 
was optimized from 0.00034 to 0.00056, which is 
relatively close to zero. This test provided expected 
results and insured that our measurements and modeling 
were working properly.  

Figures 5 and 6 show the reflection and transmission 
when both the permittivity and loss tangent of the 
material is considered to be constant, thus assuming the 
material under measurement is perfectly homogenous and 
not frequency dependent. In both these figures, the 
reflection and transmission from the modeled data does 
converge to the measured data. Looking at the figures, it 
shows the transmission does not match up quite as well as 
the reflection. There seems to be a few discrepancies 
between the modeled and measured data at the peaks for 
both goals. In both graphs there seems to be no more than 
a 0.5 dB in error which is almost negligible.  

Figures 7 and 8 show the results where the 
permittivity and the loss tangent were allowed to vary 
linearly over the frequency range. For both the 
transmission and reflection, the modeled results compare 
better to the measured data than the previous method. 
This can be seen more clearly in Fig. 11 which compares 
the measured data against both the constant and 
frequency dependent real permittivities. This would 
indicate that the material itself is not ideally frequency 
independent.  

 Figures 9 and 10 illustrate the case when the 
permittivity and loss tangent vary in a quadratic fashion. 
From the figures one can see that the goals matched up 
just as well as the linear case, if not better. The profile of 
the modeled data is almost mirrored to the measured data 
for both goals. Seen in Fig. 11 one can see that both the 
linear and quadratic goal for the transmission is in close 
proximity to the measured data. It should also be noted 
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that both the quadratic/linear method satisfied the goals 
better than the constant method thus considering the 
frequency dependent methods to be the correct approach 
on optimizing the electromagnetic properties for this type 
of composite material. 

The resulting permittivity and loss tangent for both 
methods can be seen in Figs. 12 and 13. The constant 
setup yielded a real permittivity of 4.26 and loss tangent 

of 0.0106. While for both the frequency dependent cases 
yielded a real permittivity in the range of 3.4 to 3.7 and 
loss tangent of 0.0123 to 0.01257. It should also be 
pointed out that the ranges for the permittivity and loss 
tangent are considerably small for the frequency 
dependent methods. If one would enlarge the ranges the 
permittivity and loss tangent would appear to be constant. 

 
 

 
Fig. 2. ADS schematic layout for optimizing permittivity and loss tangent. 
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Fig. 3. Real permittivity for air filled waveguide using the 
linear model. 
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Fig. 4. Loss tangent for air filled waveguide using the 
linear model. 
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Fig. 5. Return loss for the constant permittivity setup. 
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Fig. 6. Insertion loss for the constant permittivity setup. 
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Fig. 7. Return loss for the linear permittivity setup. 
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Fig. 8. Insertion loss for the linear permittivity setup. 
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Fig. 9. Return loss for the quadratic permittivity setup. 
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Fig. 10. Insertion loss for the quadratic permittivity setup. 
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Fig. 11. Insertion loss for the constant and frequency 
dependent permittivity setups in a narrow frequency 
range. 
 
 
 
 

9 10 11 128 13

3.4

3.6

3.8

4.0

4.2

3.2

4.4

freq, GHz

E
r

Quadratic

Linear

Constant

 
 
Fig. 12. The real permittivity of the constant and 
frequency dependent setups. 
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Fig. 13. The loss tangent of the constant and frequency 
dependent setups. 
 

IV. CONCLUSION 
 
The permittivity and loss tangent were found for both 

setups. A comparison was made for each method. Other 
methods consider the MUT to be frequency independent, 
and this technique does not require that. Allowing the 
frequency dependency doesn’t change the outcome 
greatly, but it does indeed match the measured data 
better. In future research, this method can be improved 
for various other types of composite materials, such as 
highly conductive materials or composites made with 
veils. Since these materials could be very frequency 
dependant, a more elaborate model might be necessary.  
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