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Abstract – The Macro Basis Functions (MBF) approach
receives increasing attention for the evaluation of the
effects of array truncation. In this paper, we show how
physically based MBFs can be obtained from solutions
for infinite arrays and for arrays of minimal size. The
method is first explained and illustrated for the case of
finite-by-infinite arrays of electrically connected tapered-
slot antennas. It is then extended to the case of planar
arrays. Very low error levels are achieved with a small
number of MBFs, in terms of port currents as well as in
terms of radiation patterns.

I. INTRODUCTION

In the last few years, very efficient techniques
appeared in the literature for the Method-of-Moments
(MoM) analysis of large finite periodic antenna arrays.
Some methods rely on the infinite-array solution, with
corrections for the effects of array truncation [1–3]. Those
methods are generally valid for very large arrays and
entail several approximations. Other approaches involve
fast iterative methods, in which matrix-vector products are
accelerated with the help of multipole decompositions or
Fast Fourier Transforms, combined with efficient precon-
ditionners [4]. In [5], the FFT approach is advantageously
combined with the concept of subentire-domain basis
functions, which consists of assuming that the currents on
a given antenna in the finite array can be decomposed in
terms of a limited number of known current distributions,
obtained through the solution of smaller problems. This
underlying idea has been found in many publications,
where the “macro basis functions” [6, 7] are also called
“characteristic basis functions” [8]. Among recent works
on this subject, we should note [9] and [10], where pri-
mary and secondary distributions are considered, in order
to accurately catch the effects of mutual coupling. A very
fast implementation of this method has been described
in [11], where the interactions between macro basis and
macro testing functions are computed with the help of
a multipole approach. This method allows the efficient
computation of all coupling coefficients of the finite array.
Besides this, the patterns of macro basis functions, which
are side-products of this method, are then used to rapidly
compute the embedded element patterns and, in turn, the
array pattern for any excitation law. A similar approach,

involving an iterative scheme, is presented in [12].
At first glance, finite and infinite-array approaches

seem very distinct. For large arrays, an initial design can
be obtained from the infinite-array simulations, potentially
with approximate corrections for truncation, while the
behavior of the finite array is verified with the help of
an efficient iterative or multiscale approach [13]. The
present paper consists of making one more step toward the
reconciliation of infinite-array and finite-array approaches.
A first set of macro basis functions is obtained from the
infinite-array analysis in a very specific and physically-
based way, which finds its justification in the Array
Scanning Method [14]. A second set of MBFs is obtained
from the solution of very small (2×1 or 2×2) arrays. In
[15], MBFs (named “standard distributions”) were also
obtained from infinite array solutions, but this method was
limited to finite-by-infinite arrays and, more importantly,
to periodic excitation, thus requiring only one infinite-
array solution (besides single-element and semi-infinite
array solutions). The combination of ASM and MBF
approaches, for the solution of the array excited at a single
port, was first shown in [16], where only finite-by-infinite
arrays are considered, while full-wave treatment of edge
elements was needed. In the present paper, the method
shown in [16] is extended to planar arrays, while special
MBFs are included to represent currents on elements on
the array periphery.

This paper is organized as follows. In Section 2, the
phenomenology of current waves in infinite arrays excited
at one element is recalled, and its quantitative evaluation
is obtained with the help of the Array Scanning Method
in Section 3. In Section 4, the method for extraction of
edge MBFs is explained and the numerical examples are
given in Section 5 for finite-by-infinite arrays of tapered-
slot antennas. The method is extended to arrays finite in
both directions in Section 6, where examples are shown in
terms of port currents and radiation patterns. The method
is summarized and discussed in Section 7.

II. CURRENT DISTRIBUTIONS IN INFINITE
ARRAYS

To properly assess the efficiency of the method
explained below, it is interesting to consider worst-case
situations in terms of coupling between elements. This is
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Fig. 1. Discretization of tapered-slot antenna with
overlapping basis functions (dashed).

why arrays of electrically connected tapered-slot antennas
[15, 17], will be taken as examples (see Figs. 1 and 2 for
meshes of the antennas and of the array): first, near the
lowest frequency end, the wavelength can be large com-
pared to the array spacing, which often leads to stronger
couplings and, second, the electrical connection between
elements also leads to very strong couplings and to a quite
different current distribution on elements located on the
periphery of the array. A first possibility for determining
the macro basis functions consists of considering a large
spectrum of plane-wave excitations of the antenna, as
well as source excitations. In practice, when successive
elements are electrically connected, the currents can flow
from one element to the next, with currents essentially
concentrated on the edges of conductors. If a free-standing
element is cut out of the array and excited, currents will
also flow along the cutting lines. This will not lead to
an acceptable representation of current distributions in
array conditions. Hence, some authors [18] proposed to
extend the subdomains to two or three antennas and to
carefully avoid singular currents by a spatial windowing
to the obtained current distributions. Despite the very
good results obtained for certain configurations [18], it
is difficult to say in how far the macro basis functions
generated in this way form a complete set of solutions.
Here, “complete” means that any current distribution that
can appear on the array can also be described as a linear
combination of the proposed set of macro basis functions.

III. ARRAY SCANNING METHOD AND MBFS

While attempting to answer the latter question, it is
useful to come back to the physical interpretation of fields
in infinite and finite arrays. Let us assume a finite array
excited at one given element. The currents excited on the
whole structure can be regarded as those present in an
infinite array, plus currents reflected (or “diffracted”) by
the edges of the array. Let us first consider the case of
excitation at one port in an infinite array. In this case, the
currents can be obtained from infinite-array simulations,
with the help of the Array Scanning Method (ASM) [14,

Fig. 2. Wave phenomenology in a finite-by-infinite
array excited along one infinite row. The currents on a
given point of successive antennas can be regarded as
progressive waves launched by the excited element and
reflected by the ends of the array (vertical lines). If the
Array Scanning Method is implemented with the help of
a finite summation, the source is repeated (cf. auxilliary
peaks).

19, 20]. The method is recalled in [21] for the case of
planar arrays, where examples are provided for wideband
phased arrays. In this section, it will be illustrated for a
simpler problem, involving arrays infinite along x̂, and
with M elements along ŷ. The complexity of the method
is then reduced to that of a linear array (see Fig. 2). If
element 0 (or row 0) is excited, the current on element m
(or row m) reads,

I(m) =
1

2π

∫ 2π

0

I∞(ψ) e−j mψ dψ (1)

where I∞(ψ) is the infinite-array current distribution
obtained with inter-element phasing ψ along ŷ. As for
the phasing along x̂, the infinite-array direction, it is
assumed identical for infinite-array and finite-by-infinite
array solutions.

The Array Scanning Method assumes the integration
of current distributions for all possible phase shifts, from 0
to 2π, between successive elements. In practice, solutions
will be computed for a finite set of phase shifts. The
simplest approximation, computing integral of equation
(1) with rectangles in the reciprocal (phase-shift) domain,
then comes down to a DFT approach,

I(m) ' 1
N

N−1∑
p=0

I∞(ψp) e−j mψp (2)

with ψp = 2π p/N .

The effect of this approximation is that excited cur-
rents are obtained as if the source were repeated every
N elements (see dashed lines for port currents in Fig. 2
for N = 4). This poses a problem when the exact
solution for a single excitation is looked for, but, as will
be seen further, it is not really a drawback when we
are just looking for characteristic current distributions,
or “macro basis functions”. Indeed, in an infinite array,
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and far from the source, the currents along successive
antennas may be regarded as a “wave” with a given
decay rate in terms of amplitude and with a given phase
velocity [22]. Far enough from the source, say beyond N◦
elements away from it, the successive current distributions
may -within a constant factor- be very similar, while
they can differ quite a lot near the source. Hence, the
repetition of excitation every N◦ antennas, as implicitly
incurred by the use of equation (2), is not a problem when
the number of linearly independent current distributions
available remains sufficient, i.e., as long as N is not
too small compared to N◦. Moreover, the repetition of
the sources does not really “spoil” the generated current
distributions, since the added current component is very
similar to the characteristic current distributions looked
for.

Besides this, when the array is finite, the difference
with the solution considered above may be regarded as
currents reflected by the edges of the array. This has been
illustrated in [22] for linear arrays of broadband dipoles.
In general, except for the elements right at the edges of
the array (which will be treated below), these “reflected”
current distributions are very similar to those found in an
infinite array excited by a single source. This supports
the use of the currents obtained from the ASM analysis
as macro-basis functions for the finite array. It is also
interesting to notice that, as a result of the physical ground
for the choice of current distributions, the distributions
obtained in this way will naturally exhibit continuous
currents at the boundaries between electrically connected
elements.

The explanation above provides a physically-based
choice of macro basis functions for elements inside the
array (i.e., for all elements, except those located right at
the edges of the array). This means that, considering the
excitation of any element in the array, the currents on a
given antenna can be written as a linear combination of
the current distributions obtained with the ASM method.
In turn, through superposition of excitation at individual
elements of the array, the ASM-based method should
provide accurate results for any active excitation law of
the array. Furthermore, since the ASM results are obtained
as linear combinations of infinite-array results, we can
also say that the currents for any excitation law should be
a linear combination of currents obtained in the infinite-
array case. Hence, the set of MBFs is simply made up of
all I∞(ψp) current distributions. The only constraint, for
the physical justification above to hold, is that the infinite-
array solutions be obtained by sampling regularly in the
reciprocal (i.e., phase-shift ψ) domain, i.e., ψp = 2π p/N ,
with p integer between 0 and N − 1. This includes
solutions outside the visible space, for which the antenna
active impedances are purely reactive.

IV. EDGE MBFS

As explained previously, the wave phenomenology
described above may not hold for the elements on the

edges of the array. This is particularly true for arrays
made of connected elements, since, in that case, the edge
elements may support significantly different types of cur-
rent distributions. Those are not well captured through the
ASM procedure. In the following, they will be obtained
by solving very small arrays, consisting of edge elements
only. In the finite-by-infinite array example, such an array
contains only two electrically connected elements; or
more precisely, a two-by-infinite array. Current distribu-
tions may be different on left and on right edge elements.
These elements may be fed directly, or they may be
illuminated through the feeding of another element in the
array. In the two-elements case, this leads to four possible
current distributions. This requires the full-wave solution
of a two-elements array, which, compared to other steps
in the computation procedure, takes a relatively small
computation time. The resulting four MBFs are simply
added to the set of N distributions obtained from the
ASM procedure. As already considered in [23], MBFs
are then orthogonalized through the SVD (Singular Value
Decomposition) procedure, in order to preserve a good
conditioning for the reduced system of equations.

V. FINITE-BY-INFINITE ARRAY EXAMPLE

Simulation examples will be shown for an array made
of metallic tapered slot antennas, with the discretization
shown on Fig. 1. The surface is meshed with the help
of 132 elementary basis functions, which are of rooftop
and RWG (”Rao-Wilton-Glisson” [24]) types, with half
basis functions electrically connecting the antenna to the
infinite ground plane and overlapping basis functions
(dashed) connecting antennas with each other in the E-
plane. Based on comparisons with results obtained with
finer meshes, the meshing used here has been found to
provide a satisfactory representation of the main antenna
characteristics, while still allowing the brute-force solu-
tion of intermediate-size finite arrays. For instance, with
this discretization, as well as with finer ones, the standing
wave ratio for the array scanned at broadside is below 2
from 0.42 GHz to 1.5 GHz.

The array analyzed here is infinite along x̂ (per-
pendicular to the figure), without a phase shift between
elements in that direction, and has 32 elements along
ŷ (from left to right). The element spacing is 12.7 cm,
while the wavelength is 30 cm. The elements are excited
successively (excitation of successive infinite rows) and
the currents are compared with the “brute-force solution”,
obtained through inversion (or LU decomposition) of the
MoM impedance matrix. Results are shown in Fig. 3 for
excitation at port 1 and at port 16. The upper plot shows
the port currents, while the lower plot shows the error
w.r.t. the brute-force solution, with a scale enlarged by a
factor of 6000. It can be seen that the residual error is
extremely small.

The remaining question is how many MBFs are
necessary to obtain a sufficient accuracy; in other terms,
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(a)

(b)
Fig. 3. Port currents in array of tapered slot anten-
nas, with 32 elements in one direction and infinite in
orthogonal direction, excited along one infinite raw. Array
spacing: 12.7 cm, wavelength: 30 cm. Top: port currents.
Bottom: with scale enlarged by a factor 6000, errors
between full-wave solution and MBF approach (a) first
row of antennas excited, (b) row 16 excited.

how large should N be in the Array Scanning Method?
In the case of weakly coupled arrays, for instance when
elements are located far apart, it is expected that current
distributions on antennas away from the excited element
should be very similar. In that case, N can be very small.
For strongly coupled arrays, and a fortiori, for electrically
connected elements, N can become larger, because of
the large variety in possible current distributions. The
maximum port error, normalized relative to current at the
excited port, is represented in Fig. 4 for increasing values
of N . It can be seen that the error suddenly drops to very
low values for N > 7. If the SVD procedure is not used,
the error increases again after N = 10 (crosses), because
an ill-conditioned system of equations is obtained through
the use of very similar basis functions. It can be seen
that the use of the SVD procedure (circles) avoids this
difficulty.

VI. EXTENSION TO PLANAR ARRAYS

A similar procedure can be used for planar arrays,
like finite arrays of tapered-slot antennas (Fig. 5). In this
case, the 2-D version of the ASM is exploited. The current
on antenna (m,n) for excitation of antennas with indices

Fig. 4. For 32-by-infinite array, with row 16 excited,
maximum relative error in port currents, versus value of N
in ASM. Circles: with SVD procedure. Crosses: without
SVD procedure.

Fig. 5. 5×5 array of tapered-slot antennas.

(rN, sN), with r and s integer, is given by,

Im,n =
1
N2

N∑
p=1

N∑
q=1

I∞(ψx,p, ψy,q) e−j mψx,p e−j nψy,q

(3)
with

ψx,p = 2π p/N and ψy,q = 2π q/N. (4)

In equation (3), I∞(ψx, ψy) is the infinite-array current
obtained with inter-element phasings along X and Y
equal to ψx and ψy , respectively.

As in the finite-by-infinite array case, if N is large
enough, this procedure provides a sufficiently complete
set of MBFs for large arrays, except for elements on
the outer edge, which may support significantly different
current distributions. This time, the problem is solved by
adding to the set of MBFs a few current distributions
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Fig. 6. Port currents for all elements of 5×5 array
excited (upper line) and errors produced by the infinite-
array approximation (crosses around -15 dB) and by
ASM+MBF with different values of N for the two-
dimensional ASM and with 8 additional MBFs from 2×2
array. The 4×4 case denoted with dashed lines does not
include the 8 additional MBFs.

obtained through the full-wave analysis of a small array,
e.g. a 2×2 array, which contains only edge elements.
Four elements and four independent excitations lead to
16 possible MBFs. However, if some symmetry is present
in the array, fewer distributions need to be considered. In
the present example with tapered-slot antennas, since two
parallel columns are perfectly symmetrical, this leads to 8
different current distributions. Adding these distributions
to those stemming from the ASM procedure with N = 4,
for example, leads to 24 MBFs, instead of the original 132
elementary basis functions per antenna. This reduction
by a factor 5.5 of the number of unknowns leads to a
reduction by a factor 166 in terms of direct solving time.
Larger time saving factors are expected for more complex
antennas.

Figure 6 shows results obtained for port currents in a
5×5 array of electrically connected tapered-slot antennas
(Fig. 5). Overlapping basis functions ensure the electrical
connection between antennas. It should be noted that, for
simplicity, these overlapping basis functions have been
kept on the last elements in each row. In the first numerical
example, all antennas are excited with a uniform voltage
excitation, with 100 Ω series impedances. The 25 port
currents are represented by the upper line in the right plot
of Fig. 6. It can be seen that variations of the order of 3 dB
appear, which underscores the strong effects of array trun-
cation. Errors, defined as the magnitude of the complex
difference between brute-force and approximate solutions,
are presented by the lines below. The errors produced by
the infinite-array solution are less than 10 dB below the
brute-force solution. Slightly better results are obtained
when considering only one MBF, that corresponds to the
infinite-array solution for scanning at broadside. Except

(a)

(b)
Fig. 7. Pattern for a 5×5 array of tapered-slot anten-
nas, with uniform excitation (a) E-plane, (b) H-plane.
Upper lines: brute-force solution. Lower lines: error from
ASM+MBF approach. Dashed: error from use of infinite-
array solution for surface currents.

for one (N = 4, dashed lines), the other examples include
the 8 additional MBFs obtained from the 2×2 finite-array
case. It can be seen that, for increasing values of N , the
errors are steadily going down. Basis functions obtained
with N = 4 (24 MBFs in total) lead half-way to single
machine precision; hence N = 4 will be considered
sufficient. This involves the calculation of the infinite-
array solutions for N2 different phase shifts. These can
be computed very fast, because the domain is limited to
a unit cell. Details about fast implementation, involving
fast calculation and tabulation of the periodic Green’s
function, can be found in [3].

Corresponding patterns can be seen in Fig. 7, for cuts
in E plane and in H plane. The upper line corresponds to
the brute-force solution, the dashed line stands for the
error produced by considering the infinite-array solution
on all antennas, and the lower line corresponds to the
error obtained with the N = 4 ASM+MBF approach (24
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(a)

(b)
Fig. 8. For a 5×5 array of tapered-slot antennas, excited
at a corner element. (a): port currents: brute-force solution
and error from ASM+MBF approach. (b): Embedded
element pattern in E-plane. Solid: vertical polarisation.
Dashed: horizontal polarisation. Upper curves: brute-force
solution. Lower curves: error from ASM+MBF approach.

MBFs in total). Compared to the brute-force solution, the
errors are located from 60 dB lower at broadside to 30
dB lower at grazing incidence.

The last example concerns excitation at a single
port. A worst case has been considered, in terms of
array truncation. It corresponds to excitation of a corner
element. The accuracy of the result on the 25 antennas
(taken along successive columns) is shown in Fig. 8(a)
for the port currents, and in Fig. 8(b) for the embedded
element pattern in the E plane. Upper curves correspond
to the brute-force solution, lower curves represent the
errors. As for the patterns, the dashed lines stand for the
cross-polar component, due to the asymetric excitation of
the finite array. It can be seen that excellent accuracies
are achieved, even for the cross-polar fields.

Finally, it is interesting to notice that, although lower
frequency cases generally lead to stronger truncation ef-

fects, with the method presented here, significantly better
accuracies were achieved for a wavelength of 60 cm (not
shown here) instead of 30 cm (examples above).

VII. CONCLUSION AND FURTHER
PROSPECTS

A physically based choice of macro basis functions
has been described for the full-wave simulation of finite
antenna arrays. We showed that a good choice corre-
sponds to infinite-array solutions computed on a regular
grid in the reciprocal domain (domain of phase shifts
between elements in both directions). This method allows
capturing of current waves launched at one element, prop-
agating over the passively terminated array, and bouncing
back on the edges of the array. This method is also
well suited to the particularly difficult case of electrically
connected elements, without requiring the development
of techniques devoted to tapering of current distributions
obtained over domains defined over more than one unit
cell.

The method has been demonstrated for metallic ar-
rays of tapered-slot antennas. Since edge elements can
exhibit quite different current distributions, a few more
MBFs are obtained from very small (2×2) arrays. Ex-
cellent results have been obtained for both port currents
and radiation patterns. It should be recalled that, once
the reduced MoM impedance matrix has been obtained,
solutions can be computed simultaneously at negligible
computational cost for any excitation law. Future efforts
will concentrate on the demonstration of this method to
the case of arrays containing dielectric parts.
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