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Abstract─ Aggregate functions approaches 
construct efficient MoM basis functions by 
suitably grouping standard (e.g. Rao-Wilton-
Glisson) functions. The application domains, 
objectives and related means of achieving them 
can be significantly different. In this paper we 
review some recent advances in aggregate-
functions methods, putting them in a unifying 
perspective. We address matrix compression, 
multi-resolution sets, low- and high-frequency 
constructs. They can reduce the degrees of 
freedom of the problem so as to allow a direct, 
iteration-free solution, or can accelerate the 
convergence rate of iterative methods. We analyze 
compressive methods in more detail, providing 
general discussion and specific implementation 
examples. 
 
Index Terms─ Integral equation techniques, 
Method of Moments, Large structures, Aggregate 
functions. 
 

I. INTRODUCTION 
     The Integral Equation (IE) approach is widely 
used to solve antenna and scattering problems, and 
known for its effectiveness and robustness. The 
standard implementation of its Method of Moment 
(MoM) discretization has obvious limitations on 
the matrix size in terms of memory and CPU time 
for large scattering bodies and large and complex 
antennas and arrays. Less obvious, but very 
relevant are also issues related to the matrix 
conditioning, especially for very large problems or 
for problems with fine meshes, or mesh cells of 
very different sizes. In order to reduce the problem 
numerical complexity, two different families of 
approaches can be adopted: the first one consists 

in the so called fast methods that are based on the 
use of iterative solvers, and essentially act on the 
cost and memory occupation needed at each step 
of the iterative algorithm. Another class of 
methods is based on the grouping of basis 
functions into “aggregate functions” that are 
constructed in such a way to inject information 
about nature of the solution directly into the 
representation of the unknown currents. 
     Function aggregation, in turn, may take two 
different routes and perspectives. In one of its 
embodiment, aggregation may be used to reduce 
the number of degrees of freedom (DOF) of a 
problem; such a reduction may be so drastic as to 
make the direct solution of the MoM linear system 
is attainable even for very large and/or complex 
problems; when not possible, it will in any case 
make the use of iterative solvers more expedite. 
The other type of aggregate function approaches 
instead aim at improving the stability of the 
system, or to allow a sparsification of the resulting 
MoM matrix. 
     In this paper, we will address the aggregate 
function methods from a general perspective at 
first, showing that in all cases they add 
considerable flexibility to the MoM; this flexibility 
in turn allows to exploit the physical and 
mathematical properties of the underlying problem 
to the advantage of the computational complexity 
or stability of the solution. We will then focus our 
attention on methods that lead to a ”compression” 
of the MoM matrix; two methods already 
proposed by these authors will be discussed in 
more detail for the sake of making clearer points. 
The two examined methods address different types 
of problems, and allow a broader perspective. The 
characteristics of the aforementioned algorithms 
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have been presented, or will be presented, in more 
detail in other works; the main scope of this paper 
is not indeed a detailed discussion of these 
particular methods but a more general review. 
     While this paper will be devoted to aggregate 
function methods, it is important to underline that 
fast methods and aggregate function methods are 
complementary. It is indeed possible to arrive at 
hybrid techniques that sum up the advantages of 
both approaches. A brief discussion on the 
prospects of these issues will be addressed where 
appropriate in the following sections. 
 

II. THE AGGREGATE BASIS 
FUNCTION PARADIGM 

     Electromagnetic analysis of radiators or 
scatterers with arbitrary geometries requires the 
dicretization of the descriptive equations (EFIE, 
MPIE, CFIE, or GCFIE) by basis functions 
defined on subdomains. 
     The unknowns will in general comprise both 
electric and magnetic currents; for the sake of 
simplicity here we will however refer to the 
electric current only, denoted by ( )J r . The 
unknown is initially approximated by a set of basis 
functions defined on the meshed structure; most 
often these will be RWG on triangular patches, 
and/or piecewise-linear functions on wire 
segments; we will denote these standard basis 
functions ( ){ }, 1,...,nf r n N= as ”elemental” basis 

functions, and eJ is the approximation obtained 
with such a basis:  

( ) ( )
1

N
e

n n
n

J r I f r
=

=∑ .                 (1) 

The key of function aggregation is to look for a 
different basis, of dimension M, 

   ( ) ( )
1

M
a

k k
k

J r i rψ
=

=∑                   (2) 

constructed with the elemental functions, 

    ( ) ( )
1

kN

k nk n
n

r U f rψ
=

=∑ .               (3) 

The new basis functions ( ){ }, 1,...,n r n Mψ = are 

called “aggregate” basis functions, and are 
combinations with fixed weights Unk of the 
elemental basis functions ( )nf r . 
     The new basis must of course present desirable 
numerical properties; this is discussed below. 

Also, one wants that the two bases yield the same 
accuracy, i.e. a ej j= within the accuracy of both 
with respect to the actual solution. 
     Equation (3) describes the basis change from 
the initial elemental basis to the aggregate basis. 
We consider the initial MoM system for the 
elemental basis in (1) 

( ) ( ) [ ][ ] [ ]
1

N
e

n n
n

J r I f r Z I B
=

= → =∑ ,               (4) 

and the MoM for the aggregate basis (3) 

( ) ( ) [ ][ ] [ ]
1

M
a

k k
k

J r i r z i bψ
=

= → =∑ .                (5) 

The basis change can likewise be written in terms 
of matrix operations via (3), 

( ) ( ) [ ] [ ] [ ]1
1

,...,
kN

k nk n M
n

r U f r X U Uψ
=

⎡ ⎤= → = ⎣ ⎦∑ . 

                                                                             (6) 
      With this notation, application of the Galerkin 
testing with ψk to the initial Integral Equation 
leads to the relationship between the MoM 
matrices for the two bases: 
[ ] [ ][ ] [ ] [ ] [ ][ ] [ ] [ ] [ ], , ,H HI X i z X Z X b X B= = =
                                                                             (7) 
that clearly defines a basis change operation. In 
the above, we have considered the general case of 
complex-valued coefficients in the aggregation; 
the hermitean (H) adjoint (conjugate transpose) 
reduces to transpose operation (T) for real 
coefficients. 
     The general description of the method 
presented above includes all kinds of aggregation 
(and specifies none). As a general remark, note 
that all aggregate function schemes allow the re-
use of MoM codes, and they are kernel-
independent; this is a strong advantage of this 
class of approaches. 
     On the basis of the values of N and M, we 
differentiate between two fundamental cases as 
follows. 
 
II.1 M = N: One-to-one basis change 
     In this case the dimension of the system 
remains unchanged, but the matrix in the 
aggregate function basis exhibits ”better” 
properties: sparse matrix, faster convergence, etc.. 
To be practical, the (square) basis-change matrix 
[X] must obviously be very sparse.  
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     The two bases { ( )nf r , n = 1 , . . . , N}
 
and 

{ ( )n rψ , n = 1 , . . . , N}
 
now span the same space, 

and with infinite-precision arithmetic the two 
solutions should be identical, a ej j=  . However, 
when the aggregate basis is used to solve problems 
of the standard elemental basis, it might not be so, 
and aj may be closer to the actual solution or more 
stable. 
     A classical example is the Helmholtz (Hodge) 
decomposition employed to avoid the low-
frequency ill-conditioning of RWG (and wire) 
bases. This leads to the loop-star or loop-tree 
decompositions (e.g. [1, and references therein]); 
the MoM matrix in the aggregate basis has a far 
better conditioning. 
     Another important instance of this class of 
aggregate functions is the Multi-Resolution 
approach, where wavelet-like properties are 
introduced into the set of basis functions. Earlier 
applications of wavelet constructs were limited to 
simple geometries and mostly 2D scattering 
problems; in those cases wavelet functions similar 
to those employed in signal processing were used. 
More recently, realistic geometries have been 
addressed, either in planar or 3D cases; this has 
forced the wavelet functions to be significantly 
simpler, and the most successful approaches have 
managed to construct multiresolution functions as 
linear combinations of standard elemental basis 
functions: this ensures applicability to all those 
cases that can be analyzed by the employed 
elemental basis functions (e.g. RWG). 
     The first attempts addressed planar structures 
that can be discretized by rectangular cells [8] [9], 
[10], [11]; more recent approaches have addressed 
triangular cells [13], [12], [14], [15], [16]. 
     In the early days, the motivation for MR 
approaches was the hope to ”sparsify” the MoM 
matrix, i.e. of achieving a high dynamic range of 
matrix entries that allows clipping smaller 
elements within a given accuracy bound. More 
recent works [10], [12], [16] have focused on the 
spectral properties of the resulting MR-MoM 
matrix, and the intrinsic pre-conditioning potential 
of the MR basis; the reasons of this pre 
conditioning effects are addressed in [17]. In all 
the above examples, aggregate functions are real. 
 
 

II.2 M << N: compression 
     In this case the dimension of the system 
described by the aggregate functions is reduced, 
which corresponds to having the reduced degrees 
of freedom (DOF) of the solution. As will be 
discussed later on in Sec. III., this does not imply 
per se the necessity to reduce the accuracy. It is 
however important to assess the overhead 
introduced by the compression scheme into the 
overall solution, for a given degree of accuracy. 
For a given accuracy, the degree of compression 
and the overall efficiency depend on how the 
aggregate functions are generated; it is intuitive 
that it is important to incorporate information on 
the physical nature of the problem under analysis 
to affect this choice efficiently. 
     Since in this case the dimension of the system 
can be drastically reduced, even of orders of 
magnitude, the primary computational gain is 
achieved during the factorization of the system 
matrix in the reduced basis. Low memory 
occupation, the possibility to employ a direct 
solver, and with the ability to treat multiple right 
hand side (RHS) at marginal costs are the 
immediate advantages. The reduced number of 
DOF also preludes to a faster convergence of 
iterative solvers, if a direct solution is not viable. 
While memory occupation can be significantly 
reduced, the matrix fill time is not addressed 
directly. The aggregate nature of the basis 
functions, however, lends itself to various schemes 
to exploit fast matrix-vector multiplications to this 
aim, as discussed later on. 
     The overhead comes from two parts of the 
procedure: a) generation of the aggregate function 
basis; b) basis change in (7). Using standard 
matrix-vector products, it is O(MN(M + N)) ≈ 
O(MN2), i.e. much less than the N3 of the LU 
factorization. With fast matrix-vector products, 
this is reduced accordingly. 
     Works that belongs to this class where first 
developed for planar structures, and then extended 
to 3D problems [2], [3], [4], [5], [6], [7]; a com 
prehensive survey can be found in [7]. Aggregate 
functions have been termed with different names 
along the ”history” of this approach: diakoptic [2], 
”macro” basis functions (MBF) [4], synthetic basis 
functions [6], [7], and characteristic basis 
functions (CBF) [5]. All of these methods are in 
essence domain-decomposition methods, i.e. they 
are based on the solution of the initial problem on 
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parts of the overall structure, and employ this 
information in constructing the aggregate 
functions; the aggregate functions, in turn, are 
defined on sub-domains larger that the individual 
mesh cells and smaller than the entire structure. 
The more recent Wave-front Basis Function 
(WBF) method [24, and references therein] is 
slightly different. It addresses very large scattering 
problems, and employs phase information on the 
asymptotic (high-frequency) solution to construct 
the aggregate functions. While the associated 
aggregate functions are still defined on 
subdomains, the associated geometric partitioning 
has different (much less stringent) needs as in the 
case of the previous groups of methods. In what 
follows, we will discuss compression-type 
aggregate function schemes only. 
 

III. COMPRESSION SCHEMES 
 
III.1 General features 
     We begin by observing that the use of 
compressive aggregate-function bases is 
equivalent to the use of the space spanned by the 
elemental basis functions to approximate the 
unknown, but leaving only certain subspaces 
accessible to the solution algorithm. This can be 
seen from equations (4-7), and noting that the 
basis-change matrix [X] is N × N. The specificity 
of the aggregate function algorithms is indeed in 
choosing and constructing these subspaces in 
which the solution is sought. 
     In particular, we assume that the initial 
discretization is accurate enough and can be 
considered ”exact” (i.e. we do not count on the 
improvement on condition number and stability 
that the compression scheme might allow). If we 
denote the concerned spaces by 

{ }
{ }

, span , 1,...,

, span , 1,..., ,

e f f
N N n

a
M M n

J H H f n N

J H H n M Nψ ψ ψ

∈ = =

∈ = = <
    (8) 

because of (3), [X] : f
N MH Hψ→ ; since M < N it is 

apparent that f
M NH Hψ ⊂ . Per se, this does not 

prevent the equality a ej j= , but that depends on 

whether the ”exact” solution ej lies in the 

subspace f
M NH Hψ ⊂ . 

     It is the experience of the authors, that it is 
often counter-intuitive that a reduction of the DOF 

may be done without sacrificing solution accuracy. 
This issue is best addressed after two specific 
examples of compressive aggregate-functions 
methods are discussed, and will be addressed in 
Sec. III.4. 
     As mentioned previously, most methods of 
present interest can be considered domain-
decomposition (DD) methods, i.e. methods in 
which the solution for the entire structure employs 
partial solutions for isolated parts of the entire 
structure to reduce the overall size of the problem. 
Domain-decomposition (DD) methods are well 
known and employed in finite-element solutions of 
differential problems (FEM) (a review of the 
related literature is outside the scopes of this 
work). There, DD is directly feasible (albeit far 
from trivial) thanks to the local nature of the 
interactions between basis functions that constitute 
the (exactly sparse) system matrix. In integral 
equation formulations no interaction is local, and 
this makes the DD effort more complex. 
     The first step of a DD method is the 
subdivision of the overall structure into portions, 
here called ”blocks”. Next, the electromagnetic 
(EM) problem is solved on these blocks, taken in 
isolation. Finally, these solutions are used to 
compute, at a reduced cost, the solution for the 
entire structure. Having to ”patch up” the solutions 
on individual blocks, three issues are crucial for an 
effective method. 

1. Specify the forcing terms when solving for 
the isolated blocks; 

2. Ensure continuity of the solution across 
boundaries of neighboring, contacting 
blocks (when present); 

3. Avoid the artifacts arising from the solution 
for isolated blocks when these originate 
from ”tearing” an otherwise continuous 
surface. When treated as isolated, a block 
will have edges at which a correct solution 
of the EM problem exhibits a singular 
behavior; this latter constitutes an obvious 
artifact when patching up the structure, in 
which the inter-block boundary is not an 
edge. 

     The above steps and issues are common to all 
methods of the explicit DD type (SFX, CBF, 
MBF, diakoptics); the way these steps are 
performed, and how the above issues are tackled is 
precisely at the root of the differences for the 
various approaches. 

146 ACES JOURNAL, VOL. 24, NO. 2, APRIL 2009



     In the following we present two instances of 
implementations of the compressive aggregate 
function scheme: the Synthetic Function 
eXpansion (SFX) approach and the Wavefront 
Basis Method (WBF). 
     As alluded in the Introduction, the details of the 
methods being presented do not belong to this 
paper; their main steps will be however be 
reported here for the sake of clarity, with the 
objective of putting them in perspective. 
     It can be observed that compressive aggregate 
function methods reduce memory storage 
requirements to the size of the largest block in the 
DD, and will drastically reduce solution times. 
However, function aggregation does not reduce 
per se the MoM filling time. However, as 
mentioned in the Introduction, aggregate function 
methods are conveniently coupled to fast methods 
to this end. While not claiming any literature 
completeness, one can report that macro-basis 
functions have been coupled to the Fast-Multiple 
Method (FMM) [18]; SFX has been coupled to 
AIM [19] and a multi-grid strategy [20]; CBF has 
been coupled to FMM [21] and to the Adaptive 
Cross Approximation (ACA) [22]. 
     On the other hand, the Wavefront Basis 
Method (WBF) is naturally posed to be used in 
conjunction with a fast method. 
 
III.2 The Synthetic Function Expansion (SFX) 
Approach 
     We now describe how the above general DD 
predicaments are implemented in practice, using 
the SFX method as example. The method is 
described in [6], and in [7] in a detailed manner: 
here we will only briefly summarize the key 
aspects. For the sake of readability, we will refrain 
from referring to the above-cited papers in 
describing the method here. 
     In the SFX approach, the DD step is followed 
by the identification of surface blocks (s-blocks) 
and line-blocks (l-blocks). The s-blocks are 
formed by all mesh cells (triangles) that 
geometrically constitute a block; the l-blocks are 
the mesh edges (segments) that are in common 
between two adjacent blocks; they are absent 
when the block subdivision does not generates 
”cuts” in the metal (e.g. for isolated radiators in an 
array). This is the first step taken to address the 
current continuity across blocks. An example of 
this division is shown in Figs. 1 and 2. 

 

 
 

(a) 

 
                     (b)                              (c) 
 
Fig. 1. Conformal base station antenna. (a) Photograph, 
(b) CAD model, (c) CAD model of the single column, 
with example indications of s-blocks and l-blocks. 
 
     It is important to stress that while unknowns 
are surface currents, the blocks have to be thought 
in terms of volumes that include the surfaces 
where the unknown currents reside; this allows to 
employ the (surface) Equivalence Theorem on the 
bounding box of the block. With this setting, the 
DD problem can be set in terms of coupled 
equations that involve the sources on the bounding 
box; in SFX, these are not treated as unknowns, 
but employed as forcing terms for the EM problem 
of the block in isolation (see Fig. 2 for an 
example). 
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Fig. 2. CAD model of the conformal base station 
antenna: (a) Meshed geometry, (b) block separation 
used when analyzing it with SFX technique with the 
auxiliary sources around the Blocks 1 and 2 
respectively. 
 
     Thanks to the Equivalent Theorem setting, if 
enough sources are considered, a linear 
combination of all the responses to the forcing 
terms on the bounding box will be able to 
correctly represent any currents inside the block, 
including the exact solution of the complete 
problem. Hence, if these responses are used to 
construct the aggregate basis functions the 
subspace f

M NH Hψ ⊂ will contain the desired 
solution. In order to make the procedure robust 
and efficient, an SVD is employed to retain those 
terms that are linearly independent (to a specified 
degree). The aggregate functions defined on the 
blocks of the structure are called ”Synthetic 
Functions” (SF). 
     With respect to the notation set in the previous 
section, the SF generation procedure can be 
summarized as follows. The conductor surface S is 
divided into NSB portions Ss, s = 1, ..., NSB (S 
= 1

SBN
sU = Ss), the above-mentioned s-blocks (surface 

blocks); on each block, there will be Ks << N 
unknowns. Some s-blocks may be contacting, i.e. 
a portion of their boundary may be shared with 
another s-block; these NLB line segments are the l-
blocks (line blocks). 
     The SF are defined on the s-blocks; this leaves 
out the individual elemental functions defined on 
the edges belonging to l-blocks. So far, these 
functions are left unconstrained as unknowns (i.e. 
not organized in aggregations). This allows a 
considerable flexibility in enforcing current 
continuity across blocks, which is naturally 

achieved – provided the above alluded spurious 
edge effects are not present. 
     In order to avoid artifacts due to edge-
singularities in the single-block solution, the 
(edge) boundary condition has been modified on l-
blocks; on these segments, half-RWG functions 
are inserted during the solution for the single-
block problem, and deleted henceforth. This 
approach locally approximates a short-circuit 
(electric wall) condition, that effectively deletes 
the edge-singularity, and preludes to a successful 
current continuity. On the sth s-block we will 
indicate by Ls the total number of these half-RWG. 
When solving for a block in isolation, there will 
therefore be KTs = Ks + Ls unknowns. 
     In order to compute the responses that will lead 
to the SF, sources have first of all to be placed at 
the block feeding ports (if any is present); they 
will be called ”natural”, and their number (for the 
sth block) denoted by s

natN ; in case the problem 
entails an incident-wave forcing term, this will 
substitute for the port feeding as a natural source. 
Coupling with the rest of the structure is 
accomplished by considering two other types of 
sources. 
 

- Sources placed on the block boundary, that 
are called ”coupling” sources; their number 
(for the sth block) is denoted by s

coupN . They 
are conveniently implemented as RWG, 
which allows re-use of the modules of any 
MoM code to compute the RHS of the single-
block problem. 

 
- If l-blocks are present (i.e. the block 

periphery cuts a solid metal of finite extent), 
sources have to be placed along that 
periphery, called ”connection” sources. They 
can be simply half-RWG, which simplifies 
the implementation. According to the 
previous discussion, on the sth block there 
will s

conN such sources. 
The total number of sources on each block is 
therefore s s s s

S nat con coupN N N N= + + . Each of these 

sources will constitute a RHS [ ( )k
sB ], k = 1, ..., s

SN  
for the problem (1, 4), but limited to the number 
KTs = Ks + Ls of the unknowns on the block. 
Denoting by [ZB,s] the pertinent MoM matrix of 
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the problem, [ ( )k
sr  ] the response to kth source and 

omitting the block index for simplicity, the 
responses are defined by 

[ZB][r(k)] = [B(k)] 
The responses are next assembled into a matrix 

      [ ] ( ) ( )1 ,...., sNR r r⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦⎣ ⎦  

and an SVD is performed on it, resulting in 
[R] = [U][ρ][V ]H                       (9) 

Each column of [U] identifies the coefficients of 
one aggregate function   in (6); the most relevant 
(largest) Ns,SF terms are kept (note re-introduction 
of the block index s), and constitute the basis for 
the SF eXpansion (SFX) of the solution. In [7] an 
extensive study of the threshold used for the 
determination of the number of SFs has been 
presented. It is necessary at this stage to introduce 
the notion of SF (singular vectors) “associated” to 
a given type of source. While the SVD 
orthogonalization does not allow to identify an 
exact, direct correspondence between the sources 
and the SF, this relationship often exists 
approximately. In quantitative terms, a SF 
described by column [Uj] is related to source k 
when the projection [Uk]H[r(j)] is significantly 
larger than for all other responses. The 
correspondence is still stronger when one 
collectively considers homogeneous groups of 
sources and SF, e.g. natural, coupling, and 
connections. This justifies the ensuing terminology 
of “natural SF”, “coupling SF”, and ”connection 
SF”.  
     The scheme always calls for the inclusion of all 
Nnat natural SF; the number of the remaining SF to 
be kept is conveniently related to a thresholding of 
the SV sequence ρ1, ρ2, ..., ρNS . Upon fixing a 
threshold t, we will keep all SF associated to SV 
that satisfy 

/
natn N tρ ρ ≤ .                          (10) 

Examples of convergence studies and thresholding 
are given in Sec. IV.; convergence with respect to 
the employed number of coupling sources was 
studied in [7]. 
     As to the SV thresholding issue, some general 
comments can be made: 
 
- The threshold is problem dependent; very 

often the SV sequence has visible features that 
can guide a “manual” or automatic selection, 
like a clear jump or a clear change of slope. 

For example, if the block bounding box is the 
far region of [23], there is a jump in 
correspondence with the number of degrees of 
freedom of the radiated field; the latter is 
seldom observed in most practical problems, 
especially when the DD effects a “tearing” of 
the metal structure; nonetheless, the above 
example shows that the SV sequence depends 
on the physical structures, not on the source 
selection. 

 
- The SV sequence and the effect of 

thresholding are expected to be different in 
antenna and scattering problems. Aside from 
the block-toblock interactions due to the cuts 
(discussed above), in antenna problems there 
will be often interaction between non-
contacting but near features belonging to 
different blocks. The level of accuracy 
required in scattering problems is lower than 
required in antenna problems: these impacts on 
the threshold value selection. In this sense, it is 
very important that the convergence with 
respect to t be uniform, so that one can choose 
to be conservative in the absence of better 
knowledge. While no mathematical proof of 
uniform convergence can be presently offered 
for any of the existing compressive methods, 
the case studies in [7] and in Sec. IV.1 have 
always exhibited this convergence for SFX. 

 
- When the DD calls for tearing of metal 

portions, it is to be expected that connection 
sources have almost the same importance as 
natural ones; therefore, to be on the safe side 
one can always include 

Q = Nnat + Ncon 
SFs, and start counting the SV threshold from 
that point; this corresponds to the modified 
threshold parameter 

/n Q Tρ ρ ≤                             (11) 
 

- Finally, we remark that the ratio between total 
number of SV and actual number of kept term 
is not necessarily an indication of numerical 
efficiency. As a matter of fact, the ideal 
situation knows exactly how many sources are 
necessary, which makes the abovementioned 
ratio one. This should be kept in mind, e.g., 
when interpreting the thresholding study in 
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Sec. IV.1. On the opposite end, the maximum 
dynamic range in the SV of the kept terms 
depends on the ”noise floor”, i.e. machine 
precision and accuracy of the implemented 
SVD algorithm. 

 
III.3 Wavefront Basis Method (WBF) 
     This technique is a new approach to solve very 
large scattering electromagnetic problems based 
on the MoM. The method can be seen as an 
extension of the Asymptotic Phase front 
Extraction (APE) approach to MoM [25] - [29]. In 
what follows we will report on the key points of 
the method, and present preliminary results for 2D 
scattering problems. The presentation of WBF 
here is functional to exemplifying how the 
aggregate function paradigm can conveniently 
comprehend approaches of very different nature, 
and to discuss the issue of the DOF and the related 
sub-space choice. A more comprehensive 
description of the method will be presented in a 
forthcoming paper. 
     The Asymptotic Phasefront Extraction (APE) 
method is based on the observation that most of 
the degrees of freedom in the MoM are used just 
to follow the fast variation of the phase of the 
solution, while its amplitude varies on a much 
slower scale, 

     ( ) ( ) ( )( )expslowJ r J r jk r= Φ ,      (12) 
so that it can be correctly described by much fewer 
basis functions having a multi-wavelength support. 
The APE produces a huge reduction in the matrix 
size, but matrix filling time is drastically more 
expensive due to the highly oscillatory behavior 
introduced by the inserted phase terms; 
overcoming this difficulty is the subject of several 
papers that we refrain to review here. The 
extraction of the ”asymptotic” phase function is a 
key issue. For smooth convex scatters the PO 
phase appears to be sufficient, while the issue for 
convex scatterers remains essentially open. 
     In the present approach [24], we employ the 
aggregation paradigm to construct the 
multiwavelength basis functions of APE starting 
from standard basis functions. In line with the 
aggregate functions approach discussed above, we 
consider our approach as an add-on to a fast MoM, 
of which it affects a compression. A key 
component of the method is the (novel) method for 
extracting the phase front of the induced currents, 

which leads to ”Wavefront Basis Functions” 
(WBF) aggregate functions. It is essentially a kind 
of numerical Beam Tracing performed with 
algebraic operations on the standard MoM matrix. 
This process permits reusing standard Fast-MoM 
codes as FMM or AIM. The method will be 
presented with specific reference to 2D scattering 
problems (TE incidence), and results will be 
presented for this case; because of the scalar 
nature of the problem, with respect to the previous 
sections we will drop the vector sign in all relevant 
notation. It can be extended to 3D problems; due 
to the algebraic nature of the procedure, most of 
the extension steps are straightforward, and we 
will briefly discuss those issues that are not 
obvious.  
     The problem is initially discretized with 
standard (sub-wavelength) basis functions as in 
(1); in the 2D problem explicitly considered, these 
are piece-wise triangular (PWT) functions. It is 
convenient to indicate them as ( );nf r l where the 
second argument is their (sub-wavelength) length 
l; as for the other aggregate-function methods, 
these will be termed ”elemental” basis functions. 
Next, one approximates the slow variation of the 
solution with the same type of functions used for 
the initial discretization (RWG or PWT), but of 
much larger, multi-wavelength extent; this is 
conveniently expressed as 

      ( ) ( )
1

;
M

slow
slow m m m

m

J t I f r L
=

=∑ ,         (13) 

where ( );nf r l is the (phaseless) amplitude 
behavior of the (large) functions, that have the 
same expression of the elemental functions but 
different (multi-wavelength) support L. The 
definition of the aggregate functions follows from 
insertion of (12) and (13) into (1); the terms 

( ) ( )( ); expm mf r L j k rΦ are conveniently 
approximated using the elemental basis functions, 
apt to represent the fast variations of the solution 
J; that is, one can write 

( ) ( )( )

( )( ) ( )
1

; exp

exp ;

m m

Km

p p p
p

f r L j k r

j k r f r L
=

Φ =

Φ∑
 

where pr is the center of the pth elemental basis 
function; comparison with (2) and (6) yields 
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( )( ) ( )
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1

,

;

exp ;

Km
AP

m m p m p p
p

p m p m m

r F r U f r L

U j k r f r L

ψ
=

= =

= Φ

∑
 .            (14) 

 
     The aggregate functions ( ) ( )AP

m mr F rψ = have 
multi-wavelength support, and this results in a 
drastic compression of the standard MoM matrix. 
These functions are the ”Wavefront Basis 
Functions” (WBF) to be discussed here; a pictorial 
description of the WBF can be found in Fig. 3. 
The geometric aggregation underlying theWBF is 
trivial in the 2D case; in 3D it requires geometric 
aggregations like those employed in the oct-tree 
partitioning employed for fast multi-level 
methods; two different examples of how to do it 
can be found in [15] and [16](the aggregation is 
carried out with a different aim in these works). 
     We observe that the aggregate 
(multiwavelength) functions are overlapped; this 
makes enforcement of current continuity on sub-
domains a non-issue. 
    With reference to the setting in Sec. III.1, one 
can observe that the method above is equivalent to 
look for a solution in the subspace f

M NH Hψ ⊂  with 
the pre-calculated asymptotic phase. Therefore, 
the accuracy of the method hinges about this 
Ansatz, and the ability to correctly estimate this 
phase. 
 

 
 
Fig. 3. WBF Aggregate basis function (top; real part) as 
linear combination of standard (sub-wavelength) basis 
functions (bottom).  

     Next, we use a Galerkin scheme with respect to 
the M aggregate functions. Assembling the basis 
change in algebraic form as in Sec. Sec. II., we 
have 
          [ ] [ ] [ ] [ ] [ ]. .H

HF HF HFz Z X Z X= =  

        

1,1

1,2

1,1 .

2,2 1,

,

.

.
. .

k
HF

k M

kM M

U
U

U
X

U U

U

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

,              (15) 

 
where [XHF] is sparse because two non-adjacent 
(aggregate) basis functions have disjoint support; 
each column has a number of non-zero terms 
independent of N. Note that one can use standard 
fast MoM codes to compute the vector-matrix 
products in (15). Very often the number M of 
aggregate basis functions is small enough to allow 
a direct solution for the compressed matrix ZHF ; in 
all other cases, the above is used in the iterative 
solver. The compressive effect of the WBF 
produces a strong acceleration of the convergence. 
     Before proceeding further, we add that in most 
practical problems there will be sharp features 
(like the edge of a reflector) where the Ansatz (12) 
is questionable. This is solved in a simple manner 
by adding (unconstrained) elemental basis 
functions around these sharp features, which will 
add up to the count of the DOF like the unknowns 
associated to connection functions in SFX. 
     When the scatterer is flat or smooth and 
convex, PO is usually a good approximation for 
the phase; in this case, the above is directly 
applicable. The proposed algorithm, however, 
allows to go further. While a detailed description 
is beyond the scope of this work, the phase-
tracking algorithm is outlined next in its salient 
traits. 
     One starts with the WBF with local PO phase. 
These will be zero-order WBF, 0

kψ , described by 

coefficients [ ( )0
kU ]. Next, the radiation of all of 

these WBF0 everywhere on the structure is 
considered; note that this is described by the 
product 

[ ] ( )0
kZ U⎡ ⎤

⎣ ⎦  
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that can be carried out by a fast matrix-vector 
multiplication. Because of the large support, the 
WBF radiate very narrow beams, and this is 
analogous to a beam shooting. The region(s) more 
intensely ”lit” will constitute the support for the 
first-order WBF, as pictorially shown in Fig. 4; 
their phase will be that of the field radiated by the 
0-th order WBF. The procedure is repeated with 
WBF or order 1 acting as ”transmitter” to get the 
second-order WBF, and so on. 

 
Fig. 4. Numerical Beam Tracing by iterating the 
operator of the EFIE. 
 
     2D tests of the method are reported in Sec. 
IV.2; in many instances it reduces the degrees of 
freedom to a very low value that is almost 
frequency independent, thus allowing a direct 
(iteration free) solution. Finally, we remark that a 
recent work [30] shares some of the objectives and 
approaches of this work. 
 
III.4 Accuracy and DOF 
     It is often intuitive that a DOF reduction is 
possible when the solution is over-sampled. For 
example, in antenna problems one is often forced 
to employ mesh cells well below the λ/5−λ/10 rule 
employed in smooth scattering problems. It can 
thus be expected that a “smart” choice of the 
aggregate functions may tap into this redundancy 
to reduce the global DOF; for example, far 
interactions between aggregate functions will not 
need a fine detail to be accurately described. The 
above is correct, but it does not constitute the full 
picture. 
     A trivial, but somewhat revealing example is 
the following. If we take M = 1 and  1ψ  to be the 
exact solution to the original problem, of course a 
1-dimensional subspace is enough to allow the 
solution with compressive aggregate functions. No 

matter how trivial, this example points at the two 
key ingredients of a good compressive scheme: a) 
the aggregate basis functions must be related to the 
solution of the original boundary-value problem 
(hopefully, not in its entirety); b) the success of the 
method also depends on its ability in selecting the 
subspace of the aggregate-function solution in a 
way that depends on the properties of the forcing 
term (RHS). 
     In this perspective, one can observe that all 
compression schemes imply the use of aggregate 
basis functions that are ”Maxwellian”, in the sense 
that they are related to the (exact or asymptotic) 
solution of Maxwell’s equations with part of the 
original boundary conditions. 
     The methods like SFX, CBS, etc., rely on the 
solution of the problem in parts of the original 
structures, and these solutions are related to the 
original forcing field. It can be noted that this 
obviously comes at a (computational) cost, and in 
general the higher this cost (e.g. the larger the sub-
domains), the more accurate the solution. The 
issue is finding an optimal way of achieving 
accuracy at a low cost. 
     The WBF method relies on the asymptotic 
approximation of the solution; this solution is not 
used in its entirety, and only the phase is 
employed. As already commented, this phase 
information essentially bounds the supbspace 
determination, and is key in ensuring a correct 
solution. The dependence on the forcing term in 
the construction of the solution subspace is more 
evident in this technique than in the explicit DD 
schemes like SFX and CBF. However, in both 
SFX and CBF the forcing field plays a role in the 
construction of the aggregate functions; in these 
case, one often considers a certain number of 
incident plane waves as ”natural sources”; in SFX 
and the case of an array, e.g., each block has its 
own natural source, which corresponds to 
considering all possible choices of port feeding. 
     Another vantage point can be gained by 
resorting to the SVD of the problems in (4) and 
(5): 

[ ] [ ][ ]

[ ] [ ] [ ]( )
1

1

1

N
H

k k k
k

N
He

k k
kk

Z u v

I u v B

ζ

ζ

=

=

=

⎡ ⎤ =⎣ ⎦

∑

∑
.             (16) 
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     As well known, the above indicates that the 
most relevant singular values (SV) of [Z] are the 
smallest, in the sense that for a generic RHS the 
smallest (SV) are those who determine the 
solution accuracy. Considering now the 
compressed matrix, 

[ ] [ ] [ ][ ] [ ] [ ][ ] [ ]
1

N
H H H

k k k
k

z X Z X X u v Xζ
=

= =∑ . 

         (17) 
one understands that the aggregate functions must 
ideally all reside in the span of the singular vectors 
associated to the most relevant (i.e. smallest) SV. 
Note that this criterion is essentially independent 
of the forcing term, and is the option most 
typically followed in approaches like SFX and 
CBF, less oriented to tailoring the solution 
subspace around a specific forcing term. 
 

IV. NUMERICAL EXAMPLES 
     In this section numerical results are presented 
to clarify the application of SFX and WBF. All the 
reported examples have been simulated on 
standard PC, equipped with a Pentium4 processor, 
with 2.3GHz clock and 512MB RAM. 
 
IV.1 SFX 
     The SFX method was employed to design the 
conformal broad-band GSM-UMTS base station 
antenna shown in Fig. 1. It was designed for 
adaptive (“smart”) operation. It is similar to, and 
inspired by the configuration in [31]. 
     The structure has been chosen with the aim of 
applying the SFX method to a real-life geometry, 
and finally comparing simulation and measured 
results. The antenna requirements, design, and 
measurement procedure are outside the scopes of 
this paper; they are reported elsewhere, [32], [33] 
and in future communications; here we 
concentrate on the computational side and on the 
ensuing experimental validation. 
     The array antenna has 32 identical square 
stacked patches, in a 4 × 8 arrangement over an 
octagonal prism. Radiating elements are excited 
by proximity coupling with an L probe-strip 
structure, visible in the CAD model in Fig. 1. 
Excitation is modeled numerically via a voltage 
gap at the base of the probe, where it is connected 
to the (finite) ground. For SFX application, it is 
important to note that the underlying prism is a 

solid metal (the grounds of the facets are 
electrically connected). 
     In the full antennas, the 4 patches of each 
column are fed by a 1 : 4 equal-length, uniform-
amplitude microstrip beam forming network 
printed below the ground plane; i.e., individual 
radiator are not accessible individually. One of the 
facets of the antenna in Fig. 1 (not shown there) 
was initially constructed with access to the four 
individual radiators; it will be used to compare 
simulation and measured results for S-parameters. 
The radiation results of the conformal array refer 
to operation with equal phase and amplitude over 
the eight columns (achieved via a commercial 1 : 8 
uniform splitter). 
     At the center frequency, the antenna is about 
3.1λ in height; the width of one facet is about 
0.55λ while the average length of the edge of the 
stacked patches is of about 0.32λ. Its numerical 
model involves 24501 unknowns. We observe that 
no symmetry was used in the SFX simulation. A 
standard MoM solution in this case was unfeasible 
on the standard (32-bit) employed PC. The 
individual column, requiring 3010 unknowns, will 
thus be used for comparing SFX results to 
standard MoM. 
     Comparison between SFX and the standard 
MoM solution will be done with reference to the 
surface current relative error: 

2

2

MoM SFX

MoM

I I
I

ε
−

= ,                (18) 

and directly on S-parameters or radiation pattern. 
 
Analysis of the single column  
     The block partitioning of the facet is shown in 
Fig. 1c; it can be noted that there is one radiator 
per block, and that the block boundary cuts the 
(finite) ground, thus requiring the use of l-blocks 
and connection functions. It can be observed that 
the blocks are pairwise identical, the difference 
being on whether the block is central (bordering 
with one block per side) or on the edge. The 
coupling sources were placed on a regular grid on 
the (cubical) bounding box (not shown; an 
example of source distribution is shown for the 
full antenna below). The reported result refers to a 
total of 98 coupling sources on the block boundary 
for all blocks. 
     In counting SV and SF, it should be kept in 
mind that the present implementation employs real 
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(as opposed to complex) response vectors, i.e. 
separating their real and imaginary parts prior to 
the SVD operation in (9); the reasons for this (not 
critical) choice are detailed in [7]). This makes the 
association between SF and sources to appear 
typically in pairs. 
     The SV sequences for the four blocks are 
shown in Fig. 7, and the associated convergence of 
the solution vs. SV truncation threshold t (in (10)) 
is shown in Fig. 8. The convergence for the 
radiation pattern is in Fig. 5. Comparison of S-
parameters results for standard MoM and SFX are 
shown next in Fig. 6 for t ≈ 10−3. 
 

 
 
Fig. 5. Single column 4-patch array: radiation pattern 
convergence vs. SV truncation threshold t. The graph 
shows the cut along the array longitudinal axis. Solid 
blue line: reference; the other curves refer to the t value 
reported in the inset. 
 
     In order to interpret the results, we detail the 
relevant numbers for this case. We have one 
natural port on all blocks, i.e. 1,2 1natN = , while the 
number of connection functions is 1 20conN =  and 

2 40conN =  on block 1 and 2 respectively. We have 
therefore Q1 = 42 and Q2 = 82 for the two types of 
blocks, having factored in the 2 factor for 
real/imaginary splitting; the position of these 
numbers in the SV sequences in Fig. 7 is indicated 
for further reference. 
     It is important to observe that the solution 
convergence is monotonic with respect to the 
number of considered SF; this is a guarantee of 
stable solution. The convergence analysis shows 
that keeping as many SF as natural plus all 
connection sources is a conservative estimate. 

 
 

 
 

Fig. 6. Single column 4-patch array: Significant S 
parameters. Blue lines: standard MoM (reference); red 
lines: SFX. 
     

 
(a) 
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(b) 

Fig. 7. Single column array (see Fig. 1): SV sequence. 
(a) Singular values sequence for the four s-blocks 
(superimposed); (b) Detailed view of the first part of 
the SV sequence. The vertical bars indicate the numbers 
Q. 
 
     Finally, Fig. 9 compares numerical and 
experimental results (reference MoM and SFX are 
undistinguishable); the agreement is very good 
(note that the slight shift in the resonance 
frequency happens below −20 dB in return loss). 
     As to numerical performances, using a t ≈ 10−5 
threshold, the total dimension of the final linear 
equations system in the SFX basis has decreased 
to 658 unknowns (from 3010 unknowns in the 
RWG basis) and the solution time for this 
compressed system is of 4.9 seconds, which gives 
a cumulated solution time for all the 21 frequency 
steps of about 105 seconds. The necessary time for 
solving the 3010 unknowns linear equation system 
in the original RWG basis, for only one of the 21 
frequency steps, is of 433.43 seconds. This means 
that the total solution time for all the 21 frequency 
steps in the original RWG basis is of 9102 
seconds, 86 times the solution time in the SFX 
basis. 
     As the convergence results show, the t = 10−5 
value chosen for the SV threshold for this 
numerical simulation is very conservative. A 
higher compression of the final linear equation 
system, without significant changes in the 
accuracy of the final solution can be achieved also 
with t = 10−3. 
 

 
(a) 

 
(b) 

Fig. 8. Single column array (see Fig. 1). (a) Surface 
current error (18) with respect to SV threshold value t 
in (10); (b) Number of SFs corresponding to threshold 
values t; solid line: external blocks; dashed line: 
internal blocks.  
 

 
Fig. 9. Simulated vs. measured values for the S 
parameters of one column of the array considered in 
isolation; the curves without markers correspond to the 
measurements. 
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Analysis of the entire antenna  
   As alluded above, the only direct comparison 
between measured and simulated data is for the 
radiation pattern, yet including cross-pol. 
However, computed self- and mutual-impedances 
of the 32 radiating elements were employed in 
obtaining the radiation data; they were used to 
compute the excitation coefficients at all ports by 
solving the circuit problem with the S-matrix of 
the BFN splitters (data sheets and measured on 
prior breadboarding) and the S-matrix of the 32-
element array. 
     The complete base station antenna in Fig. 1.a) 
was separated into the 16 blocks shown in Fig. 2 
(exploded view of the mesh after block 
separation); each block contains two azimuthally 
neighboring radiating elements. Due to the 
symmetry of the structure and of the domain-
decomposition, all blocks are identical to one of 
the two separately shown in Fig. 2, corresponding 
to internal or terminal location in the structure. 
Also in this case, we note that the block 
partitioning requires the cut of the continuous 
ground plane below the patches, i.e. the continuity 
of the current on it; this generates the need of 
connection functions and connection sources. 
     There are two natural responses for the block (4 
natural SFs, arising from the separation into real 
and imaginary parts) originating from the port 
excitation of each one of the two radiating 
elements inside each block. In addition to natural 
and connection functions, a total of 56 coupling 
sources were used around each block. 
     The SV sequences for the different blocks are 
shown in Fig. 10, only for the two basic blocks 
shown in 2. The reported results refer to two 
threshold values: T = 10−1 and T = 10−2, the latter 
being very conservative. For T = 10−1, the total 
number of SFX unknowns in the SFs basis was of 
2354, and the solution time of about 204 seconds 
(about 3.4 minutes). With T = 10−2 there were 
4379 SFX unknowns, requiring 1358 seconds 
(about 22.6 minutes) to solve. The surface current 
distribution on the entire structure obtained for the 
higher accuracy SFX simulation is illustrated in 
Fig. 11. 
 
 

 
(a) 

 
(b) 

Fig. 10. (a) Singular values sequence for two blocks of 
conformal base station antenna; (b) detailed view of the 
first part of the SV sequence. For numbering see Fig. 2. 

 
Fig. 11. Logarithmic plot for surface current on the base 
station antenna obtained by using the SFX technique. 
 
 
     The radiation patterns for the antenna were 
computed for the two sets of computed surface 
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currents and reported in Fig. 12 for the co-polar 
and cross-polar components. The results for the 
two solutions show negligible differences. The 
radiation patterns were measured for eight 
elevation cuts (vertical planes, Fig. 13), one cut for 
each facet, and in the horizontal plane (azimuth 
cut, Fig. 14). Despite the structural symmetry, 
some differences are observed, and most likely 
due to feed cables (especially beyond 140◦) and 
mast in addition to fabrication tolerances in the 
radiating elements and BFNs. 
 

 
(a) 

 
(b) 

Fig. 12. SFX simulation results for base station antenna 
in Fig. 1; (a) radiation patterns in the two main planes 
for the base station antenna (solid line for T ≈ 10−2 
threshold on SV sequence, dotted line for T ≈ 10−1 
threshold); (b) Co- and cross-polar components 
(azimuthal cut) for the base station antenna (solid line 
for T ≈ 10−2, dotted line for T ≈ 10−1). 

 
Fig. 13. Base station antenna: radiation pattern. The 
solid line shows computed results; the confidence bars 
display, for each angle, the min and max of the 
measured individual patterns for the 8 columns, in the 
plane orthogonal to each antenna facet. 
 

 
Fig. 14. Measured vs. simulated Co and Cross-polar 
components of the field for the entire array in azimuth 
cut. 
 
IV.2 WBF 
     We will only consider simple examples so that 
we can use a simple fast 2D MoM algorithm due 
to the Toeplitz property of the resulting matrix. 
Nevertheless those easy examples contain all 
relevant difficulties to prove the method works, 
that is: concavity, multiple reflections, etc.. In all 
reported examples, we consider plane wave 
incidence along the directions indicated 
graphically in the relevant figures. The standard 
MoM (sub-wavelength) discretization uses 
triangular basis functions with l = λ/10 support; 
the number of associated basis functions will be 
denoted by N. 
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     Scattering from flat strips were considered in 
[24]; here we discuss the case of scattering from a 
curved, concave strip; it is an arc of circle of 
angular aperture λ/2 and arc length L sketched in 
the inset of Fig. 15; the incidence is from the 
direction bisecting the opening angle (φinc = π/4) in 
the concave part. Two cases were considered: L = 
360λ, with N = 3600 and NWBF = 273, with 
support of about 6λ; and L = 1440λ, with N = 
14400 but with the same NWBF as in the previous 
case, i.e. with aggregate function of about 24λ. 
     The error on the current, defined as in (18) 
(with SFX substituted for WBF), was 3.5% for the 
L = 360λ case, and 1.8% for the larger, L = 1440λ 
case. It is interesting to note that the number of 
necessary WBF terms is essentially independent of 
the frequency. This observation seems confirmed 
by [30]. The comparison for the radiated (far) field 
is shown in Fig. 15 for the case of L = 1440λ; 
panel (a) shows the overall pattern, and the 
following panels (b-h) report enlargement of 
various zones, to allow for a closer comparison. 
The figure allows to appreciate the accuracy of the 
WBF approach; the deviation from standard MoM 
is negligible almost everywhere, with small 
deviations in a low-amplitude region (panel d; 
well below -30dB). 
 

V. CONCLUSION 
     We have discussed integral-equation methods 
that employ basis functions constructed by 
grouping standard ”elemental” basis functions 
(e.g. RWG); these basis functions are termed 
”aggregate” throughout. The initial general setting 
includes both one-to-one basis change, that leave 
the number of unknowns unchanged, and 
compressive mappings, that reduce the overall 
number of necessary unknowns. In the former 
case, the reasons behind the basis change are 
typically centered around the spectral properties of 
the ensuing MoM matrix, like in the loop-tree 
decomposition used at low frequencies. 
     The discussion then has been focused on 
compressive aggregate-function methods. General 
considerations have been offered, and the specific 
examples of SFX and WBF methods employed to 
substantiate the general discussion. The SFX 
method belongs to the larger class of domain-
decomposition methods, while WBF is based on 

high-frequency local solutions of Maxwell 
equations. 
     Compressive methods appear to be a mature 
technology in Computational EM; they can 
provide a simple ”boost” solution that re-uses 
existing MoM codes, but they can also be used to 
produce sophisticated tools. In particular, their 
combination with fast methods appears very 
promising, due to the complementary natures of 
the two approaches. 
 

ACKNOWLEDGMENTS 
     The authors would like to acknowledge the 
cooperation with Prof. M. Orefice and Ing. G.L. 
Dassano for the design and measurement of the 
base station antenna employed as an application 
example in this paper.  
     This work has been partially developed in the 
Sixth Framework Program of the European 
Community within the Antenna Center of 
Excellence (ACE2). This work has been supported 
in part by the Spanish Ministerio de Educacion y 
Ciencia under the project TEC2004-04866-C04. 
 

REFERENCES 
[1]    T. F. Eibert,“Iterative-solver convergence for loop 

star and loop-tree decomposition in method of 
moments solutions of the electricfield integral 
equation”, IEEE Antennas Propagat. Mag., vol. 
46, no. 3, pp. 80, pp. 2509−2521, 2004. 

[2]  S. Ooms and D. DeZutter, “A new iterative 
diacoptics based multilevel moments method for 
planar circuits”, IEEE Trans. Microw. Theory 
Tech., vol. MTT-46, no. 3, pp. 280, pp. 
2509−2521291, 1998. 

[3]   J. Heinstad, “New approximation technique for 
current distribution in microstrip array antennas”, 
Electron. Lett., vol. 29, no. 21, pp. 1809−1810, 
1993. 

[4]   E. Suter and J. Mosig, “A subdomain multilevel 
approach for the MoM analysis of large planar 
antennas”, Microw. Opt. Technol. Lett., vol. 26, 
no. 4, pp. 270−277, 2000. 

[5]   V. V. S. Prakash and R. Mittra, “Characteristic 
basis function method: a new technique for 
efficient solution of method of moments matrix 
equation”, Microw. Opt. Technol. Lett., pp. 
95−100, 2003. 

[6]   L. Matekovits, G. Vecchi, G. Dassano, and M. 
Orefice, “Synthetic Function Analysis of Large 
Printed Structures: the Solution Space Sampling 
Approach”, Digest of 2001 IEEE AP-S Soc. Int’l 

158 ACES JOURNAL, VOL. 24, NO. 2, APRIL 2009



Symp., pp. 568−571, 8−13, July 2001, Boston, 
Massachusetts, USA. 

[7]  L. Matekovits, V. A. Laza, and G. Vecchi, 
“Analysis of Large Complex Structures with the 
Synthetic Functions Approach”, IEEE Trans. 
Antennas and Propagat., vol. 55, no. 9, pp. 
2509−2521, 2007. 

[8]   K. F. Sabet, J. C. Cheng, and L. P. B. Katehi, 
“Efficient wavelet-based modelling of printed 
circuit antenna arrays”, IEE Proc. Microwave 
Antennas Propagat., vol. 146, no. 4, pp. 
298−304, 1999. 

[9]     R. Loison, R. Gillard, J. Citerne, G. Piton and H. 
Legay, “Optimised 2D multi-resolution method 
of moment for printed antenna array modelling”, 
IEE Proc. Microwave Antennas Propagat., vol. 
148, no. 1, pp. 1−8, 2001. 

[10] P. Pirinoli, G. Vecchi, and L. Matekovits, 
“Multiresolution analysis of printed antennas and 
circuits: a dual−isoscalar approach”, IEEE Trans. 
Antennas Propagat., vol. 49, no. 6, pp. 858−874, 
2001. 

[11]  G. Schneider, G. Oberschmidt, and A. F. Jacob, 
“Efficient Implementation of a Wavelet Based 
Galerkin Scheme”, IEEE Trans. Antennas 
Propagat., vol. 52, no. 9, pp. 2298−2304, 2004. 

[12] F. Vipiana, P. Pirinoli, and G.Vecchi, “A 
Multiresolution Method of Moments for 
Triangular Meshes”, IEEE Trans. Antennas 
Propagat., vol. 53, no. 7, pp. 2247−2258, 2005. 

[13]  Z. Baharav, Y. Leviatan “Analysis Of Scattering 
By Surfaces Using A Wavelet- Transformed 
Triangular-Patch Model”, Microwave Opt. Tech. 
Lett., vol. 21, no. 5, pp. 359−365, 1999. 

[14]  W. C. Bandlow, G. Schneider, and A. F. Jacob, 
“Vector-valued wavelets with triangular support 
for method of moments applications”, IEEE 
Trans. Antennas Propagat., vol. 53, no. 10, pp. 
3340−3346, 2005. 

[15]  F. Vipiana, G. Vecchi, and P. Pirinoli, “A Multi- 
Resolution system of Rao-Wilton-Glisson 
functions”, IEEE Trans. Antennas Propagat., vol. 
55, no. 3, pp. 924−930, 2007. 

[16] F. P. Andriulli, F.Vipiana, and G.Vecchi, 
“Hierarchical bases for non-hierarchic 3D 
triangular meshes”, IEEE Trans. Antennas 
Propagat., vol. 56, no. 8, pp. 2288−2297, 2008. 

[17]  F. Vipiana, P. Pirinoli, and G.Vecchi, “Spectral 
properties of the EFIE-MoM matrix for dense 
meshes with different types of bases”, IEEE 
Trans. Antennas Propagat., vol. 55, no. 11, pp. 
3229−3238, 2007. 

[18] C. Craeye, “A Fast Impedance and Pattern 
Computation Scheme for Finite Antenna Arrays”, 
IEEE Trans. Antennas Propagat., vol. 54, no. 10, 
pp. 3030−3034, 2006. 

[19]  P. De Vita, A. Freni, L.Matekovits, P. Pirinoli, 
and G.Vecchi, “A combined AIM-SFX approach 
for complex arrays”, Digest of 2007 IEEE APS 
Soc. Int’l Symp., pp. 3452−3455, Honolulu, 
Hawaii, USA, 10−15 June 2007. 

[20] V. A. Laza, L. Matekovits, and G. Vecchi, 
“Synthetic Function Expansion with multi-grid 
approach”, Proceedings of The First European 
Conference on Antennas and Propagation 
(EuCAP 2006), ESA SP-626 CD Proceedings, 
pp. 386.1, Nice, France, 6−10 November 2006. 

[21]  F. C´atedra, E. Garca, C. Delgado, F. S. de Adana, 
and R. Mittra, “Development of an efficient 
rigorous technique based on the combination of 
CBFM and MLFMA to solve very large 
electromagnetic problems”, Proc. Int’l Conf. 
Electromagnetics in Advanced Applications, 
Torino, Italy, Sep. 2007. 

[22]   R. Maaskant, R. Mittra, and A. Tijhuis, “Fast 
Solution of Multi-Scale Antenna Problems for 
the Square Kilometre Array (SKA) Radio 
Telescope using the Characteristic Basis Function 
Method (CBFM) ”, Applied Computational 
Electromagnetics Society Journal, vol. 24, no. 2, 
2009 

[23] O. M. Bucci, and G. Franceschetti, “On the 
degrees of freedom of scattered fields”, IEEE 
Trans. Antennas and Propagat., vol. 37, no. 7, pp. 
918−926, 1989. 

[24] F. Vico, G. Vecchi, M. Ferrando, ”A New 
Sparsification And Compression Technique For 
High Frequency Mom By Means Of Wavefront 
Basis Functions”, Proceedings of The First 
European Conference on Antennas and 
Propagation EuCAP, 2007. 

[25]   K. R. Aberegg and A. F. Peterson, “Application 
of the Integral Equation-Asymptotic Phase 
Method to two-dimensional scattering”, IEEE 
Trans. Antennas Propagat., vol. 43, no. 5, pp. 
534−537, 1995. 

[26]  D. Kwon, R. J. Burkholder, and P. H. Pathak, 
“Efficient Method of Moments Formulation for 
Large PEC Scattering Problems Using 
Asymptotic Phasefront Extraction (APE)”, IEEE 
Trans. Antennas Propagat., vol. 49, no. 4, pp. 
583−591, 2001. 

[27]  S. N. Chandler-Wilder, S. Langdon, “A Galerking 
Boundary Element Method for High Frequency 
Scattering by Convex Polygons”, SIAM J. 
Numer. Anal., vol. 45, no. 2, pp. 610−640, 2007. 

[28]  K. Tap, R. J. Burkholder, P. H. Pathak, and M. 
Albani, “Methods for Efficiently Computig the 
MoM Impedance Matrix for APEx Type Basis 
Functions”, IEEE AP-S Soc. Int’l Symp., pp. 
4119−4122, Albuquerque, 2006. 

159MATEKOVITS, VECCHI, VICO: PHYSICS-BASED AGGREGATE-FUNCTION APPROACHES TO LARGE MOM PROBLEMS



[29]  R. J. Burkholder, and T. Lee, “Adaptive Sampling 
for Fast Physical Optics Numerical Integration”, 
IEEE Trans. Antennas and Propagat., vol. 53, no. 
5, pp. 1843−1845, 2005. 

[30] C. P. Davis and W. C. Chew, “Frequency-
Independent Scattering from a Flat Strip with 
TEz-Polarize Fields”, IEEE Trans. Antennas 
Propagat., vol. 56, no. 4, pp. 1008−1016, 2008. 

[31] S. Raffaelli, M. Johansson, and B. Johannisson, 
“Cylindrical Array Antenna Demonstrator for 
WCDMA Applications”, Proc. of ICEAA03, 
Turin, Italy, 8−12 Sept. 2003. 

[32] G. Vecchi, P. Nepa, G. Manara, A. Serra, M. 
Orefice, V. A. Laza, L. Matekovits, G. L. 
Dassano, and V. Kysrytsya, “Wideband Stacked-
Patch Designs for Base Station Antenna”, 
Wireless Reconfigurable Terminals and 
Platforms (WiRTeP), pp. 241−245, Rome, Italy, 
10−12 April 2006. 

[33] G. Dassano, V. A. Laza, L. Matekovits, M. 
Orefice, and G. Vecchi, “Numerical and 
Experimental Characterization of a Wide- Band 
Conformal Base Station Antenna”, Digest of 
2006 IEEE AP-S Soc. Int’l Symp., pp.3735−3738, 
Albuquerque, New Mexico, 9−14 July 2006. 

 
 

Ladislau Matekovits was born in 
Arad (Romania), on November 
19, 1967. He received the degree 
in Electronic Engineering from 
Institutul Politehnic din Bucureşti, 
Bucureşti, Romania and the Ph.D. 
(Dottorato di Ricerca) in 
Electronic Engineering from 
Politecnico di Torino, Turin, Italy 

in 1992 and 1995 respectively. Since 1995 he has been 
with the Electronics Department of the Politecnico di 
Torino, first with a post-doctoral fellowship, then as a 
Research Assistant. He joined the same Department as 
Assistant Professor in 2001 and was appointed as 
Senior Assistant Professor in 2005. In late 2005 
Ladislau Matekovits was Visiting Scientist at the 
Antennas and Scattering Department of the FGAN-
FHR, Wachtberg, Germany. His main research interest 
is in the numerical analysis of printed antennas and in 
particular in the development of new, numerically 
efficient full-wave techniques to analyze large arrays, in 
metamaterials and in optimization techniques. Dr. 
Matekovits is recipient of many awards in international 
conferences, and is member of various conferences 
program committees. He was Assistant Chairman and 
Publication Chairman of the European Microwave 
Week 2002 (Milan, Italy). He serves as a reviewer for 
the various Journals in his fields of interest. 

Giuseppe Vecchi received the Laurea and Ph.D. 
(Dottorato di Ricerca) degrees in electronic engineering 
from the Politecnico di Torino, Torino, Italy, in 1985 
and 1989, respectively, with doctoral research carried 
out partly at Polytechnic University (Farmingdale, NY). 
He was a Visiting Scientist at the Polytechnic 
University from August 1989 to February 1990. In 
1990, he joined the Department of Electronics, 
Politecnico di Torino, as an Assistant Professor 
(Ricercatore) where, from 1992 to 2000, he was an 
Associate Professor and, since 2000, he has been a 
Professor. He was a Visiting Scientist at the University 
of Helsinki, Finland, in 1992, and has been an Adjunct 
Faculty in the Department of Electrical and Computer 
Engineering, University of Illinois at Chicago, since 
1997. His current research activities concern analytical 
and numerical techniques for analysis, design and 
diagnostics of antennas and devices, RF plasma 
heating, electromagnetic compatibility, and imaging. 

 

Felipe Vico was born in Valencia, 
Spain, in 1981. He received the 
M.S in 2004 in telecommunication 
from the Polytechnic University of 
Valencia. From 2004 to 2005 he 
was with the Institute of 
Telecommunications and 
Multimedia Applications (iTEAM) 
as a Research Assistant. From 2005 

to 2006 he was awarded with a Research Fellowship by 
the Spanish Ministry of Culture. Since 2007 he has 
been an Assistant Professor in the Communications 
Engineering Department, Polytechnic University of 
Valencia, where he is currently working toward the 
Ph.D degree. His research interests include numerical 
methods applied to scattering and radiation problems, 
asymptotic techniques, hybridization of high frequency 
and numerically rigorous methods and fast 
computational techniques applied to electromagnetics. 

 

 

160 ACES JOURNAL, VOL. 24, NO. 2, APRIL 2009




