
A GPU Implementation of the 2-D Finite-Difference Time-Domain
Code using High Level Shader Language

1 N. Takada, 2 N. Masuda, 2 T. Tanaka, 2 Y. Abe, and 2 T. Ito

1 Department of Informatics and Media Technology, Sony Institute of Higher Education

 Shohoku College, 428 Nurumizu, Atsugi, Kanagawa 243-8501, Japan
ntakada@shohoku.ac.jp

2 Division of Artificial System Science, Graduate School of Engineering,

Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan

Abstract − The authors have applied a graphics
processing unit (GPU) to the finite-difference time-
domain (FDTD) method to realize a cost-effective and
high-speed computation of an FDTD simulation. The
authors used the plane wave scattering by a perfectly
conducting rectangular cylinder as the model and
investigated the performance of this implementation. The
authors timed the computation time of the scattered
electromagnetic field by the two-dimensional (2-D)
FDTD method at 1,000 steps. Using a PC equipped with
an Intel 3.4-GHz Pentium 4 processor and an nVIDIA
Geforce 7800 GTX GPU, the authors achieved an
approximately 10-fold improvement in computation
speed compared with the speed of a conventional central
processing unit (CPU) executing the same task.

I. INTRODUCTION

The FDTD method [1] is a numerical technique that

can be used to solve electromagnetic boundary value
problems in the time domain. This method has excellent
numerical accuracy, and is simple to program. Up to now,
we have used this technique to solve various
electromagnetic field problems such as those pertaining
to antennas and electromagnetic scattering [2,3].
However, FDTD simulations for investigating frequency
response are computationally expensive. Approaches to
this important problem have included modification of the
FDTD method and executing the FDTD algorithm on
more powerful hardware configurations.

The former approach consists of the alternating
direction implicit - FDTD (ADI-FDTD) method [4], and
the latter technique consists of a parallel and distributed
FDTD method [5–7]. These methods have achieved high-
speed computation. However, the ADI-FDTD method is
less accurate than the conventional FDTD method, and
the parallel and distributed FDTD method requires a
supercomputer [7], a PC cluster [5], or a workstation
cluster [6], and so is expensive both in financial terms
and in the utilization of space.

In recent years, rapid development of powerful GPUs
has increased the performance of computer graphics (CG)
used for the display of three-dimensional (3-D) images.
Current GPUs have a large memory and many
programmable graphics pipelines consisting of vertex and
fragment processors. For example, the nVIDIA Geforce
7800 GTX has eight vertex and 24 fragment processors
with high floating-point performance. We have
formulated a program for the GPU using high level
shader language (HLSL) and Direct X or OpenGL as a
graphics application programming interface (API), called
“Shader Program”. Vertex and fragment processors can
implement looping and floating point math [8,9].
Recently, programmable GPUs have been used for a
number of applications other than CG. Traditional
physical simulations based on matrix calculations with a
GPU have been studied [10-12]. High-speed computer
generated holography using a GPU implementation has
been reported [13]. From these considerations, it seems
that a state of the art GPU would be a cost-effective and
very compact device for high-speed computation of
FDTD simulation. In the FDTD method, M. J. Inman, et
al. reported the GPU code, without absorbing boundaries,
written in brook as HLSL and the speedup factors of two
different video cards (ATI Radeon 9550 and x800) [14].
The ATI Radeon 9550 and x800 support the 24-bit
floating-point format, while the nVIDIA Geforce 6800
GT and 7800 GTX support the 32-bit floating-point
format (IEEE 754) [9]. G. S. Baron, et al. coded in
OpenGL and used NVIDIA’s HLSL, Cg, and discussed
speedup and accuracy [15]. Their code included the
calculation of the uniaxial perfectly matched layer
absorber. However, the Euclidean normalized error
increased monotonously with respect to the time steps.
However, since they did not investigate the accuracy
without absorbing boundaries, the cause of the errors is
not confirmed to be the calculation of the absorbing
boundary or the 32-bit floating-point format. The present
authors believe that the investigation of accuracy without
absorbing boundaries is important for the development of
the GPU code.

309 ACES JOURNAL, VOL. 23, NO. 4, DECEMBER 2008

In the present paper, we propose the shader program
code to realize accurate and high-speed computation of
the FDTD method using a GPU and investigate the basic
performance of this computation. We coded in DirectX
9.0c and Microsoft’s HLSL because they are well known.
When analyzing an electromagnetic boundary value
problem using the FDTD method, most of the simulation
time is used for the calculation of the electromagnetic
fields except at the absorbing boundary. Therefore, we
used a simple 2-D model, the plane wave scattering by a
perfectly conducting rectangular cylinder, without the
absorbing boundary to investigate the basic performance.
In the GPU code, the physical parameters are normalized
by the electric permittivity ε0 and magnetic permeability
µ0 in a vacuum space because GPU supports the 32-bit
floating-point format. The authors timed the computation
time of the scattered electromagnetic field by the FDTD
method [3]. The result of the calculation using the GPU
only, without the CPU, was approximately a 10-fold
improvement in computation speed compared with a
conventional CPU (Intel Pentium 4, 3.4-GHz), simulation
of the FDTD method. The electric field Ez calculated with
the GPU agreed perfectly with that of the CPU in the 32-
bit floating-point format. The GPU maintained the
accuracy of single-floating point.

The present paper is structured as follows. In Section
II, we introduce the 2-D FDTD method. In Section III, we
briefly describe a modern graphics hardware device. In
Section IV, we describe the implementation of an FDTD
simulation using a GPU. In Section V, we detail the
performance of the FDTD simulation using the GPU. In
the final section, we present conclusions regarding the
high-speed FDTD computation using the GPU and
describe future research.

II. SCHEME OF THE 2-D FDTD METHOD

In this section, the authors outline the scheme of the

FDTD method, which was first proposed by Yee [1]. The
basic equations of the 2-D FDTD method in the
transverse magnetic (TM) case are as follows,

{ }
1/2 1/2(, 1/ 2) (, 1/ 2)

(, 1) (,) ,

n n
x x

n n
z z

H i j H i j
t E i j E i j
yµ

+ −+ = +
∆− + −
∆

 (1)

{ }

1/2 1/2(1/ 2,) (1/ 2,)

(1,) (,) ,

n n
y y

n n
z z

H i j H i j
t E i j E i j
xµ

+ −+ = +

∆+ + −
∆

 (2)

 { }
{ }

1

1/2 1/2

1/2 1/2

(,) (,)

(, 1/ 2) (, 1/ 2)

 (1/ 2,) (1/ 2,) ,

n n
z z

n n
x x

n n
y y

E i j E i j
t H i j H i j
y
t H i j H i j
x

ε

ε

+

+ +

+ +

=
∆− + − −
∆
∆+ + − −
∆

 (3)

where),(1 jiEn
z
+ is the required value zE of the electric

field at the grid point (i, j) and the (n+1)-th time step,
x∆ and y∆ are the sizes of the spatial division in the x

and y directions, respectively, and t∆ is the time
increment. The parameters ε and µ are the electric
permittivity and the magnetic permeability in the medium,
respectively.

The electric and magnetic fields are evaluated in
alternate half-time steps from the initial values with these
equations. The FDTD method can finally be used to solve
these equations and hence can be used to compute the
solution of an electromagnetic boundary value problem in
the time domain.

However, in order for the solution to be valid [16],
the time increment t∆ must satisfy the von Neumann
stability condition as follows,

(4)

where 0C is the speed of light in free space.

In the case that a scattering object is a perfect
conductor, the scattered electromagnetic fields are as
follows,

 (5)

where scat
zE and inc

zE are the scattered electric field and
the electric field of the incident wave, respectively.

III. OUTLINE OF MODERN GRAPHICS
HARDWARE

In 3-D CG, we model each 3-D object to be drawn

on the screen of the host computer in terms of graphics
primitives. A primitive is the simplest type of figure:
points, lines, triangles, quadrilaterals, and other polygons.
Term rendering is used for the process of generating an
image on the screen from a model. The GPU has
been developed for real-time processing of 3-D CG
rendering. Figure 1 shows a block diagram and the
dataflow of a conventional graphics hardware device for
rendering. The graphics hardware stores the data for
rendering, the vertex, texture, pixel data, and the frame
buffer, and so on, in the video memory. The frame buffer
temporarily stores the image after rendering and is the
final target of rendering. The GPU has a pipeline
architecture consisting of three parts: the vertex
processors, the fragment processors, and the rasterizer.
The GPU generally performs the rendering as follows:
(1) The CPU sends the set of vertices of the graphics

primitives to the vertex processors.
(2) The vertex processors transform the geometry of the

vertices into screen coordinates for display.

22
0

1
−− ∆+∆

≤∆
yxC

t

inc
z

scat
z EE −=

310TAKADA, MASUDA, TANAKA, ABE, ITO: GPU 2D FDTD CODE USING HIGH LEVEL SHADER LANGUAGE

Fig. 1. Block diagram and dataflow of conventional graphics hardware.

(3) The rasterization process is as follows:

(a) The collection of pixels is output by the rasterizer.
(b) The attributes, such as texture coordinates, stored
at the vertices are linearly interpolated.
(c) The interpolated value at each pixel is stored.

(4) The fragment processors perform special purpose
arithmetic operations on the texture data and
compute the resulting final color for each pixel to be
drawn on the screen.

(5) The outputs of the fragment processors are sent to the
frame buffer in the video memory and the 3-D
objects then appear on the display.

With the rapid progress in generating realistic

images for computer games have become a requirement
for CG to handle large numbers of floating point
calculations, resulting in increasingly large and complex
rendering implementations. The current GPU has many
vertex and fragment processors with high floating point
performance. For example, the recently released nVIDIA
Geforce 7800 GTX consists of eight vertex and 24
fragment processors, which can perform 32-bit floating-
point calculations. The vertex and fragment processors
can be utilized as multiple instruction, multiple data
(MIMD) and single instruction, multiple data (SIMD)
parallel processing units, respectively. Programs to be
executed by these processors are written using a shader
language and are consequently referred to as shader
programs. Programmable GPUs have recently been used
for various applications other than graphics. This is
known as general-purpose computation on a GPU
(GPGPU), of which the present study is an example.

IV. IMPLEMENTATION

We used Microsoft's HLSL as the shader

programming language and DirectX 9.0c as the graphics
API. Shader programs consist of vertex and pixel shader
programs, which are executed on the vertex and fragment
processors, respectively. The authors calculate the
electromagnetic fields of the FDTD method with the
fragment processors in the GPU, because the GPU has
more fragment processors than vertex processors. For
example, the nVIDIA Geforce 7800 GTX consists of
eight vertex processors and 24 fragment processors. In
order to calculate the electromagnetic fields with
fragment processors, the electromagnetic fields Ez, Hx,
and Hy in the computational region of the FDTD method
are stored in two textures (temp1_tex, temp2_tex), where
“temp1_tex” consists of the electric field Ez in a
computational region of the FDTD method and
“temp2_tex” consists of the magnetic fields Hx and Hy. If
the size of the computational region of the FDTD method
is Lx ∆x×Ly ∆y, the space division of the x- and y-
directions in the textures are 1/Lx and 1/Ly, respectively,
because a side of a texture is 1.0.

The vertex and fragment processors in the GPU
calculate the electromagnetic fields Ez, Hx, and Hy of the
FDTD method by rendering in CG as follows:

(1) Set the vertices (0,0), (1,0), (0,1), and (1,1) on the
textures “temp1_tex” and “temp2_tex”.
(2) The vertex processors transform the geometry of
vertices into screen coordinates for display.
(3) The collection of pixels on textures is output by the
rasterizer.

CPU

North Bridge Main
Memory

PCI Bus

Display

South Bridge

PCI Express

Vertex
Data

Pixel
Data

Frame
Buffer

Vertex processors

Video Memory
Programmable Graphics Hardware

Rasterizer Fragment processors

Graphics Processing Unit

Programmable Programmable

Texture
Data

311 ACES JOURNAL, VOL. 23, NO. 4, DECEMBER 2008

(4) The fragment processors calculate the electro-
magnetic fields Ez, Hx, and Hy at next time step in
parallel.

In the program developed herein, the electric field
Ez, the magnetic fields Hx and Hy, and other parameters
are stored in GPU registers. The rendering function
“VOID Update()” of the CG program written in C++ is
shown below.

This program calls the functions for the
electromagnetic field (Ez, Hx, Hy) calculation in shader
programs. “WIDTH” is the size of the side of the
computational region in the FDTD simulation. Here, Lx
and Ly are the same. “invTexsize” is the size of a pixel,
and “dtdx” and “dtdy” are as follows,

 xtdtdx ∆∆= (6)

dtdy t y= ∆ ∆ (7)

where x∆ and y∆ are the space division, t∆ is the time
increment. “dt” and “times” are the time increment and
simulation time, respectively. “BeginPass()” calls each
function of the shader programs.

VOID Update(LPDIRECT3DDEVICE9 pD3DDev)
{

for (int step = 0; step < 1000; step++) {
Hxy->GetSurfaceLevel(0, &pSurf_Hxy);
pD3DDev->SetRenderTarget(0, pSurf_Hxy);
pEffect->SetTechnique(hTechnique);
if (step != 0) {
pEffect->SetTexture("temp1_tex", Hxy);
pEffect->SetTexture("temp2_tex", Ez);

} else {
 pEffect->SetTexture("temp1_tex",initHxy);

pEffect->SetTexture("temp2_tex", initEz);
 }

pEffect->SetFloat(hinvTexSize,1.0f/(float)WIDTH);
pEffect->Begin(NULL, 0);
pEffect->BeginPass(0);
pD3DDev->SetFVF(D3DFVF_CUSTOMVERTEX);
pD3DDev->SetVertexDeclaration(

pVertexDeclaration);
pD3DDev->SetStreamSource(0,g_pVB,0,

sizeof(CUSTOMVERTEX)
);

pD3DDev-
>DrawPrimitive(D3DPT_TRIANGLESTRIP,0,2);

pEffect->EndPass();
pEffect->End();
times += dt;
Ez->GetSurfaceLevel(0, &pSurf_Ez);
pD3DDev->SetRenderTarget(0, pSurf_Ez);
pEffect->SetTechnique(hTechnique);
pEffect->SetTexture("temp1_tex", Hxy);
if (step != 0) {

pEffect->SetTexture("temp2_tex", Ez);
} else {

pEffect->SetTexture("temp2_tex", initEz);
 }

pEffect->SetFloat(hinvTexSize,1.0f/(float)WIDTH);
pEffect->SetFloat(htimes, times);
pEffect->Begin(NULL, 0);
pEffect->BeginPass(1);
pD3DDev->SetFVF(D3DFVF_CUSTOMVERTEX);
pD3DDev->SetVertexDeclaration(

pVertexDeclaration);
pD3DDev->SetStreamSource(0, g_pVB, 0,
sizeof(CUSTOMVERTEX));
pD3DDev->DrawPrimitive(D3DPT_TRIANGLESTRIP,

0,2);
pEffect->EndPass();
pEffect->End();
pD3DDev->SetRenderTarget(0, pOldBackBuffer);
pD3DDev->SetDepthStencilSurface(pOldZBuffer);
pEffect->SetTechnique(hTechnique);
pEffect->SetTexture("temp1_tex", Ez);

 }
}

The pixel shader program is shown below. In this
program, “float2” is a 2-D floating-point vector type and
“float4” is a four-dimensional floating-point vector type.
The parameters from t0 to t3 are input registers of the
GPU. “tmep1_samp” and “temp2_samp” are sampler
objects for reading “temp1_tex” and “temp2_tex”,
respectively. The function “PS” returns the values of the
electromagnetic fields. The function “PS0” calculates the
magnetic fields Hx and Hy (equations (1) and (2)). The
function “PS1” calculates the electric field zE (equation
(3)). “VS_OUTPUT0” is the output from the vertex
shader. The function “VS0” is the vertex program to
transform the geometry of vertices into screen
coordinates.

float4 PS0 (VS_OUTPUT0 In) : COLOR
{

float hx, hy;
 float ddd;

float2 t0 = tex2D(temp1_Samp, In.Tex0).xy;
float t1 = tex2D(temp2_Samp, In.Tex0).x;
float t2 = tex2D(temp2_Samp, In.Tex0

+ float2(0.0f, invTexSize)).x;
float t3 = tex2D(temp2_Samp, In.Tex0

+ float2(-invTexSize, 0.0f)).x;
hx = t0.x - dtdy * (t1 - t2);
hy = t0.y + dtdx * (t1 - t3);
return float4(hx, hy, 0.0f, 1.0f);

}
VS_OUTPUT0 VS0 (
 float4 Position : POSITION,

 float2 Texcoord : TEXCOORD0
){
 VS_OUTPUT0 Out = (VS_OUTPUT0)0;

Out.Pos = Position;
 Out.Tex0 = Texcoord;
 return Out;
}

312TAKADA, MASUDA, TANAKA, ABE, ITO: GPU 2D FDTD CODE USING HIGH LEVEL SHADER LANGUAGE

float4 PS1 (VS_OUTPUT0 In) : COLOR
{

float ez;
float2 t0 = tex2D(temp1_Samp, In.Tex0).xy;
float2 t1 = tex2D(temp1_Samp, In.Tex0

+ float2(invTexSize, 0.0f)).xy;
float2 t2 = tex2D(temp1_Samp, In.Tex0

+ float2(0.0f, -invTexSize)).xy;
float t3 = tex2D(temp2_Samp, In.Tex0).x;
float2 a;
float ddd,ams;
ez = t3 + dtdx * (t1.y - t0.y)

- dtdy * (t2.x - t0.x);
a.x=In.Tex0.x * WIDTH;
a.y=In.Tex0.y * HEIGHT;
if (240 <= a.x && a.x <= 272 && 240 <= a.y && a.y <=

272) { /* 1024x1024 */
 ddd=(In.Tex0.x*WIDTH-3.0f)*dx*cos(thetai)

+(In.Tex0.y*HEIGHT-3.0f)*dy*sin(thetai);
 if(ddd > times){
 ams = 0.0f;
 }else if (ddd > (times - wlamd)){
 ams=(times - ddd)/wlamd * am;
 }else {
 ams=am;
 }
 ez=-ams * sin(omega*(times-ddd));

}
return float4(ez, 0.0f, 0.0f, 1.0f);

}

technique FDTDShader
{
 pass P0
 {
 VertexShader = compile vs_3_0 VS0();
 PixelShader = compile ps_3_0 PS0();
 }
 pass P1
 {
 VertexShader = compile vs_3_0 VS0();
 PixelShader = compile ps_3_0 PS1();
 }
}

The program developed herein is loaded into the

GPU and the calculation of the FDTD method is
executed by the fragment processor. In this way, the
electromagnetic fields were calculated using the FDTD
method.

The boundary condition of the perfect conductor
(equation (5)) is added in the function “PS1”.

 V. PERFORMANCE

The authors used an nVidia Geforce 7800 GTX as

the GPU. Table 1 shows the specifications of the Geforce
7800 GTX, which has eight vertex and 24 fragment
processors. We timed the calculations required for a
simple model to investigate the performance of GPU. As

the model, we used the FDTD method to analyze plane
wave scattering by a perfectly conducting rectangular
cylinder. We used the plane wave as the incident wave,
and the electric field inc

zE of incident wave is as follows,

0 sin()inc
zE E t t kx xω= ∆ − ∆ (8)

where

Table 1. Specifications of the nVidia Geforce 7800 GTX.

Core Clock 430 MHz
Memory 256 MB

Memory Clock 1.2 GHz
Memory Bandwidth 54.4 GB/Sec

Video Memory Interface Width 256 bit
Vertex Shader 8
Pixel Shader 24
API Support Direct X 9.0c ,

OpenGL 2.0

The cylinder has an electrical size of kAs = 10.0,
where As is the side of the rectangular cylinder. We used
equation (5) as the boundary condition on the scattered
object. The scattered electromagnetic fields were
calculated by the FDTD method.

We compared the GPU system with the CPU system.
In the GPU system, we used the FDTD code written in
the C++ language and HLSL. All calculations of the
FDTD method were performed by only the GPU. For the
calculation time of the GPU system, the authors timed
1,000 steps of the calculation using Microsoft Windows
XP, Microsoft Visual C++ .NET as the C++ compiler
with the options, “-O2” and without threading, and
DirectX9.0c as the graphics API. In the CPU system, we
used the conventional FDTD code written in the C
language, all calculations of the FDTD method were
performed by the CPU only, without the GPU. For the
calculation time of the CPU system, we timed 1,000
steps of the calculation using two operating systems (OS),
Microsoft Windows XP and Linux OS (Fedora Core 4).
We used Microsoft Visual C++ .NET as the C compiler
with the options “-O2” and without threading. In Linux,
we used vmlinuz-2.6.11, not the kernel for Symmetric
Multiple Processors, as the kernel and gcc 4.0 as the C
compiler with “-O3” as the compiler option.

The specifications of the personal computer used in
the GPU and CPU systems were an Intel Pentium 4, 3.4-
GHz for the CPU with 2.0 GB of memory.

Table 2 shows the calculation time for 1,000 steps
for each size of computational region for each system.
For a computational region of 1024×1024, the
calculation time of the GPU system was 6,340 msec,

/20.λ=∆=∆=∆ yxh
 ,/5.0 ,/2 ,40/2 0Chtkt ∆=∆=∆= λππω

313 ACES JOURNAL, VOL. 23, NO. 4, DECEMBER 2008

while the calculation time of the CPU system using
Linux OS: CPU (Linux) was 70,230 msec. Hence, the
calculation speed of the GPU system was approximately
11 times faster than that of the CPU (Linux). For the
CPU system using Windows XP: CPU (Win), the
calculation time of the CPU (Win) system was 74,841
msec. The calculation speed of the GPU system in this
case was approximately 12 times faster than that of the
CPU (Win). In the GPU system, the computation time is
proportional to the number of grid points on
computational region of the FDTD method, which means
that the fragment processors in the GPU efficiently
calculate the electromagnetic field of the FDTD method
in parallel. The authors compared the values of the
electric field Ez at 1,000 steps for the two systems. The
electric field Ez calculated with the GPU agreed perfectly
with that of the CPU in 32-bit floating-point format. The
GPU maintained single-floating point accuracy.

A GPU can directly display the result of FDTD
simulation without computation by a CPU. Figure 2
shows the total electric field zE of the GPU after 600
and 900 steps.

Table 2. Comparison between the calculation time of
GPU and that of CPU.

 (a)

(b)

Fig. 2. Total electric field zE values of the FDTD
simulation at two intervals (a) after 600 steps and (b)
after 900 steps.

VI. CONCLUSION

The authors developed the program for the
calculation of the FDTD method with a GPU and
investigated the performance of the GPU by analyzing
plane wave scattering by a perfectly conducting
rectangular cylinder. In the 1024×1024 computational
region, the calculation speed of the GPU (nVidia Geforce
7800 GTX) was approximately 11 times faster than that
of a CPU only (Intel Pentium 4, 3.4-GHz). The electric
field Ez calculated with the GPU system agreed well with
that of the CPU system at 1,000 steps. Finally, we found
that the program using HLSL performed high-speed
FDTD simulation using the GPU, and the GPU
maintained the single-floating point accuracy.
Furthermore, the GPU can directly display the result of
FDTD simulation without calculation by the CPU. The
GPU provides high-speed calculation of the FDTD
method and visualization of the electromagnetic field
analyzed in the time domain.

In the future, we plan to extend the GPU program by
including the code for the implementation of the
absorbing boundary and to apply the GPU to the
execution of the 3-D version of the FDTD method.

ACKNOWLEDGEMENT

The authors would like to thank Dr. T. Shimobaba

and Mr. T. Takizawa for their useful advice.

GPU(Geforce
800 GTX)

Computation time of 1,000 steps (ms)

CPU
(Win)

CPU
(Linux)

 256×256

Size of region

 512×512

1024×1024

2047

13763

74841

2138

14020

70230

431

1655

6340

314TAKADA, MASUDA, TANAKA, ABE, ITO: GPU 2D FDTD CODE USING HIGH LEVEL SHADER LANGUAGE

REFERENCES

[1] K. S. Yee, “Numerical solution of initial boundary

value problems involving Maxwell´s equations in
isotropic media,” IEEE Trans. Antennas Propagat.,
vol. AP-14, no. 3, pp.302-307, May 1966.

[2] A. Taflove, Computational electrodynamics: the
finite difference time domain method, Artech House,
Inc., 1995.

[3] K. S. Kunz and R. J. Luebbers, The finite difference
time domain method for electromagnetics, CRC
Press, Inc., 1993.

[4] T. Namiki, “A new FDTD algorithm based on
alternating direction implicit method,” IEEE Trans.
Microwave Theory Tech., vol. MTT-47, no. 10,
pp.1-5, Oct. 1999.

[5] N. Takada, K. Ando, K. Motojima, T. Ito, and S.
Kozaki, “New Distributed implementation of the
FDTD method,” Electronics and Communications in
Japan, Part 2, vol. 80, no.5, pp.8-16, 1997.

[6] D. P. Rodohan, S. R. Saunders, and R. J. Glover, “A
distributed implementation of the finite difference
time domain (FDTD) method,” Int. J. Numerical
Modeling: Electronic Networks, Devices and Fields,
vol. 8, no.3, pp.283-292, 1995.

[7] D. B. Davidson and R. W. Ziolkowski, “A
connection machine (CM-2) implementation of
three-dimensional parallel finite difference time
domain code for electromagnetic field simulation,”
Int. J. Numerical Modeling: Electronic Networks,
Devices and Fields, vol. 8, no. 3, pp.221-232, 1995.

[8] nVIDIA corporation, “GPU Gems” Addison-Wisley,
2004.

[9] nVIDIA corporation, “GPU Gems 2” Addison-
Wisley, 2005.

[10] J. Boltz, I. Farmer, E. Grinspun, P. Schröder,
“Sparse matrix solvers on the GPU: Conjugate
Gradients and Multigrid,” ACM SIGGRAPH 03
Proceedings, 2003.

[11] C. Tompson, S. Hahn, and M. Oskin, “Using
modern graphics architectures for general-purpose
computing: a framework and analysis,” Proceedings
of the 35th International Symposium on
Microarchitecture, pp. 306-320, Nov. 2002.

[12] J. Krüger and R. Westermann, “Linear algebra
operators for GPU implementation of numerical
algorithms,” ACM SIGGRAPH 03 Proceedings,
2003.

[13] N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T.
Sugie, “Computer generated holography using a
graphics processing unit,” Opt. Express, vol. 14, no.
2, pp.587-592, 2006.

[14] M. J. Inman and A. Z. Elsherbeni, “Programming
video cards for computational electromagnetics
application,” IEEE Antennas and Propagation
Magazine, vol. 47, no. 6, pp.71-78, Dec. 2005.

[15] G. S. Baron, C. D. Sarris, and E. Fiume, “Fast and
accurate time-domain simulations with commodity
graphics hardware,” Proceedings of Antennas and
Propagation Society International Symposium, July
2005.

[16] J. Fang, “Time domain finite difference computation
for Maxwell’s equation,” Ph. D. thesis, University of
California at Berkley, 1989.

Naoki Takada Dr. Takada received
his B.E. and M.S. in electrical
engineering from Gunma University,
Gunma, Japan in 1994 and 1996,
respectively, and his Ph.D. in
electrical engineering from Gunma
University in 2000. From 1996 to
June 2001, he was a research

associate at Oyama National College of Technology,
Tochigi, Japan. From July 2001 to March 2005, he
worked as a research scientist for the High Performance
Biocomputing Research Team, Bioinformatics Group,
Genomic Science Center (GSC), Institute of Physical and
Chemical Research (RIKEN; Yokohama, Japan) and
joined the “Protein Explorer Project” for a petaflops
special-purpose computer (MDGRAPE-3) system for
molecular dynamics simulations of proteins. This project
was part of the “Protein 3000 project” supported by the
Ministry of Education, Culture, Sports, Science and
Technology of Japan. Since April 2005, he has been a
lecturer at Sony Institute Higher Education Shohoku
College, Atsugi, Japan.

His research interests include GPGPU, distributed
and parallel computation including FDTD method,
development of a special-purpose computer for FDTD
method, numerical simulation including FDTD method,
CIP method, and molecular dynamics and
electromagnetic theory. He is a member of ACES and
IEICE.

Nobuyuki Masuda Dr. Masuda
received his BS and MS in System
Science from the University of Tokyo
(Tokyo, Japan) in 1993 and 1995,
respectively, and his Ph.D. in System
Science from the University of Tokyo
in 1998. From 2000 to March 2004,
he was a research associate at Gunma

University (Gunma, Japan). Since April 2004, he has
been a research associate at Chiba University (Chiba,
Japan). Dr. Masuda’s research interests include
development of a special-purpose computer for digital
holographic particle tracking velocimetry and computer
generated holograms on GPU. He is a member of IEICE,
IPSJ and ASJ.

315 ACES JOURNAL, VOL. 23, NO. 4, DECEMBER 2008

Takashi Tanaka Mr. Tanaka received
his B.E. in Electronics and Mechanical
Engineering from Chiba University
(Chiba, Japan) in 2005. He is currently
enrolled in the master’s program of the
Graduate School of Science and
Technology, Chiba University (Chiba,
Japan). His research interests GPGPU

and a high-performance computing of computer
generated holograms.

Yukio Abe Mr. Abe received his B.E.
and M.S. in electrical engineering
from Gunma University (Gunma,
Japan) in 1996 and 1998, respectively.
In 1998, he began his work at NEC
Corporation and engaged in the
development of the disk-array system.
Since 2006, he has been employed at

NEC Co. while pursuing his doctorate at the Graduate
School of Science and Technology, Chiba University
(Chiba, Japan). His research interests GPGPU and a
high-performance computing of a physical simulation.

Tomoyoshi Ito Dr. Ito received B.E.,
M.S. and Ph.D. from University of
Tokyo (Tokyo, Japan) in 1989, 1991
and 1994, respectively. He was a
research associate from 1992 to 1994,
and an associate professor from 1994
to 1999, at Gunma University
(Gunma, Japan). Between 1999 to

2005, Dr. Ito was an associate professor at Chiba
University, (Chiba, Japan), and, since 2005, a professor.
Dr. Ito’s research interests are in high-performance
computing and its various applications. He was an initial
member of GRAPE project, which has produced special-
purpose computers for astrophysics. He developed the
first machine, GRAPE-1, in 1989, followed by GRAPE-2
in 1990, among others. Since 1992, he has also designed
and built special-purpose computers for the HORN
holography system. He is currently investigating three-
dimensional television using HORN computers. Dr. Ito is
a member of IEICE.

316TAKADA, MASUDA, TANAKA, ABE, ITO: GPU 2D FDTD CODE USING HIGH LEVEL SHADER LANGUAGE

