
Using MATLAB to Control Commercial Computational
Electromagnetics Software

R. L. Haupt

Applied Research Laboratory, State College, PA 16801, haupt@ieee.org

Abstract − This paper provides details on how to use
MATLAB to control some commercial electromagnetics
software packages. FEKO is an example that can be
directly called from MATLAB. Other commercial
software, such as CST Microwave Studio and Ansoft
HFSS, require a scripting language interface. An example
of a design of an inset rectangular patch antenna is
presented using a direct call to FEKO and a Visual Basic
for Applications interface to CST Microwave Studio are
presented.

Keywords: MATLAB, optimization, microstrip antenna,
and genetic algorithm.

I. INTRODUCTION

MATLAB [1] has become a ubiquitous math, data
manipulation, signal processing, and graphics software
package. Engineers use its powerful functions for
analysis and design in many areas including antenna
design. MATLAB is general-purpose software, so many
arcane applications, like antenna design, are done using
special purpose commercial software. Although these
packages can model very complex electromagnetics
systems, they lack some of the powerful analysis tools in
MATLAB. Using MATLAB to control these commercial
electromagnetics solvers creates a powerful tool for
design, analysis, and control.

There are a number of applications where a
MATLAB-commercial electromagnetics solver interface
is critical. Numerical optimization is one example.
Although most commercial electromagnetics codes now
come with some numerical optimization, they lack the
versatility of optimization routines in MATLAB. Another
example is in the use of signal processing software in
conjunction with beamforming in an antenna array. For
instance, the commercial computational electromagnetics
software models the antenna elements while MATLAB
takes the signals from the elements and performs the
signal processing. Other applications include modeling
wireless systems, radar cross section reduction, and
electromagnetic band gap material design.

This paper provides systematic instructions to
interface MATLAB with FEKO [2] or via a scripting
language, such as Visual Basic for Applications (VBA),
to a commercial software package like CST Microwave

Studio [3] or Ansoft HFSS [4]. These software
combinations are used to design an inset rectangular
microstrip patch antenna that is resonant at 2.0 GHz.
Both combinations result in successful patch antenna
designs.

II. MICROSTRIP PATCH OBJECTIVE FUNCTION

The example used in this paper is the design of an
inset rectangular patch that is resonant at 2.0 GHz. Fig. 1
shows a diagram of the patch with the design variables
labeled. The substrate is 1.6 mm thick and has a relative
dielectric constant of 2.2. An 8 mm border (E) surrounds
the metallic patch. The ground plane has the same area as
the substrate. There is a 1 mm gap (G) between the feed
line and the patch. The microstrip feed line is F=25 mm
long and has a voltage feed 3 mm from its left end. The
values of L, M, B, and W are found using numerical
optimization.

Fig. 1. Diagram of the inset patch antenna design.

This is a narrow band antenna, so minimizing the
reflection coefficient at 2.0 GHz results in a very sharp
decrease in s11 at 2.0 GHz. Finding this sharp decrease is
difficult for optimization algorithms. Small changes in
the patch dimensions can significantly move the resonant
frequency. Local search algorithms work well with four

98

1054-4887 © 2008 ACES

ACES JOURNAL, VOL. 23, NO. 1, MARCH 2008

variables when the starting point is very close to the best
solution. If a good guess is not available, then a genetic
algorithm written in MATLAB is used to first find a good
initial first guest for a MATLAB Nelder Mead downhill
simplex algorithm (fminsearch.m). The genetic algorithm
used here is described in detail in [5]. The genetic
algorithm was stopped once it found a solution that had
an s11 < -10 dB. This stopping point was chosen, because
an antenna is considered matched to a transmission line
when the reflection coefficient is less than -10 dB. These
optimizations routines call MATLAB functions that
interface with the commercial software package or
scripting language. A diagram of the optimization process
is shown in Fig. 2. The next two sections demonstrate the
optimum design of an inset patch using a combination of
MATLAB and FEKO or Microwave Studio.

Fig. 2. Flowchart of the optimization algorithm.

Before trying the numerical algorithms, the patch is
first designed using standard analytical approaches [6]-7]
The patch and microstrip line are designed for 50 ohms.
These values can be used to seed the numerical
optimization algorithm to find dimensions that are more
accurate, as shown in Table 1.

Table 1. Patch dimensions from the analytical
design.

Dimension L B W M
Size in mm 32.32 17.48 59.29 4.61

III. CONTROLLING FEKO WITH MATLAB

The relevant ASCII files that are used by MATLAB

and FEKO are shown in Table 2. There are a few other
files generated by MATLAB and FEKO but are not

important to the user. All the files have the same name
but a different extension, so they are easy to associate
with the same project. The MATLAB commands are in
mpatch.m. Data written from MATLAB to be used by
FEKO is stored in the mpatch.txt file. FEKO commands
are in the mpatch.pre file. Data written by FEKO for use
by MATLAB is written in the mpatch.ffe and mpatch.out
files. Figure 1 is a flowchart of the MATLAB-FEKO
software configuration. MATLAB can directly call
FEKO to calculate s11 at 2.0 GHz.

Table 2. Relevant MATLAB-FEKO computer files.

File name contents
mpatch.m MATLAB m file
mpatch.txt ASCII file with variable values
mpatch.pre PREFEKO file
mpatch.out FEKO output file
mpatch.ffe FEKO file with angles, electric field, gain

Fig. 3. MATLAB-FEKO flowchart.

The microstrip patch is represented as a lossless
metal polygon in FEKO. All the polygon corners are
generated by MATLAB. MATLAB plots the patch and
substrate shape and labels the points. An example of a
plot of half of the patch (the other half is a mirror image)
is shown in Fig. 4. If the coordinates of the numbered
points in Fig. 4 are (x,y), then the MATLAB code to
draw the outline of the patch is given by

figure(1);plot(x,y,'-o');
axis equal
for ii=1:length(x)
text(x(ii),y(ii)+z(ii),num2str(ii))
end

This plot is useful in troubleshooting and watching the
convergence of the optimization algorithm.

99HAUPT: USING MATLAB TO CONTROL CEM SOFTWARE

Fig. 4. Figure drawn by MATLAB before passing point
to FEKO.

The numbered points in Fig. 4 are calculated from
the values of the variables shown in Fig. 1. Some of these
values are set while others can vary between
predetermined limits. Once MATLAB has created an
antenna design, all the (x,y,z) coordinates are written to
the text file, mpatch.txt using,

fid=fopen('mpatch.txt','w');
N=length(x);
fprintf(fid,'%6.2f\n',N);
for q=1:N
fprintf(fid,'3%6.2f\n',x(q),y(q),z(q));
end
fclose(fid);

The file, mpatch.txt, has N+1 line. The first line contains
the number of points. The following N lines contain the
coordinates of the points.

Next, the following commands run PREFEKO and
FEKO from MATLAB,

!prefeko mpatch > output.txt
!runfeko mpatch > output.txt

the "> output.txt" part of the commands places
output generated in the running of PREFEKO and FEKO
into a file rather than displaying them on the computer
screen. If this part of the command is skipped, then the
computer screen is filled with a lot of run data that is
usually of little interest.

The lines in mpatch.pre that read from the text file
and create the points defining the outline of the antenna
are given by,

#N= fileread("mpatch.txt",1,1)
!!for #i = 1 to #N
#ax[#i]= fileread("mpatch.txt",1+#i,1)
#ay[#i]= fileread("mpatch.txt",1+#i,2)
#az[#i]= fileread("mpatch.txt",1+#i,3)
DP : p#i : #ax[#i] : #ay[#i] : #az[#i]
!!next

The defining points on the antenna are created by the
define point (DP) command and are labeled p1 to pN.
After these points are formed in FEKO, then the structure
is built out of triangles, polygons, wires, etc. FEKO
performs the calculations and writes the output to
mpatch.out and possibly to other files, such as
mpatch.ffe. MATLAB can easily read the ASCII file
where the far field information is written using the
textread command,

[t,p,rEt,iEt,rEp,iEp,gt,gp,g]
=textread('mpatch.ffe','2%f (%f,%f)
(%f,%f) 3%f');

Reading from mpatch.out is more difficult but possible
using m-files downloaded from the MATLAB website
 [1] (e.g. findstring.m).

Running the MATLAB-FEKO algorithm to
minimize s11 at 2.0 GHz resulted in an s11 of -31 dB. The
plot of s11 over a 4% frequency range is shown in Fig. 5.
This narrow band resonance was achieved from the
dimensions shown in Table 3. The values found for L and
B are close to those in Table 1, while the values for W
and M are considerably smaller.

Fig. 5. Plot of s11 for patch antenna optimized by FEKO.

Table 3. Patch dimensions from the
MATLAB-FEKO design.

Dimension L B W M
Size in mm 32.61 18.55 34.24 2.91

IV. CONTROLLING COMMERCIAL SOFTWARE

PROGRAMS WITH MATLAB VIA A SCRIPT

MATLAB can control some commercial software
via a scripting language. A script is a text file containing
instructions written in a scripting language. The
commands in the script are executed when the scripting
language opens the file. VBA is widely used and
Microwave Studio and Ansoft HFSS have VBA editors
built in. It is a good idea to get familiar with the VBA

100 ACES JOURNAL, VOL. 23, NO. 1, MARCH 2008

editor in the software package before attempting to
interface with MATLAB. Commands that call various
functions in the commercial software are placed in the
*.bas file using the VBA editor. Types of commands
include building geometry, passing variables, and
engaging the main software engine.

The example described in this section uses
MATLAB to control Microwave Studio via a VBA
script. Microwave Studio generates a huge number of
files (74) with each run. The relevant ASCII files are
shown in Table 4. Again, all the files have the same name
but a different extension. The s11 data written by
Microwave Studio for use by MATLAB is written in the
mspatch^d1(1)1(1).sig file. Fig. 6 shows the flow chart.

Table 4. Relevant MATLAB-Microwave Studio
computer files.
File name contents
mpatch.m MATLAB m file
mpatch.txt ASCII file with variable values
mpatch.bas VBA program
mpatch.mod Microwave Studio model file
mpatch^d1(1)1(1).sig File containing 11s data

Fig. 6. MATLAB-CST Microwave Studio flowchart.

In this case, it is easier to have MATLAB write the
four unknown patch dimensions to a file. The commands
in mpatch.m that do this are,

fid=fopen('mspatch.txt','w');

fprintf(fid,'%f\r',xmin);
fprintf(fid,'%f\r',xt);
fprintf(fid,'%f\r',py);
fprintf(fid,'%f\r',cp);
fclose(fid);

Next, MATLAB calls the VBA program via (all on one
line),

!"c:\program files (x86)\cst studio
suite 2006\cst design environment.exe" -
m mspatch.bas > output.txt

The VBA program has two parts. The first part reads
the data from the mpatch.txt data file generated by
MATLAB. This file contains the values for L, B, W, and
M. The code that reads this data is given by,

Open "d:<dir>\mpatch.txt" For Input As
#1
Input#1,v(1)
Input#1,v(2)
Input#1,v(3)
Input#1,v(4)
Close #1

Once the data is read, then the Microwave Studio model
file is opened using the command,

openfile("d:<dir>\mpatch.mod")

The model with the previously stored dimension values
appears on the computer screen. In order to change the
dimension values, they must be stored in the model file
using the following commands,

storeparameter("xmin",v(1))
storeparameter("xt",v(2))
storeparameter("py",v(3))
storeparameter("cp",v(4))

Next, the data is saved and the model rebuild using,

save
Rebuild

The picture of the model on the screen is redrawn to
reflect the new dimension values. Finally, the solver (in
this case, the transient solver) is started and the results
saved through the commands,

Solver.start
save

When the solver finishes and the data is stored, control
returns to MATLAB and the Microwave Studio window
closes. The Microwave Studio window will reopen every

101HAUPT: USING MATLAB TO CONTROL CEM SOFTWARE

time the program is called from MATLAB. MATLAB
reads the s11 data using the line,

[f,s11]=textread('mspatch^d1(1)1(1).sig'
,'','headerlines',4);

Running the MATLAB-Microwave Studio algorithm
resulted in an s11 of -70.8 dB at 2.0 GHz. The plot of s11
over a 4% frequency range is shown in Fig. 7. The final
dimensions for the patch are shown in Table 5. The
values of L, B, and W are very close to those predicted by
Table 1.

Fig. 7. Plot of s11 for patch antenna optimized by
Microwave Studio.

Table 5. Patch dimensions from the MATLAB-
Microwave Studio design.

Dimension L B W M
Size in mm 32.68 16.40 59.18 3.06

V. CONCLUSIONS

Using MATLAB to control commercial
electromagnetics software creates a powerful design and
systems analysis environment. This paper describes how
to create the interface between MATLAB and
commercial software via direct calls and via a scripting
language. The different approaches to the design of an
inset fed microstrip patch produced similar results. Fig. 8
shows s11 calculated using FEKO and the dimensions
found in Tables 1, 3, and 5. The results are very close to
each other (within 2.5%). Fig. 9 shows s11 calculated
using Microwave Studio and the dimensions found in
Tables 1, 3, and 5. The results are not as close together.
Refining the models would likely produce better results.

There are some lessons learned here. First, the VBA
interface requires learning VBA (if you did not know it
already – like me). Second, the variable can be passed in
a number of ways. With FEKO, it seemed easier to pass
the points outlining the patch, while with Microwave
Studio, it seemed easier to pass the dimensions. Third,

optimizing large structures would be very time-
consuming. Fourth, a number of different variables can
be passed other than dimensions. For instance, material
properties, type of source, source voltage, etc.

Although there are several papers that have
interfaced MATLAB to particular software packages,
none provide the details on how to create that interface.
The purpose of this paper is to give readers enough
information to create useful interactions between
MATLAB and commercial electromagnetics software.

Fig. 8. The dimensions in Tables 1, 3, and 5 are used to
build a patch antenna in FEKO and calculate these values
of s11.

Fig. 9. The dimensions in Tables 1, 3, and 5 are used to
build a patch antenna in Microwave Studio and calculate
these values of s11.

REFERENCES

[1] MATLAB Version 7.3.0.267, The
(www.mathworks.com), Aug 3, 2006.

[2] FEKO Suite 5.1, EM Software and Systems
(www.feko.info), 2005.

[3] CST Microwave Studio, Version 2006.05, April 19,
2006.

[4] High Frequency Structure Simulation (HFSS),
ANSOFT Co., Pittsburgh, PA, USA.

[5] R. L. Haupt, “A mixed integer genetic algorithm for
electromagnetics applications,” IEEE AP-S Trans.,
vol. 55, no. 3, pp. 577-582, Mar. 2007.

102 ACES JOURNAL, VOL. 23, NO. 1, MARCH 2008

[6] http://www1.sphere.ne.jp/i-lab/ilab/tool/ms_line_e.htm
[7] C.A. Balanis, Antenna Theory Analysis and Design,

New York: John Wiley & Sons, 1997.

Randy L. Haupt is an IEEE Fellow
and Department Head of
Computational Electromagnetics and
Senior Scientist at the Penn State
Applied Research Laboratory. He has
a Ph.D. in Electrical Engineering
from the University of Michigan, MS
in Electrical Engineering from
Northeastern University, MS in

Engineering Management from Western New England
College, and BS in Electrical Engineering from the
USAF Academy. He was Professor and Department Head
of Electrical and Computer Engineering at Utah State
University from 1999-2003. He was a Professor of
Electrical Engineering at the USAF Academy and
Professor and Chair of Electrical Engineering at the
University of Nevada Reno. In 1997, he retired as a Lt.
Col. in the USAF. Dr. Haupt was a project engineer for
the OTH-B radar and a research antenna engineer for
Rome Air Development Center. He was the Federal
Engineer of the Year in 1993 and is a member of Tau
Beta Pi, Eta Kappa Nu, URSI Commission B, and
Electromagnetics Academy. He served on the board of
directors for the Applied Computational
Electromagnetics Society and is on the IEEE Antenna
and Propagation Society Administrative Committee. He
has published journal articles, conference publications,
and book chapters on antennas, radar cross section and
numerical methods and is co-author of the book Practical
Genetic Algorithms, 2 ed., John Wiley & Sons, 2004 and
Genetic Algorithms in Electromagnetics, John Wiley &
Sons, 2007. He has eight patents in antenna technology.

103HAUPT: USING MATLAB TO CONTROL CEM SOFTWARE

