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Abstract − The authors have applied a graphics 
processing unit (GPU) to the finite-difference time-
domain (FDTD) method to realize a cost-effective and 
high-speed computation of an FDTD simulation. The 
authors used the plane wave scattering by a perfectly 
conducting rectangular cylinder as the model and 
investigated the performance of this implementation. The 
authors timed the computation time of the scattered 
electromagnetic field by the two-dimensional (2-D) 
FDTD method at 1,000 steps. Using a PC equipped with 
an Intel 3.4-GHz Pentium 4 processor and an nVIDIA 
Geforce 7800 GTX GPU, the authors achieved an 
approximately 10-fold improvement in computation 
speed compared with the speed of a conventional central 
processing unit (CPU) executing the same task. 

 
I. INTRODUCTION 

 
The FDTD method [1] is a numerical technique that 

can be used to solve electromagnetic boundary value 
problems in the time domain. This method has excellent 
numerical accuracy, and is simple to program. Up to now, 
we have used this technique to solve various 
electromagnetic field problems such as those pertaining 
to antennas and electromagnetic scattering [2,3]. 
However, FDTD simulations for investigating frequency 
response are computationally expensive. Approaches to 
this important problem have included modification of the 
FDTD method and executing the FDTD algorithm on 
more powerful hardware configurations. 

The former approach consists of the alternating 
direction implicit - FDTD (ADI-FDTD) method [4], and 
the latter technique consists of a parallel and distributed 
FDTD method [5–7]. These methods have achieved high-
speed computation. However, the ADI-FDTD method is 
less accurate than the conventional FDTD method, and 
the parallel and distributed FDTD method requires a 
supercomputer [7], a PC cluster [5], or a workstation 
cluster [6], and so is expensive both in financial terms 
and in the utilization of space. 

In recent years, rapid development of powerful GPUs 
has increased the performance of computer graphics (CG) 
used for the display of three-dimensional (3-D) images. 
Current GPUs have a large memory and many 
programmable graphics pipelines consisting of vertex and 
fragment processors. For example, the nVIDIA Geforce 
7800 GTX has eight vertex and 24 fragment processors 
with high floating-point performance. We have 
formulated a program for the GPU using high level 
shader language (HLSL) and Direct X or OpenGL as a 
graphics application programming interface (API), called 
“Shader Program”. Vertex and fragment processors can 
implement looping and floating point math [8,9]. 
Recently, programmable GPUs have been used for a 
number of applications other than CG. Traditional 
physical simulations based on matrix calculations with a 
GPU have been studied [10-12]. High-speed computer 
generated holography using a GPU implementation has 
been reported [13]. From these considerations, it seems 
that a state of the art GPU would be a cost-effective and 
very compact device for high-speed computation of 
FDTD simulation. In the FDTD method, M. J. Inman, et 
al. reported the GPU code, without absorbing boundaries, 
written in brook as HLSL and the speedup factors of two 
different video cards (ATI Radeon 9550 and x800) [14]. 
The ATI Radeon 9550 and x800 support the 24-bit 
floating-point format, while the nVIDIA Geforce 6800 
GT and 7800 GTX support the 32-bit floating-point 
format (IEEE 754) [9]. G. S. Baron, et al. coded in 
OpenGL and used NVIDIA’s HLSL, Cg, and discussed 
speedup and accuracy [15]. Their code included the 
calculation of the uniaxial perfectly matched layer 
absorber. However, the Euclidean normalized error 
increased monotonously with respect to the time steps. 
However, since they did not investigate the accuracy 
without absorbing boundaries, the cause of the errors is 
not confirmed to be the calculation of the absorbing 
boundary or the 32-bit floating-point format. The present 
authors believe that the investigation of accuracy without 
absorbing boundaries is important for the development of 
the GPU code.  
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In the present paper, we propose the shader program 
code to realize accurate and high-speed computation of 
the FDTD method using a GPU and investigate the basic 
performance of this computation. We coded in DirectX 
9.0c and Microsoft’s HLSL because they are well known. 
When analyzing an electromagnetic boundary value 
problem using the FDTD method, most of the simulation 
time is used for the calculation of the electromagnetic 
fields except at the absorbing boundary. Therefore, we 
used a simple 2-D model, the plane wave scattering by a 
perfectly conducting rectangular cylinder, without the 
absorbing boundary to investigate the basic performance. 
In the GPU code, the physical parameters are normalized 
by the electric permittivity ε0 and magnetic permeability 
µ0 in a vacuum space because GPU supports the 32-bit 
floating-point format. The authors timed the computation 
time of the scattered electromagnetic field by the FDTD 
method [3]. The result of the calculation using the GPU 
only, without the CPU, was approximately a 10-fold 
improvement in computation speed compared with a 
conventional CPU (Intel Pentium 4, 3.4-GHz), simulation 
of the FDTD method. The electric field Ez calculated with 
the GPU agreed perfectly with that of the CPU in the 32-
bit floating-point format. The GPU maintained the 
accuracy of single-floating point. 

The present paper is structured as follows. In Section 
II, we introduce the 2-D FDTD method. In Section III, we 
briefly describe a modern graphics hardware device. In 
Section IV, we describe the implementation of an FDTD 
simulation using a GPU. In Section V, we detail the 
performance of the FDTD simulation using the GPU. In 
the final section, we present conclusions regarding the 
high-speed FDTD computation using the GPU and 
describe future research. 

 
II. SCHEME OF THE 2-D FDTD METHOD 

 
In this section, the authors outline the scheme of the 

FDTD method, which was first proposed by Yee [1]. The 
basic equations of the 2-D FDTD method in the 
transverse magnetic (TM) case are as follows, 
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where ),(1 jiEn
z
+  is the required value zE of the electric 

field at the grid point (i, j) and the (n+1)-th time step, 
x∆ and y∆  are the sizes of the spatial division in the x 

and y directions, respectively, and t∆  is the time 
increment. The parameters ε and µ are the electric 
permittivity and the magnetic permeability in the medium, 
respectively. 

The electric and magnetic fields are evaluated in 
alternate half-time steps from the initial values with these 
equations. The FDTD method can finally be used to solve 
these equations and hence can be used to compute the 
solution of an electromagnetic boundary value problem in 
the time domain. 

However, in order for the solution to be valid [16], 
the time increment t∆  must satisfy the von Neumann 
stability condition as follows, 

                                                             
(4) 

 
where  0C  is the speed of light in free space. 

In the case that a scattering object is a perfect 
conductor, the scattered electromagnetic fields are as 
follows, 

 
                     (5) 
 

where scat
zE  and inc

zE  are the scattered electric field and 
the electric field of the incident wave, respectively. 
 

III. OUTLINE OF MODERN GRAPHICS 
HARDWARE 

 
In 3-D CG, we model each 3-D object to be drawn 

on the screen of the host computer in terms of graphics 
primitives. A primitive is the simplest type of figure: 
points, lines, triangles, quadrilaterals, and other polygons. 
Term rendering is used for the process of generating an 
image on the screen from a model. The GPU has 
been developed for real-time processing of 3-D CG 
rendering. Figure 1 shows a block diagram and the 
dataflow of a conventional graphics hardware device for 
rendering. The graphics hardware stores the data for 
rendering, the vertex, texture, pixel data, and the frame 
buffer, and so on, in the video memory. The frame buffer 
temporarily stores the image after rendering and is the 
final target of rendering. The GPU has a pipeline 
architecture  consisting of three parts: the vertex 
processors, the fragment processors, and the rasterizer. 
The GPU generally performs the rendering as follows: 
(1) The CPU sends the set of vertices of the graphics 

primitives to the vertex processors. 
(2) The vertex processors transform the geometry of the 

vertices into screen coordinates for display. 
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Fig. 1. Block diagram and dataflow of conventional graphics hardware. 
 

 
(3) The rasterization process is as follows: 

(a) The collection of pixels is output by the rasterizer. 
(b) The attributes, such as texture coordinates, stored 
at the vertices are linearly interpolated. 
(c) The interpolated value at each pixel is stored. 

(4) The fragment processors perform special purpose 
arithmetic operations on the texture data and 
compute the resulting final color for each pixel to be 
drawn on the screen.   

(5) The outputs of the fragment processors are sent to the 
frame buffer in the video memory and the 3-D 
objects then appear on the display. 

 
With the rapid progress in generating realistic 

images for computer games have become a requirement 
for CG to handle large numbers of floating point 
calculations, resulting in increasingly large and complex 
rendering implementations. The current GPU has many 
vertex and fragment processors with high floating point 
performance. For example, the recently released nVIDIA 
Geforce 7800 GTX consists of eight vertex and 24 
fragment processors, which can perform 32-bit floating-
point calculations. The vertex and fragment processors 
can be utilized as multiple instruction, multiple data 
(MIMD) and single instruction, multiple data (SIMD) 
parallel processing units, respectively. Programs to be 
executed by these processors are written using a shader 
language and are consequently referred to as shader 
programs. Programmable GPUs have recently been used 
for various applications other than graphics. This is 
known as general-purpose computation on a GPU 
(GPGPU), of which the present study is an example. 

 
IV. IMPLEMENTATION 

 
We used Microsoft's HLSL as the shader 

programming language and DirectX 9.0c as the graphics 
API. Shader programs consist of vertex and pixel shader 
programs, which are executed on the vertex and fragment 
processors, respectively. The authors calculate the 
electromagnetic fields of the FDTD method with the 
fragment processors in the GPU, because the GPU has 
more fragment processors than vertex processors. For 
example, the nVIDIA Geforce 7800 GTX consists of 
eight vertex processors and 24 fragment processors. In 
order to calculate the electromagnetic fields with 
fragment processors, the electromagnetic fields Ez, Hx, 
and Hy in the computational region of the FDTD method 
are stored in two textures (temp1_tex, temp2_tex), where 
“temp1_tex” consists of the electric field Ez in a 
computational region of the FDTD method and 
“temp2_tex” consists of the magnetic fields Hx and Hy. If 
the size of the computational region of the FDTD method 
is Lx ∆x×Ly  ∆y, the space division of the x- and y-
directions in the textures are 1/Lx and 1/Ly, respectively, 
because a side of a texture is 1.0.   

The vertex and fragment processors in the GPU 
calculate the electromagnetic fields Ez, Hx, and Hy of  the 
FDTD method by rendering in CG as follows: 

(1) Set the vertices (0,0), (1,0), (0,1), and (1,1) on the  
textures “temp1_tex” and “temp2_tex”. 
(2) The vertex processors transform the geometry of  
vertices into screen coordinates for display. 
(3) The collection of pixels on textures is output by the 
rasterizer. 
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(4) The fragment processors calculate the electro-
magnetic fields Ez, Hx, and Hy at next time step in 
parallel. 
 

In the program developed herein, the electric field 
Ez, the magnetic fields Hx  and Hy, and other parameters 
are stored in GPU registers. The rendering function 
“VOID Update()” of the CG program written in C++ is 
shown below. 

This program calls the functions for the 
electromagnetic field (Ez, Hx, Hy) calculation in shader 
programs.  “WIDTH” is the size of the side of the 
computational region in the FDTD simulation. Here, Lx 
and Ly are the same. “invTexsize” is the size of a pixel, 
and “dtdx” and “dtdy” are as follows, 

 
                             xtdtdx ∆∆=                                (6) 

 
dtdy t y= ∆ ∆                                 (7) 

 
where x∆ and y∆  are the space division, t∆  is the time 
increment. “dt” and “times” are the time increment and 
simulation time, respectively. “BeginPass()” calls each 
function of the shader programs. 
 
VOID Update(LPDIRECT3DDEVICE9 pD3DDev) 
{ 

for (int step = 0; step < 1000; step++) { 
Hxy->GetSurfaceLevel(0, &pSurf_Hxy); 
pD3DDev->SetRenderTarget(0, pSurf_Hxy); 
pEffect->SetTechnique( hTechnique); 
if (step != 0) { 
pEffect->SetTexture("temp1_tex", Hxy); 
pEffect->SetTexture("temp2_tex", Ez); 

} else { 
    pEffect->SetTexture("temp1_tex",initHxy); 

pEffect->SetTexture("temp2_tex", initEz); 
   } 

pEffect->SetFloat(hinvTexSize,1.0f/(float)WIDTH); 
pEffect->Begin( NULL, 0 ); 
pEffect->BeginPass(0); 
pD3DDev->SetFVF( D3DFVF_CUSTOMVERTEX ); 
pD3DDev->SetVertexDeclaration( 

pVertexDeclaration); 
pD3DDev->SetStreamSource(0,g_pVB,0,  

sizeof(CUSTOMVERTEX) 
); 

pD3DDev-
>DrawPrimitive(D3DPT_TRIANGLESTRIP,0,2 ); 

pEffect->EndPass(); 
pEffect->End(); 
times += dt; 
Ez->GetSurfaceLevel(0, &pSurf_Ez); 
pD3DDev->SetRenderTarget(0, pSurf_Ez); 
pEffect->SetTechnique( hTechnique); 
pEffect->SetTexture("temp1_tex", Hxy); 
if (step != 0) { 

pEffect->SetTexture("temp2_tex", Ez); 
} else { 

pEffect->SetTexture("temp2_tex", initEz); 
   } 

pEffect->SetFloat(hinvTexSize,1.0f/(float)WIDTH); 
pEffect->SetFloat(htimes, times); 
pEffect->Begin( NULL, 0 ); 
pEffect->BeginPass(1); 
pD3DDev->SetFVF( D3DFVF_CUSTOMVERTEX ); 
pD3DDev->SetVertexDeclaration( 

pVertexDeclaration); 
pD3DDev->SetStreamSource( 0, g_pVB, 0, 
sizeof(CUSTOMVERTEX) ); 
pD3DDev->DrawPrimitive(D3DPT_TRIANGLESTRIP, 

0,2); 
pEffect->EndPass(); 
pEffect->End(); 
pD3DDev->SetRenderTarget(0, pOldBackBuffer); 
pD3DDev->SetDepthStencilSurface(pOldZBuffer); 
pEffect->SetTechnique( hTechnique); 
pEffect->SetTexture("temp1_tex", Ez); 

  } 
} 
 

The pixel shader program is shown below. In this 
program, “float2” is a 2-D floating-point vector type and 
“float4” is a four-dimensional floating-point vector type. 
The parameters from t0 to t3 are input registers of the 
GPU. “tmep1_samp” and “temp2_samp” are sampler 
objects for reading “temp1_tex” and “temp2_tex”, 
respectively. The function “PS” returns the values of the 
electromagnetic fields. The function “PS0” calculates the 
magnetic fields Hx and Hy (equations (1) and (2)). The 
function “PS1” calculates the electric field zE  (equation 
(3)). “VS_OUTPUT0” is the output from the vertex 
shader. The function “VS0” is the vertex program to 
transform the geometry of vertices into screen 
coordinates. 
 
float4 PS0 ( VS_OUTPUT0 In ) : COLOR 
{ 

float hx, hy; 
  float ddd;  

float2 t0 = tex2D(temp1_Samp, In.Tex0).xy; 
float t1 = tex2D(temp2_Samp, In.Tex0).x; 
float t2 = tex2D(temp2_Samp, In.Tex0  

+ float2(0.0f, invTexSize)).x; 
float t3 = tex2D(temp2_Samp, In.Tex0  

+ float2(-invTexSize, 0.0f)).x; 
hx = t0.x - dtdy * (t1 - t2); 
hy = t0.y + dtdx * (t1 - t3); 
return float4(hx, hy, 0.0f, 1.0f); 

} 
VS_OUTPUT0 VS0 ( 
   float4 Position   : POSITION, 

 float2 Texcoord : TEXCOORD0 
){ 
    VS_OUTPUT0 Out = (VS_OUTPUT0)0; 

Out.Pos = Position; 
    Out.Tex0 = Texcoord; 
    return Out; 
} 
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float4 PS1 ( VS_OUTPUT0 In ) : COLOR 
{ 

float ez; 
float2 t0 = tex2D(temp1_Samp, In.Tex0).xy; 
float2 t1 = tex2D(temp1_Samp, In.Tex0  

+ float2(invTexSize, 0.0f)).xy; 
float2 t2 = tex2D(temp1_Samp, In.Tex0  

+ float2(0.0f, -invTexSize)).xy; 
float t3 = tex2D(temp2_Samp, In.Tex0).x; 
float2 a; 
float ddd,ams; 
ez = t3 + dtdx * (t1.y - t0.y) 

- dtdy * (t2.x - t0.x); 
a.x=In.Tex0.x * WIDTH; 
a.y=In.Tex0.y * HEIGHT;  
if ( 240 <= a.x  && a.x <= 272 && 240 <= a.y  && a.y <= 

272) {  /* 1024x1024 */ 
  ddd=(In.Tex0.x*WIDTH-3.0f)*dx*cos(thetai)  

+(In.Tex0.y*HEIGHT-3.0f)*dy*sin(thetai); 
  if(ddd > times){ 
      ams = 0.0f; 
  }else if (ddd > (times - wlamd)){ 
      ams=(times - ddd)/wlamd * am; 
  }else { 
      ams=am; 
  }      
 ez=-ams * sin(omega*(times-ddd)); 

} 
return float4(ez, 0.0f, 0.0f, 1.0f); 

} 
 
technique FDTDShader 
{ 
  pass P0 
    { 
        VertexShader = compile vs_3_0 VS0(); 
        PixelShader  = compile ps_3_0 PS0(); 
    } 
  pass P1 
    { 
        VertexShader = compile vs_3_0 VS0(); 
        PixelShader  = compile ps_3_0 PS1(); 
    } 
} 

 
The program developed herein is loaded into the 

GPU and the calculation of the FDTD method is 
executed by the fragment processor. In this way, the 
electromagnetic fields were calculated using the FDTD 
method. 

The boundary condition of the perfect conductor 
(equation (5)) is added in the function “PS1”. 
 

  V. PERFORMANCE 
 
The authors used an nVidia Geforce 7800 GTX as 

the GPU. Table 1 shows the specifications of the Geforce 
7800 GTX, which has eight vertex and 24 fragment 
processors. We timed the calculations required for a 
simple model to investigate the performance of GPU. As 

the model, we used the FDTD method to analyze plane 
wave scattering by a perfectly conducting rectangular 
cylinder. We used the plane wave as the incident wave, 
and the electric field inc

zE of incident wave is as follows, 
                                             

0 sin( )inc
zE E t t kx xω= ∆ − ∆                 (8) 

 

where  
 
              
 

Table 1. Specifications of the nVidia Geforce 7800 GTX. 
 

Core Clock 430 MHz 
Memory 256 MB 

Memory Clock 1.2 GHz 
Memory Bandwidth 54.4 GB/Sec 

Video Memory Interface Width 256 bit 
Vertex Shader 8 
Pixel Shader 24 
API Support Direct X 9.0c , 

OpenGL 2.0 
 

The cylinder has an electrical size of kAs = 10.0, 
where As is the side of the rectangular cylinder. We used 
equation (5) as the boundary condition on the scattered 
object. The scattered electromagnetic fields were 
calculated by the FDTD method. 

We compared the GPU system with the CPU system. 
In the GPU system, we used the FDTD code written in 
the C++ language and HLSL. All calculations of the 
FDTD method were performed by only the GPU. For the 
calculation time of the GPU system, the authors timed 
1,000 steps of the calculation using Microsoft Windows 
XP, Microsoft Visual C++ .NET as the C++ compiler 
with the options, “-O2” and without threading, and 
DirectX9.0c as the graphics API. In the CPU system, we 
used the conventional FDTD code written in the C 
language, all calculations of the FDTD method were 
performed by the CPU only, without the GPU. For the 
calculation time of the CPU system, we timed 1,000 
steps of the calculation using two operating systems (OS), 
Microsoft Windows XP and Linux OS (Fedora Core 4). 
We used Microsoft Visual C++ .NET as the C compiler 
with the options “-O2” and without threading. In Linux, 
we used vmlinuz-2.6.11, not the kernel for Symmetric 
Multiple Processors, as the kernel and gcc 4.0 as the C 
compiler with “-O3” as the compiler option. 

The specifications of the personal computer used in 
the GPU and CPU systems were an Intel Pentium 4, 3.4-
GHz for the CPU with 2.0 GB of memory. 

Table 2 shows the calculation time for 1,000 steps 
for each size of computational region for each system. 
For a computational region of 1024×1024, the 
calculation time of the GPU system was 6,340 msec, 

/20.λ=∆=∆=∆ yxh  
 ,/5.0 ,/2 ,40/2 0Chtkt ∆=∆=∆= λππω
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while the calculation time of the CPU system using 
Linux OS: CPU (Linux) was 70,230 msec. Hence, the 
calculation speed of the GPU system was approximately 
11 times faster than that of the CPU (Linux). For the 
CPU system using Windows XP: CPU (Win), the 
calculation time of the CPU (Win) system was 74,841 
msec. The calculation speed of the GPU system in this 
case was approximately 12 times faster than that of the 
CPU (Win). In the GPU system, the computation time is 
proportional to the number of grid points on 
computational region of the FDTD method, which means 
that the fragment processors in the GPU efficiently 
calculate the electromagnetic field of the FDTD method 
in parallel. The authors compared the values of the 
electric field Ez at 1,000 steps for the two systems. The 
electric field Ez calculated with the GPU agreed perfectly 
with that of the CPU in 32-bit floating-point format. The 
GPU maintained single-floating point accuracy. 

A GPU can directly display the result of FDTD 
simulation without computation by a CPU. Figure 2 
shows the total electric field zE  of the GPU after 600 
and 900 steps.  
 

Table 2. Comparison between the calculation time of 
GPU and that of CPU. 

 

 
 

 
 (a) 

 
 

(b) 
 

Fig. 2. Total electric field zE  values of the FDTD 
simulation at two intervals (a) after 600 steps and (b) 
after 900 steps. 
 

VI. CONCLUSION 
 

The authors developed the program for the 
calculation of the FDTD method with a GPU and 
investigated the performance of the GPU by analyzing 
plane wave scattering by a perfectly conducting 
rectangular cylinder. In the 1024×1024 computational 
region, the calculation speed of the GPU (nVidia Geforce 
7800 GTX) was approximately 11 times faster than that 
of a CPU only (Intel Pentium 4, 3.4-GHz). The electric 
field Ez calculated with the GPU system agreed well with 
that of the CPU system at 1,000 steps. Finally, we found 
that the program using HLSL performed high-speed 
FDTD simulation using the GPU, and the GPU 
maintained the single-floating point accuracy. 
Furthermore, the GPU can directly display the result of 
FDTD simulation without calculation by the CPU. The 
GPU provides high-speed calculation of the FDTD 
method and visualization of the electromagnetic field 
analyzed in the time domain. 

In the future, we plan to extend the GPU program by 
including the code for the implementation of the 
absorbing boundary and to apply the GPU to the 
execution of the 3-D version of the FDTD method. 
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