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Abstract – The locally corrected Nyström method is
applied to the magnetic field integral equation for a
conducting body of revolution. A construction method
is presented for the locally corrected weights for the
resulting one-dimensional coupled scalar magnetic field
integral equations. Special attention is paid to minimizing
the cost for multi-frequency computations. Numerical
results are presented for the sphere, oblate spheroid, and
right circular cylinder. Good agreement with results from
mature moment method codes is observed.

I. INTRODUCTION

The Locally Corrected Nyström (LCN) method
brings the high-order convergence properties of the Nys-
tröm method for integral equations to those with singular
kernels such as those that arise in electromagnetic bound-
ary value problems [1–3]. Computation of the corrected
quadrature weights can be efficiently accomplished.

Here we apply the LCN method to a body of revo-
lution (BOR) under plane wave illumination. The BOR
geometry allows the 2D surface integral equation to be
reduced to a series of 1D integral equations through the
use of a Fourier series expansion. The solution of each
1D problem is a mode function in the series expansion of
the total current.

Often, we desire to solve electromagnetic scattering
problems for a fixed geometry over a range of frequencies.
In the context of the LCN method, the goal is to compute
the corrected weights once and then reuse them for the
desired frequencies and necessary mode numbers. We
show that careful use of quadrature rules will allow the
reuse of corrected weights over a range of frequencies
and mode numbers, greatly enhancing the computational
efficiency of the algorithm.

II. CONVENTIONAL AND LOCALLY
CORRECTED NYSTRÖM METHOD

In the conventional Nyström method, an integral
equation,

g(x) =
∫ b

a

G(x, x′)u(x′)dx′ (1)

is replaced by a quadrature equation,

g(x) ≈
Ns∑
p=1

Na−1∑
q=0

ωqG(x, xpq)u(xpq) (2)

where xpq is the qth abscissa on the pth subinterval.
Evaluating g(x) at the nth abscissa of the mth subinterval,
i.e., each abscissa from the underlying quadrature rule,
gives,

g(xmn ) ≈
Ns∑
p=1

Na−1∑
q=0

ωqG(xmn , x
p
q)ũ(xpq) (3)

where xpq is the qth abscissa on the pth subinterval.
Solving the resultant linear system of equations yields
the value of ũ(x) at the quadrature points. Interpolation
provides ũ(x) over the integration interval. However, an
obvious problem for electromagnetic integral equations
is the singularity of the kernel which makes evaluation at
xmn = xqp impossible. In addition, quadrature convergence
is slow when ||xmn − xqp|| << λ.

The LCN replaces some of the quadrature weights
ωq by “locally corrected” ones, ωq , which are used when
the distance between xmn and xqp is small. The details can
be found in the literature [2, 3].

III. MFIE FOR A BOR SCATTERER

The magnetic field integral equation (MFIE) over a
PEC BOR geometry can be reduced to a one dimensional
problem along the curve defining the BOR. Given an
incident field ~H

i
we wish to solve the MFIE [4] for the

surface current ~Js,

n̂× ~H
i
(~r) =

1
2
~Js(~r)− n̂×∫

S

~Js(~r ′)×∇′g(~r,~r ′) ds′, ~r ∈ S
(4)

where g(~r,~r ′) = exp(ik|~r − ~r ′|)/[4π|~r − ~r ′|] is the
free space Green function for the Helmholtz equation
(assuming e−iωt time dependence) and n̂ is the outward
pointing unit normal vector on the surface S.
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The BOR geometry is created by rotating a curve
(ρ, z) about the z-axis. The curve is parameterized by its
arc-length ` ∈ [0, L]. The surface current has two vector
components, one in the azimuthal direction and the other
in the direction of the defining arc – ~Js = ˆ̀J` + φ̂Jφ. In
the BOR coordinate system, the surface into two variables
` and φ,

x = ρ(`) cosφ, y = ρ(`) sinφ, z = z(`).

The periodicity of the BOR geometry in the az-
imuthal direction allows the solution to be expanded into
a Fourier series in the φ-direction hence reducing the
integral equation to only ` dependence. Using the above
description of the BOR geometry and some change of
variables, the vector integral equation (4) can be written
as the following system of two scalar second-kind integral
equations [5],

J`(`, φ)
2

=

2π∫
0

L∫
0

α12(`, `′, φ′, φ) d`′ dφ′ + ˆ̀· (n̂× ~H
i
)

(5)

Jφ(`, φ)
2

=

2π∫
0

L∫
0

α34(`, `′, φ′, φ) d`′ dφ′ + φ̂ · (n̂× ~H
i
)

(6)

where

α12 = α1(`, `′, φ′)J`(`′, φ′+φ)+α2(`, `′, φ′)Jφ(`′, φ′+φ),

α34 = α3(`, `′, φ′)J`(`′, φ′+φ)+α4(`, `′, φ′)Jφ(`′, φ′+φ).

The kernel functions α1...4 are given in [2]. Both J`
and Jφ are periodic in the azimuthal direction and thus
both have a Fourier series expansion in the φ-variable,

J`(`, φ) =
∞∑

n=−∞
j`n(`)einφ, (7)

Jφ(`, φ) =
∞∑

n=−∞
jφn(`)einφ. (8)

Our focus now will be on an integral equation for
each of the individual coefficient functions j`n(`) and
jφn(`). The incident field can also be expressed as a
Fourier series on the surface of the BOR. Using orthog-
onality of the exponentials we isolate one of unknown
coefficient functions, and since j`m(`) and jφm(`) have no

φ′ dependence we can write the integral equation as,

j`m(`)
2

= ˆ̀
m+

L∫
0

[
j`m(`′)G1

m(`, `′) + jφm(`′)G2
m(`, `′)

]
d`′ (9)

jφm(`)
2

= φ̂m+

L∫
0

[
j`m(`′)G3

m(`, `′) + jφm(`′)G4
m(`, `′)

]
d`′,

(10)

where ˆ̀
m = [ˆ̀ · (n̂ × ~H

i
)]m, φ̂m = [φ̂ · (n̂ × ~H

i
)]m,

and Gim(`, `′) =
2π∫
0

αi(`, `′, φ′)eimφ
′
dφ′.

Thus, the original integral equation (4) is reduced to a
one dimensional problem. However, the one-dimensional
problem is only solving for one component of the Fourier
series solution with Nf Fourier modes; the problem must
be solved Nf times. The value of k will determine
the number of terms of the Fourier series that must be
computed to achieve adequate accuracy.

IV. THE CORRECTED WEIGHTS

The Helmholtz kernel eikR

R is separable into a fre-
quency dependent factor and a frequency independent
factor. The frequency dependent portion is smooth while
the frequency independent portion contains the singular-
ity. Given this situation, the corrected weights can be
computed for the frequency independent portion of the
kernel and the frequency dependent part can be absorbed
into the solution. Hence, the locally corrected weights are
computed, and any change in frequency can be accounted
for by a simple multiplication of the quadrature weights.
In the case of the BOR geometry the situation is not
so straightforward. There are two significant differences
between the standard Helmholtz kernel and the BOR
kernels (Gi, i = 1 . . . 4). First, not only is it necessary
to be able to account for different frequencies, but the
different modes must be dealt with as well. Second, the
BOR kernel is not separable since the Helmholtz kernel
is incorporated into an integration in the φ direction. The
second of the two differences is the one that requires a
careful approach, and when dealt with will allow a single
set of weights to be used for any frequency and any mode.

In order to use the corrected weights for all frequen-
cies and all modes in the BOR formulation, the key is
to look at the integral as the original 2-D integral rather
than the 1-D integral.

The first option is to perform local corrections in 2-
D over the entire strip containing the singularity. Assume
the singular point is in the interval (ai, bi). The integral
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of the form,

I(`) =

bi∫
ai

um(`′)Gim(`, `′) d`′ (11)

can be written as,

I(`) =

bi∫
ai

2π∫
0

um(`′)αi(`, `′, φ′)eimφ
′
dφ′ d`′. (12)

It is clear upon inspection of the functions
αi(`, `′, φ′)eimφ

′
can be written as a product

Φi(`, `′, φ′,m, k)Ψi(`, `′, φ′) where Φi is smooth
and contains all the frequency and mode dependent
factors, while Ψi contains the singularity and has no
dependance on frequency or mode. Therefore, the local
corrections can be performed in two dimensions for the
double integral using only Ψi as the singular kernel. The
Φi can simply be absorbed into the solution function
ui(`′). The local corrections will produce a quadrature
rule of the form,

bi∫
ai

2π∫
0

um(`′)αi(`, `′, φ′)eimφ
′
dφ′ d`′ (13)

=

bi∫
ai

2π∫
0

um(`′)Φi(`, `′, φ′,m, k)Ψi(`, `′, φ′) dφ′ d`′,

(14)

≈
∑
p

∑
q

um(`p)Φi(`, `p, φq,m, k)ωpq, (15)

where ωpq are the locally corrected weights. Now to make
this quadrature rule consistent with the BOR formulation,
simply factor out the u(`p) out of the inner sum to arrive
at,

bi∫
ai

um(`′)Gim(`, `′) d`′ ≈
∑
p

um(`p)ω̃1
p (16)

where ω̃1
p =

∑
q

Φi(`, `p, φq,m, k)ωpq . At this point, it is

clear that the locally corrected weights ωpq need only be
computed once, and can be updated by multiplication to
account for changes in frequency or mode number. The
drawback is that this yields a large local correction. Ad-
ditional details in the development are somewhat tedious
and can be found in [2]. The final result is,

bi∫
ai

um(`′)Gim(`, `′) d`′ ≈
∑
p

um(`p)ω̃3
p (17)

where

ω̃3
p =

∑
q

Φi(`, `p, φq,m, k)ωpq

+
∑
q

ωp(q)ωqαi(`, `p, φq)eimφq .
(18)

Local correction need be done only once and can
be easily modified for changes in frequency and mode.
In this case, many more local corrections are done, but
the additional corrections are small problems for one
dimensional integrals. This improves accuracy without
producing a very large system of local corrections.

V. NUMERICAL RESULTS

The following results show the application of the
above methods to some canonical geometries. The locally
corrected Nyström results are produced by AFITBOR [2]
which use the methods described in the paper. Com-
parisons are made to CARLOS-BOR [6], a method of
moments solver for the MFIE, to the three-dimensional
moment method code AIM [7], or to a known analytical
solution.

A. Sphere
We compare the far-zone scattered fields produced

by the AFITBOR to the Mie series solution [4]. Figure 1
shows very good agreement between the radar cross-
section (RCS) results obtained from the Mie series and
AFITBOR for a conducting sphere with radius equal to
one wavelength. The direction of the incident wave is 90◦

from axial incidence. The computation uses 12 modes in
the Fourier series expansion. The results are very nearly
identical to those obtained for axial incidence, in which
only one Fourier mode is excited.

B. Oblate Spheroid
Here we apply the method to a non-spherical BOR.

The only change in the code is to change the definition of
the BOR defining curve. The spheroid is the BOR found
by rotating half an ellipse with major axis a = 2λ in the
x-direction and minor axis b = 1λ in the z-direction in
the (x, z)-plane. The RCS for the θθ - polarization and
φφ - polarization is plotted in Fig. 2.

C. Cylinder
Finally, we consider the “450” squat cylinder [8]

which is a cylinder with radius 2.25 and height 2.1 inches.
We let the wavelength be unity (λ = 1 inch). The incident
field is 90◦ from axial incidence. As seen in Fig. 3 there
is some disagreement in the RCS produced by AFIT-
BOR compared to CARLOS-BOR, but comparison with
a non BOR code (AIM) [7] shows AFITBOR comparing
slightly better than CARLOS-BOR.

VI. CONCLUSION

The locally corrected Nyström (LCN) method allows
the high order properties of the Nyström method to be
applied to electromagnetic integral equations. The primary
difficulty lies in the computation of the local corrections.
Even though computation of locally corrected weights
is an O(n) operation, it can still be a computationally
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(a)

(b)

Fig. 1. Bistatic RCS of a unit sphere with λ = 1 and
angle of incidence 90◦. φφ-polarized data are shown on
the top while θθ-polarized data are shown on the bottom.

intensive procedure, so it is highly desirable to compute
the corrected weights only when necessary. The paper
has shown how to use a set of local corrections on a
fixed geometry for a range of frequencies and a range of
modes in a modal expansion for a body of revolution.
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