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Abstract − In this paper, coupling characteristics of dual-
core photonic crystal fiber (PCF) are studied extensively 
using vector finite element method, which has the 
potential to realize wavelength selective MUX-DEMUX 
for wavelength division multiplexing (WDM) 
application. Dispersion characteristic is also reported and 
demonstrates the wavelength region where it can support 
short duration soliton like pulses. 
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I. INTRODUCTION 
 

Photonic crystal fiber (PCF) has recently attracted a 
considerable amount of attention, because of their unique 
properties that are not present in conventional optical 
fibers. A PCF has a central region of pure silica (core) 
surrounded by air holes. It is a regular morphological 
microstructure incorporated into the material to radically 
alter its optical properties [1]. Here a wavelength 
dependant effective volume average index difference 
between the defect regions will form the core, and the 
surrounding region, which contains air holes will be 
acting as the cladding. This effective-index guidance does 
not depend on having a periodic array of holes. Even 
other arrangements could serve a similar function [1, 2]. 
Index-guiding PCF guides light by total internal 
reflection between a solid core and a cladding region with 
multiple air-holes [1]. On the other hand, a perfectly 
periodic structure exhibiting a photonic band gap (PBG) 
effect at the operating wavelength to guide light in a low 
index core-region [1]. In this paper, we will focus on 
index-guiding PCFs, also called holey fibers (HFs). 

HF possess numerous unusual properties such as 
wide single-mode wavelength, bend-loss edge at short 
wavelength, controlled effective-core-area at single-mode 
region, and anomalous group-velocity dispersion at 
visible and near-infrared wavelengths [2, 3]. It has been 
shown that the PCF with two adjacent defect area (served 
as two core), can be used as an optical fiber coupler [4-6]. 
These PCF couplers have the possibility of realizing a 
multiplexer-demultiplexer (MUX-DEMUX). In this 
paper, wavelength dependent coupling characteristics of 
dual-core PCF couplers are evaluated by using a vector 
finite element method (FEM) [7, 8]. This gives 

understanding of the PCF based MUX-DEMUX for 
wavelength selective application such as WDM. 

 
II. FINITE ELEMENT FORMULATION FOR 

GUIDED MODE 
 

The vector finite element method is used to compute 
the mode spectrum of an electromagnetic waveguide with 
arbitrary cross section [9, 10]. It eliminates the 
disadvantages of the scalar finite element approach of 
having undesired spurious modes or non-physical 
solutions and is characterized by easy implementation of 
boundary conditions at material interfaces [9].  Recent 
study shows that some double curl finite element 
formulations are not immune to spurious modes even 
though they are not observed frequently. It is due to the 
fact that the initial conditions (forcing term) 
corresponding to the physical situation eliminates 
frequent observation of spurious modes [9,10]. We 
discretized the continuous spectrum by enclosing the 
structure with an electrical wall as shown in Fig. 1. We 
have studied dual core PCF and evaluate coupling 
characteristics using vector FEM. Figure 1 shows the dual 
core PCF geometry. Some dimension of PCF geometry 
such as air hole diameter d, pitch between two adjacent 
holes Λ and core separation C were adjusted to obtain the 
desired values for coupling length and dispersion.  
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Fig. 1. Arbitrary shaped waveguide with electrical wall. 

 
The vector finite element formulation can be 

illustrated by using either the E or H field; here we 
explain the case for the E field, which is the same for the 
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H field. The vector wave equation for the E field is given 
by,   
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where µr and εr  are, respectively, the permeability and 
permittivity of the material in the waveguide. k0 is the 
free space wave number. The transverse and longitudinal 
components are separated and are written as, 
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Since the vector Helmholtz equation is divided into 

two parts, equations (2) and (3), vector-based tangential 
edge elements, shown in Fig. 2 (a), can be used to 
approximate the transverse fields, and nodal-based 
elements, shown in Fig. 2 (b), can be used to approximate 
the longitudinal component. 

 

 
 
Fig. 2. Configurations of (a) tangential edge elements and 
(b) node elements. 

 
For a single triangular element shown in Fig. 2, the 

transverse electric field can be expressed as a 
superposition of edge elements. The edge elements 
permit a constant tangential component of the basis 
function along one triangular edge while simultaneously 
allowing a zero tangential component along the other two 
edges [9]. Three such functions overlapping each 
triangular element provide the complete expansion, that 
is, 
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where m indicates the m-th edge of the triangle and Wtm 
is the edge element for edge m given by,    
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Ltm is the length of edge m connecting nodes i and j and αi 
is the first-order shape function associated with nodes 1, 
2, and 3. The longitudinal component is written as,   
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After simple manipulations the integral equation for each 
elements can be written in matrix form as, 
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These element matrices are assembled over all the 

triangular elements in the cross section of the structure to 
obtain a global eigenvalue equation [9, 10]. Solving the 
above equation yields the eigenvalues or the longitudinal 
propagation constants kz, from which the effective 
refractive index ne is obtained by using the relation, 
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III. CHARACTERISTICS OF DUAL-CORE PCF  

 
In brief signal power is exchanged between the 

coupled cores due to weak overlap of adjacent electric 
field. Here light confined into one of the PCF core moves 
to the other waveguide after propagating a distance 
known as coupling length Lc due to the different 
propagation constants of the even and odd modes of the 
coupler [11]. Coupling length Lc is determined by the 
following equation, 
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Here βe is the dispersion coefficient for even mode; 

βo is the dispersion coefficient for odd mode. Figure 3 
shows the coupling length Lc with the hole pitch for d/Λ 
=0.7. It is shown from numerical results that it is possible 
to realize significantly shorter MUX-DEMUX PCFs, 
compared to conventional optical fiber couplers. In the 
conventional fiber coupler with core spacing and core 
radius ratio of 3 we found that the coupling length of is 
1cm. If the spacing between the cores increases then the 
coupling length will also increase [12]. On the other hand 
PCF coupler with d/Λ =0.7 has coupling length of few 
mm (at 1.50 um it is between 2-4 mm). The advantage of 
having short coupling length is that the device becomes 
more miniaturized. 

Figure 4 shows the wavelength dependency of Lc. It 
is observed that the coupling length decreases sharply at 
shorter wavelength up to 0.5 um then the slope decreases 
up to 2 um then it get almost constant at higher 
wavelength which comparable to the pitch (in this case 
2.5 um). This is because of the sharp change of material 
dispersion of silica glass at the short wavelength 
contributes in a higher extent in evaluation of even and 
odd wave number. The difference between these two 
wave numbers varies rapidly at short wavelength but at 
higher wavelength this remains fairly constant.  
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Fig. 3. Coupling lengths of PCF couplers with d/Λ =0.7 
at 1500 nm. 
 

It is also possible to significantly change the 
coupling length by altering the cladding geometry as well 
as the core separation. For the similar dual core PCF with 
d=0.8 um and d/Λ=0.4, as shown in Fig. 5, Lc shows 
similar characteristics with the wavelength but this time it 
is longer than the one of the PCF with d/Λ=0.7 shown in 
Fig. 4.  For a constant d/Λ ratio we can vary Lc by 

varying d. Figure 6 shows that the Lc can be increased by 
increasing d.  
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Fig. 4. Coupling lengths of PCF couplers (d=0.8 um and 
d/Λ =0.7). 
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Fig. 5. Coupling length of dual core PCF coupler 
(d=0.8um and d/Λ=0.4). 
 

 
 

Fig. 6. Coupling length comparison for dual core PCF 
coupler (C=4 Λ, d/Λ=0.4). 
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IV. WAVEGUIDE DISPERSION 
 
When electromagnetic wave interacts with the bound 

electron of the dielectric materials the medium response 
is frequency dependant and this manifests itself through 
the change of refractive index n(ω). It is due to the 
characteristic resonance frequency at which the bound 
electron oscillation of the dielectric medium absorbs the 
electromagnetic radiation [2, 13]. It is the dispersion of 
optical waveguide which is the most critical for short 
pulse propagation because the different spectral 
component associated with the pulse travels at different 
speed c/n(ω). The parameter D which is commonly used 
in optical fiber literature is called the group velocity 
dispersion and can be expressed as, 
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were β1 and β2 are the first and second derivative of wave 
number β with respect to ω . Fig 6 shows the dispersion 
profile for the same coupler. There is a sign change 
around 1.0 µm. These wavelength, when the group 
velocity dispersion shifts from normal (D is +ve) to 
anomalous (D is -ve), is called the zero dispersion 
wavelength and treated as a very important design 
parameter for device supporting short pulse propagation. 
Soliton pulse propagation through this optical waveguide 
is dependant on the delicate balance between nonlinearity 
and the dispersion. Nonlinear phase modulation tries to 
compress the pulses and the dispersion causes pulse 
broadening. If the power and dispersion is properly 
balanced then input pulse can propagates without any 
distortion. In order to support soliton pulses the 
dispersion has to be in the anomalous region [13, 14]. 
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Fig. 7. Dispersion characteristics of dual core PCF (d=0.8 
and d/Λ =0.7). 

 
From the dispersion results shown in Fig. 7 we found 

that the wavelengths beyond 1.0 um have anomalous 
dispersion. At those wavelengths the waveguide is able to 

support soliton pulses. Therefore Lc along with the 
dispersion parameters determines the waveform while it 
propagates. 

V. CONCLUSION 
 

We have numerically demonstrated the coupling and 
dispersion characteristics of dual core PCF which have a 
potential application in the wavelength selective system. 
With short coupling length compared to regular fiber 
coupler the device can be used as a MUX-DEMUX or 
power coupler in the WDM system. Dispersion profile 
demonstrates the wavelength region where it can support 
short duration soliton like pulses. 
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