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Abstract − A systematic design method of near field 
dielectric windows for 2D conformal fed arrays was 
previously developed. This developed design yielded 
simultaneously well-behaved element patterns in both 
axial and circumferential polarization. The method 
includes dimensioning of the window thickness to 
maximize the radial decay rate of the radome induced 
surface waves, followed by inclusion of a sufficiently 
large gap to decouple the surface waves from the array 
face. This methodology has been successfully extended to 
3D with circumferential polarization according to the 
previously established guidelines and has provided smooth 
patterns in the circumferential plane, but limited the scan 
in the axial plane. Here we will investigate the case with 
axial polarization and compare the available useful scan 
volume to that of circumferentially polarized excitation. 

 
I. INTRODUCTION 

  
The suitability of a near field protective dielectric 

radome for a curved phased array antenna has been judged 
by the acceptability of the element patterns in the presence 
of the radome [1]. Such a dielectric radome in the near 
field of a curved phased array antenna may cause 
significant deterioration of the element pattern, which 
manifests itself in pronounced dips (10-20 dB) and a large 
ripple off broadside in the element pattern. These 
undesirable effects are due to guided waves induced by the 
radome [1]. 

 A practical approach to reduce these effects is to 
separate the radome somewhat from the radiating elements 
and adjust the air gap to produce a compensating effect 
which smoothes out the element pattern [1]. This method 
has been extended to evaluate a systematic design method 
of shaping the element patterns in the presence of a near 
field radome by adjusting the radome thickness, and the 
distance of the radome from the array elements in order to 
smooth out the element patterns [1, 2]. This method is 
particularly relevant to protective dielectric windows for 
missile phased arrays [3-5]. 

 This approach has been extended for 3D structures 
for the circumferential polarization case in [2]. Direct 
evaluation of the element patterns for the 3D-optimized 
window geometries, and the results have indicated that a 
significant reduction of guided wave effects is possible. 
The elements spacing is not smaller than 0.5 λ, and the 
compensation is accomplished by an adjustable air gap as 

well. By appropriately designing the radome [6], it was 
possible to scan a phased array beam efficiently in the 
E-plane (circumferential plane), but the cost is the 
appearance of a blind spot caused by the presence of the air 
gap, which limits the H-plane scan (axial-scan in this 
case). The location of this dip is predictable from the 
planar dispersion curves of a dielectric slab spaced from 
and parallel to a ground plane. Cross polarization is 
encountered off the principal planes due to polarization 
coupling at the dielectric-air interfaces. The amount of 
cross polarization increases with decreasing θ, i.e. 
increasing elevation angle from broadside. When the near 
field radome is spaced away from the radiating elements, 
the principal polarization is still dominant in the shadow 
region but may be highly rippled due to the presence of 
low attenuation guided waves. With a proper choice of 
parameters, the level of the shadow region-element pattern 
ripple may be reduced without an excessive air gap size.  

 In the present paper, these ideas have been extended 
further to arrays scanning in the axial or near the axial- 
direction, when the coupling between longitudinal section 
electric ‘LSE’ and longitudinal section magnetic ‘LSM’ 
polarizations by the dielectric layer are present. The 
method of radome design for the axially 
polarized-rectangular waveguide elements is pursued here 
according to the guidelines established in [1] and will be 
compared to that of the circumferentially polarized case 
presented in detail in [2]. 

 
II. ANALYSIS 

 
 The model, shown in Fig. 1, is very similar to the one 

used for the circumferentially polarized case [2], with one 
exception that the orientations of the radiating waveguides 
are different. Both structures are comprised of uniformly 
spaced infinite arrays of open-ended rectangular 
waveguides in a rectangular lattice embedded in a 
perfectly conducting circular cylindrical surface of radius 
ρ surrounded by a concentric lossless dielectric sleeve 
radome. Therefore, the formulation of the two different 
polarizations is very similar until we apply the boundary 
conditions at the surface of the conducting cylinder. 
Therefore, we will summarize here the main analysis 
steps, but for more details refer to [2].  

The structure has N elements in a ring and the axial 
inter-ring spacing is d. A single waveguide is excited 
while all others are match-terminated [3-5]. The dielectric 
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loaded feed waveguides solely propagate a TE10 mode and 
include identical matching networks with parameters 
appropriate to a chosen circumferential and axial 
progressive element phasing (ν,ζ). A single mode 
waveguide aperture approximation should be sufficient to 
account for dominant mutual coupling effects. 
 

 
Fig. 1. Circular Array Geometry of a dielectrically covered 
circular array of infinite axial slits on a large conducting 
cylinder.  
 
A.  Formulation   

As in the absence of the dielectric radome [2], the 
electric fields radiated by an element in a 
match-terminated cylindrical array with a concentric 
sleeve radome are formally given by, 
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where )(rE  is the E-field in the radial unit cell for the 
steering phase (ν,ζ). As for a given set of (ν,ζ), the 
problem reduces to determining the field radiated by a 
rectangular waveguide into a sectored-waveguide whose 
walls are characterized by “phase shift" walls. 

For the sake of analysis, it is sufficient to consider 
only the transverse to ρ  field components E and H, and in 
each radially homogeneous region, these fields can be 
represented in terms of a complete set of LSM(`) (Hz = 0) 
and LSE(``) (Ez = 0) modes. 

A (m,n) LSM or LSE mode has the form [3], 
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where ( , , )oo o

zρ φ are the cylindrical unit vectors.  

Upon utilizing the following representations, 
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Expressions for the radial modal transmission line in 

the ith layer (see Fig. 1) are given in Appendix A.  
Both the total voltage V

m nν ζ ρ,
(",') ( ) and the total current 

I
m nν ζ ρ,

(",') ( ) at any radial distance ρ or the 
forward-traveling (+) and backward-traveling (-) voltages 
and currents given by V

m n

i
ν ζ,
(",')( )± and I

m n

i
ν ζ,
(",')( )±  will be 

expressed in terms of Vo(ν,ζ), and Io ( , )ν ζ  as shown in 
section III. Wherein Vo(ν,ζ) and Io(ν,ζ) are the dominant 
feed waveguide voltage and current just below the feed 
aperture. 

In our analysis, the total voltages and currents at the 
cylindrical conducting surface given by V

m n oν ς ρ,
" ( )+ , 

'
, ( )

m n oVν ζ ρ + , "
, ( )

m n oIν ζ ρ + , and '
, ( )

m n oIν ζ ρ +  are related to 
the forward-traveling waves in the exterior region (i.e.in 
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layer  i=3)  given by the unknowns I
m nν ζ,

"( )+3 and V
m nν ζ,
'( )+3 . 

This relationship is determined by using the boundary 
conditions at the various air-dielectric interfaces at ρ1 and 
ρ2, the transmission of both the LSM and LSE modes 
across the two layers i.e. i=1 and i=2, and the radiation 
condition at ρ → ∞.   The various mode transmission 
and coupling through the two dielectric layers and their 
associated coupling at the air-dielectric interfaces at ρ1 and 
ρ2 are expressed by an overall transmission matrix T12 as 
shown by equation (11), and the T12 matrix elements are 
given in Appendix B, 
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where expressions for "
3nZ and '

3nY  are given in Appendix 

A, and (1,2) ( )nH x is Hankel function of order n, type 1 or 
2, and argument x .  
    

III. ACTIVE ADMITTANCE FOR AXIAL 
POLARIZATION 

 
The single mode aperture approximation, for an 

axially polarized feed waveguide aperture, requires that in 
the unit cell,   

,
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Matching the tangential field components, assuming 

that the aperture is only slightly curved, the single mode 
aperture approximation requires that the following 
relations to be satisfied in the Galerkin’s sense, 
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where Sf is the feed guide aperture, and Vo(ν,ζ) and Io(ν,ζ) 
are the TE10 modal voltage and current respectively. 

Employing Galerkin’s procedure, one has, from 
equation (14), 
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and 
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also, equation (15) yields, 
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Upon expressing I

m n oν ζ ρ,
" ( ) and I

m n oν ζ ρ,
' ( )  as 

functions of Vo(ν,ζ), we finally can find the ratio of  
Io(ν,ζ)/Vo(ν,ζ) which is the active admittance Ya(ν,ζ). 

 
A.  Active Reflection Coefficient 
 

 To maximize the broadside element gain and 
preserve the circular symmetry of the array, identical 
networks are included in all feed waveguides to match the 
array for in phase excitation of all elements (ν=0, ζ=0), 
where the active reflection coefficient Γa(ν,ζ).at the input 
to the matching network is, 
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 From the equivalent network of Fig. 2, it is apparent 
that for the (ν,ζ) excitation, the TE10 modal voltage 
Vo(ν,ζ) at the aperture is related to the incident voltage 
Vinc and is given by, 
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where Yo is the admittance of the TE10 feed waveguide 
mode. 
 

 
Fig. 2. The matching network. 
 
B.  Element Pattern 

The exterior unit cell voltages V
m nν ζ ρ,
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and V

m nν ζ ρ,
' ( )2

+  are calculated in terms of Vinc upon 
utilizing Appendix C and equation (20). 

The expression for the far field of a singly excited 
element in a mutually coupled environment is given by 
[2], 
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with 
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inc( , cos ) ~ ( , cos )ν θ ν θ=           (23)  

Equations (21-23) are formally valid for both 
polarizations, provided appropriate expressions for 
V Vk oν θ, cos

" / ,  and V Vk oν θ, cos
' /  are used. For the axial 

polarization these are numerically obtained using 
Appendix C. 

C.  Element Gain Amplitude 
 

The total element power gain is given by, 
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 Similar expressions can be derived for the 

circumferential components such as cross-polarization 
upon replacing θ  by φ  in equation (26). 

 
IV. NUMERICAL RESULTS AND DISCUSSION 

 
The numerical results for rectangular waveguide 

cylindrical array element patterns in the presence of a near 
field dielectric radome (window) are presented for 
nominally axial element polarization. These results stress 
the aspects relevant to blind spot free, conformal near field 
radomes. They indicate a significant influence of guided 
waves and illustrate the extent of validity of the design 
method of [l] for dielectric windows to reduce these 
deleterious effects. In addition to the guided wave effects, 
the polarization aspects of the element pattern as 
influenced by the curvature and the presence of the radome 
are considered. 

As in the two and 3D dimensional arrays of [l, 2], the 
element amplitude patterns are presented for 
representative values of array parameters and the results 
are grouped in such a way to exhibit the significant trends. 
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A. Effect of Gap Size 
 

Figures 3-13 present element patterns (kορο = 50, a/λ 
= 0.435, b/λ = 0.2, c/λ = d/λ = 0.5) for waveguides 
oriented so as to produce axial polarization as shown in 
Fig. 1. The dielectric constant is εr = 2.56 unless otherwise 
stated.  

In all cases the field (voltage) element patterns were 
normalized to the unit cell gain 2/4 λπ dc , and a single 
mode aperture approximation was used. The numerical 
results stress the element gain pattern-aspects that are 
relevant to the blindspot-free conformal array design. 

An extremely close similarity has been found between 
the normalized gain pattern in the θ=90° cut and the 
H-plane patterns in the two-dimensional arrays with a 
similar geometry. Therefore, in order to save computer 
time, we have replaced, unless otherwise stated, the θ=90° 
H-plane cuts by the 2-D results [1]. When the dielectric 
window overlays the array face (tg = 0), and td/λ = 0.2, the 
H-plane element pattern (see Fig. 3) does not exhibit 
blindspots, but is slightly rippled, which might be 
acceptable. However, the element pattern deteriorates with 
θ off the principal H-plane. The large ripple is due to the 
coupling to the cross-polarized guided waves, which are 
absent for θ = 90º.  

 In order to reduce this effect, an air gap is introduced, 
and Fig. 3 shows different situations arising as the air gap 
is increased. Consider first the θ = 90º (H)-plane case, 
where it is initially seen that the patterns deteriorate and 
blindspot dips appear upon introducing the air gap (see the 
two cases tg/λ = 0.25 and 0.4). However for tg/λ = 0.5 at 
the θ = 90º, the pattern already becomes very smooth 
because of the surface wave decoupling. In order to 
facilitate understanding of the main features of the θ = 90º 
(i.e. H-plane) element pattern with the inclusion of an air 
gap, the assumption of the validity of the planar 
approximation will be adopted, as in the 2-D case. 

  To exhibit the element pattern for small departures 
from the θ = 90º cut, Fig. 6 shows conical cuts of θ = 85º 
for tg/λ = 0.2, 0.4 and 0.5 which exhibit only minor 
changes from the respective θ = 90º patterns, meanwhile 
the cross polarization level is small. Consequently, the 
design method is also applicable for small departures from 
θ = 90º. 

With the aid of Figs. 4 and 5 and equation (28), one 
may estimate the radial surface wave decoupling away 
from the curved dielectric sheets towards the array face. A 
20dB wave decoupling was calculated to be 20 dB for tg/λ 
= 0.5; which is seen to be sufficient for koρo = 50. 

Continuing further, for θ = 60º (Figs. 7 and 8), the 
gain drops with decreasing values of θ, but for tg/λ = 0.5 
we have already a smooth element pattern in the principal 
polarization. However, as expected, the amount of 
cross-polarization increases. 

Figure 9 shows smooth element patterns for the θ = 
45º in the case of td/ λ = 0.2 and tg/ λ = 0.5. Thus, the 
design method applies here, as well, but it is not possible 
to scan much beyond θ = 45º, 

 

 
 
Fig. 3. Effect of air gap size “tg/λ" on element gain patterns 
for different gap sizes (tg/λ=0, 0.2, 0.4, and 0.5) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56, for 
θ=90° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.25 gain case, a 
0.4 for the tg/λ=0.4 case, and a 0.6 for the tg/λ=0.5 case to 
separate their respective performances. 
 

 
 
Fig. 4a. Effect of air gap size on surface wave propagation 
for εr=2.56. 
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Fig. 4b. Effect of air gap size on surface wave propagation 
for εr=4. 
 
 

 
 
Fig. 5. Grating lobe diagram. 

 
Because of the E-plane dip at θ = 32º (from the axis), as 
predicted from Figs. (4, 5) and from the condition (28) for 
a blindspot in a planar array.  
 

 
 
Fig. 6. Effect of air gap size “tg/λ" on element gain patterns 
for different gap sizes (tg/λ=0, 0.2, 0.4, and 0.5) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56, for 
θ=85° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.2 gain case, a 
0.4 for the tg/λ=0.4 case, and a 0.4 for the tg/λ=0.5 case to 
separate their respective performances. 
 

 
 
Fig. 7. Effect of air gap size “tg/λ" on the element gain 
patterns for different gap sizes (tg/λ=0.4, and 0.5) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56 for 
θ=60° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.5. 
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B. Effect of radome thickness 
 

For td/ λ = 0.3 and θ = 60º, Fig. 11 shows the element 
pattern for tg/λ= 0.2 and a smooth element pattern for tg/ λ 
= 0.5. The latter case corresponds to the optimized 
geometry found in [l]. 
 

 
Fig. 8. Effect of air gap size “tg/λ" on the element gain 
patterns relative to the uncovered case for koro=50, 
a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56 for θ=60° 
cuts. 
 

 
 
Fig. 9. Effect of air gap size “tg/λ" on the element gain 
patterns for different gap sizes (tg/λ=0.4, and 0.5) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56 for 
θ=45° cuts. 

C. Effect of Radome Dielectric Constant εr  

 

Figure 12 illustrates the situation for εr = 4.05 and td/ λ 
= 0.2. In this case, the radome is no longer electrically 
thin, and in the absence of an air gap (tg = 0), the principal 
H-plane θ = 90º exhibits a dip due to a TE surface wave. 
However, for tg/ λ = 0.55, the θ= 90º cut is acceptable. For 
θ =60º, tg/ λ = 0.3 gives rise to a rippled pattern, but tg/ λ= 
0.55 is again sufficient to produce a smooth pattern (see 
Fig. 13).  
 

Fig. 10. Effect of air gap size “tg/λ" on the element gain 
patterns relative to the uncovered case for koro=50, 
a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=2.56 for θ=45° 
cuts.  
 

 
Fig. 11. Effect of air gap size “tg/λ" on the element gain 
patterns for different gap sizes (tg/λ=0.2, and 0.5) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.3, εr=2.56 for 
θ=60° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.5. 
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Fig. 12. Effect of air gap size “tg/λ" on the element gain 
patterns for different gap sizes (tg/λ=0.0, and 0.55) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=4.05 for 
θ=90° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.55. 
 

 
Fig. 13. Effect of air gap size “tg/λ" on the element gain 
patterns for different gap sizes (tg/λ=0.3, and 0.55) for 
koro=50, a/λ=0.43, b/λ=0.2, d/λ=0.5, td/λ=0.2, εr=4.05 for 
θ=60° cuts. Patterns were combined in one figure, and for 
easy comparison, we added a 0.2 for tg/λ=0.55. 
 

V. CONCLUSION 
 

 This paper extends the ideas of [l] for shaping the 
element patterns of conformal arrays scanning in two 
planes in the presence of a near field, dielectric radome. 
The spacing is not smaller than 0.5 λ, and the 
compensation is accomplished by an adjustable air gap. 
The gap compensation method works fairly well. The axial 
scan is limited by the E-plane dip, which can be predicted 

from the planar surface wave dispersion curves. Axial 
polarization allows further scanning along the axis as 
compared to that of the circumferential polarization which 
is limited by the H-plane dip that is closer to broadside to 
that of the axial case. However, cross-polarization is the 
main problem for axially polarized excitation and is 
present off the principal planes even without the radome. 
From the data shown, it appears that the cross-polarization 
slightly worsens in the presence of a radome. For a 
sufficiently large departure from the principal planes, the 
cross polarization level exceeds that of the principal 
polarization even in the lit region, limiting the extent of the 
excited arc in an active array and the extent of additional 
phase scanning in the azimuthal direction. This 
polarization is more suitable for applications where the 
desired scan sector is larger in the axial direction than in 
the circumferential direction 
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A. Radial Transmission Line 
 

In view of equation (9), i
m nν ς,

" and v
m nν ς,

' satisfy the 
Bessel’s differential equation and therefore one has the 
following expressions for the radial modal transmission 
line in the ith layer (see Fig. l), 
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But, for i=3 and ρ ρ≥ 2 , we have only forward 
traveling waves, 
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where κn3 = κn1 and Zn3 = Zn1, and H xn
( , ) ( )1 2 denotes the 

Hankel function of the first or second type with argument 
x and order n. 
 
B. Transmission Matrix T12 
 

The various voltages and currents in the i-layer at 
ρ i−

+
1 can be related to those at ρ i

− using the following 
transmission representation, 
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where ∆2
"  is given by, 
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And similarly Ai
' , Bi

' , Ci
' , and Di

'  are deduced by 
first dividing all the above terms for the (``) case by 
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" " ) and then utilizing the following substitution, 
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where ∆2
'  is given by, 
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C. Boundary Conditions and The Coupling Matrix Pi,i+1 
 

In view of the continuity of 
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 at 

both ρ1 and ρ2 as well as the continuity of 
,
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 across 

the dielectric interface at both ρ=ρ1 and ρ2, the total 
voltages and currents must be continuous at both ρ2 and ρ1 
i.e. 
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On the other hand, the continuity of EΦ and HΦ at 

ρ1 and ρ2 yields via equations (2), (3) and (9) the 
following, 
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The coupling matrix Pi,i+1 is given by,  
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Repeating for i=1 and i=2, we can find the overall 
transmission from ρ0

+  to ρ2
−  given by, 
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where 
 

T ABCD P ABCD P12 1 12 2 23= .        (C1.6) 
 
Repeating for i=1 and i=2, we can find the overall 
transmission from ρ0

+  to ρ2
−  given by, 
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where 
 

T ABCD P ABCD P12 1 12 2 23= .         (C1.8) 
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