
Application of the Characteristic Basis Function Method for the 
Electromagnetic Analysis of Electrically Large and Complex Bodies 

 
Carlos Delgado 1, Eliseo García 2, Felipe Cátedra 1, and Raj Mittra 3  

1 Department of Computer Science  
University of Alcalá, Edificio Politécnico, Alcalá de Henares 28871, SPAIN 

carlos.delgado@uah.es , felipe.catedra@uah.es  
 

2 Department of Automatics 
University of Alcalá, Edificio Politécnico, Alcalá de Henares 28871, SPAIN 

eliseo.garcia@uah.es 
  

3 Department of Electrical Engineering 
Pennsylvania State University, University Park, PA 16802, USA 

Mittra@engr.psu.edu 
 

Abstract─ An overview of a parallel 
implementation of the Characteristic Basis 
Function Method combined with the Multilevel 
Fast Multipole Algorithm is presented. This 
approach allows an accurate analysis of very large 
electromagnetic problems. The geometry is 
described by means of Non-Uniform Rational B-
Splines, and the macro-basis functions are 
expressed in terms of subsectional functions 
totally conformed to the original geometry. A 
number of representative examples are considered 
in order to show the performance of the proposed 
approach. 
  
Index Terms─ Method of Moments, Macro-Basis 
Functions, Characteristic Basis Function Method 
(CBFM). 
 
 

I. INTRODUCTION 
Due to the great improvement of the 

computational efficiency during the last decade, 
many problems for which high-frequency 
approaches (such as Physical Optics [1] or the 
Geometrical Theory of Diffraction [2]) or hybrid 
methods [3-6] were the only possible choices are 
now amenable to simulation via rigorous 
techniques. Also, the development of architectures 
and paradigms for the parallelization of computer 
codes [7] are playing a very important role in the 

expansion of the scope of rigorous analysis 
methods. However, the most important 
contribution to this new scenario is given by the 
development of improved numerical techniques 
carried out by numerous research groups 
worldwide. Even though the heterogeneous 
underlying strategies define different features for 
each of these developments, we can classify them 
into different categories, according to the 
treatment of the electromagnetic problem.  

The Method of Moments (MoM) [8] is 
nowadays a strong reference against which the 
new frequency-domain approaches can be 
compared. Since in the MoM the unknowns are 
distributed over the surface of the objects, it is 
widely used for the analysis of scattering or 
radiation problems involving geometries with one 
or several layers of homogeneous materials. Many 
of the new approaches maintain a MoM-based 
formulation and add new improvements that allow 
us to expand its application range. The main 
drawback of the MoM is the size of the coupling 
matrix that determines the linear system to be 
solved later. Owing to a fine discretization of the 
object geometry, typically 10 per λ in the 
conventional MoM, the matrix size becomes large 
relatively quickly as the object size becomes 
electrically large, and this, in turn, places a heavy 
burden on the CPU, both in terms of solve time 
and memory. A widely well-known approach to 
overcome this difficulty consists of using the Fast 
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Multipole Method (FMM) [9] or the Multilevel 
Fast Multipole Algorithm (MLFMA) [10], that 
reduce the computational complexity from O(N2) 
to O(N3/2), or even to O(NlogN) for the latter 
approach. The use of these approaches entails the 
storage of only the near-field terms of the coupling 
matrix and computing the far-field interactions 
efficiently via fast matrix-vector products in the 
iterative solution process. There are a number of 
techniques that also take advantage of the efficient 
evaluation of these products in the iterative 
solution of large problems, such as the Complex 
Multipole Beam Approach (CMBA) [11], the 
Impedance Matrix localization (IML) technique 
[12] or the Adaptive Integral Method (AIM) [13]. 

A different strategy which has been proven to 
decrease the computational complexity of the 
conventional MoM is based on the fact that the 
submatrices that contain the coupling between 
moderately distant blocks (about a few 
wavelengths, usually) are rank-deficient or, in 
other words, the number of degrees of freedom is 
smaller than the number of samples used. 
Therefore, these submatrices can be compressed 
using some of the techniques available in the 
literature, like those based on the Modified Gram-
Schmidt procedure (MGS) [14, 15], the Adaptive 
Cross Approximation (ACA) [16, 17] or the 
Matrix Decomposition Algorithm [18]. It is 
worthwhile to remark that these approaches make 
use of purely algebraic manipulations of the 
original matrices. 

A third group of methods, among which the 
presented work can be situated, is based on a 
strategy that utilizes a domain-decomposition 
scheme and reduces the number of unknowns by 
replacing the subdomain-type basis functions with 
a set of macro-basis functions. We can mention 
here the Synthetic Function Expansion technique 
(SFX) [19] or the Characteristic Basis Function 
Method (CBFM) [20].  

The CBFM models the current on an arbitrarily 
shaped target by means of a set of macro-basis 
functions, called Characteristic Basis Functions 
(CBFs), defined over geometrical blocks in which 
the geometry is subdivided. Instead of being 
limited to a predetermined and/or fixed shape, the 
CBFs are generated taking into account the 
physics of the problem, so they are tailored to the 
geometrical properties of each block, and their use 
leads to a “reduced” matrix whose size is 

considerably smaller than that of the original 
impedance matrix based on subdomain functions 
(e.g. Rao-Wilton-Glisson functions [21] or 
rooftops [22]). Each CBF, in turn, can be seen as 
an aggregation of low-level basis functions whose 
weights are fixed when each CBF is generated. 
The reduction in matrix size achieved by the 
CBFM enables us to use direct solvers for some 
problems where, previously, an iterative solver 
represented the only possible choice because of 
the size of the impedance matrix. However, for 
very large problems the reduction achieved in the 
number of unknowns may still be insufficient as to 
resort to a direct solver. In this situation, an 
iterative solution process can be utilized by 
combining the CBFM with the MLFMA approach 
[23]. 

We will consider in this work a geometric 
representation based on Non-Uniform Rational B-
Splines (NURBS) [24], due to its flexibility to 
model arbitrary geometries and the fact that this 
format has become widespread in the world of 
Computer Aided Geometric Design (CAGD). The 
CBFs are represented in terms of modified rooftop 
functions defined along the u or v directions over a 
parametric domain, totally conformed to the 
NURBS patches, so the discretization error is 
minimized. 

This paper is structured as follows. In Section 2, 
we discuss the procedure for obtaining the 
Characteristic Basis Functions from rigorous or 
asymptotic solutions of smaller problems where 
each block is isolated from the rest of the 
geometry. Section 3 deals with a particular 
implementation of the CBFM, used in this work, 
where the low-level basis functions employed are 
modified rooftops placed over the parametric 
domain of NURBS patched and totally conformed 
to the surface, and the low-level testing functions 
are razor blades also located directly over the 
parametric domain of the patch. In Section 4 the 
applicability of the CBFM is enlarged by 
including the MLFMA formulation, so that the 
computational requirements of very large 
problems are now affordable by using the CBFM-
MLFMA. In section 5 we discuss the details of the 
parallelization of the proposed approach in order 
to optimize the balance of the computational load 
between different computing nodes. Finally we 
present some conclusions derived from this work. 
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II. GENERATION OF THE 
CHARACTERISTIC BASIS FUNCTIONS 

Previous to the generation of the CBFs, which 
will model the current over the structures under 
analysis, we set up a partitioning of the geometry 
into blocks. It is important to note that the size of 
these blocks can go up to a few thousands low-
level basis functions. The CBF generation process 
takes into account the shape of each block. In 
order to incorporate the physics of the problem 
into the CBFs we obtain these functions from the 
current solutions of the isolated block. The 
approach shown in [20] considers a scheme where 
the CBFs are grouped into two categories: the 
primary CBFs, due to the currents induced by the 
incident field on each block (obtained by isolating 
the block), and the secondary CBFs, obtained by 
assuming that the incident field on a block is due 
to the field radiated by the currents that the 
external field induces on another block. Thus, a set 
of CBFs (one primary and several secondary 
CBFs) is assigned to each block. However, by 
following this approach the reduced matrix 
depends on the external field, which can be 
undesirable in some cases. In order to overcome 
this problem, there is a different technique, more 
appropriate for scattering problems with multiple 
right hand sides, consisting on obtaining the CBFs 
from a set of plane waves (Plane Wave Spectrum, 
PWS) which impinge on the scatterer from 
different angles, and considering both 
polarizations (θ and φ). By following this 
procedure we eliminate the primary and secondary 
classification of the CBFs. Fig. 1 depicts this 
approach in a 2D scenario. The different plane 
waves that surround the surface are separated by 
an angular step Δθ. The number of plane waves to 
be considered obviously depends on the size of the 
block. In fact, having a large enough number of 
currents with different shapes based on 
approximate solutions with which build the new 
basis functions (i.e., the CBFs) is more important 
than having a few extremely accurate solutions of 
the currents due to several plane waves. It is also 
interesting to remark that the accuracy obtained in 
the modelization of evanescent fields can be 
controlled by increasing the discretization density 
(i.e. the size of the subdomains). The evanescent 
behaviour of the CBFs is seen after obtaining the 
currents induced by the plane waves on the block 
with the MoM. Therefore, it is not necessary to 

consider a sampling of plane waves outside of the 
visible spectrum in order to obtain CBFs with fast 
amplitude variations. Thus, simply by choosing an 
angular separation in the θ and φ spherical 
components between consecutive plane waves 
depending on the block size is enough for 
obtaining good results. Specifically, we use a 
separation of 10º for block sizes whose maximum 
side length is below 2λ, 5º when the block size is 
up to 4λ and 3º for larger blocks. 
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Fig. 1. 2D scheme of the PWS surrounding the target 
object for the CBF generation. 
 

There are different possibilities for obtaining 
the currents induced by the plane waves on the 
block under consideration. For example, the 
conventional Method of Moments can be used for 
this purpose. If we are considering P different 
incident waves, it would be necessary to solve the 
following set of MoM problems [20,25]: 

 
[ ] [ ] [ ] , 1,..., ,i i inc

k k
Z J V k P= =             (1) 

 
where [Z]i is the coupling matrix for block-i, [J]k

i 
indicates the current vector for block-i and the kth  
plane wave excitation, and [V]k

inc represents the kth 

excitation vector. Due to the fact that we are 
isolating the block from the rest of the geometry, 
in order to mitigate the artificial edge behaviour of 
the currents it is convenient to compute the 
currents over an extension of the original block, 
usually considering a fraction of wavelength as the 
size of this extension [20]. Only the currents that 
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are inside the original block are retained and 
stored as the CBFs after being orthogonalized. 
Obviously, we do not need to follow this 
procedure if we are using PO to calculate the 
induced currents instead of the MoM. The size of 
the extension depends on the type of low-level 
basis functions considered. We have found that 
with the scheme described in [28], which utilizes 
rooftops, no extension is required to get accurate 
results, because of the use of connection strips 
which effectively dovetail the subdomains in 
which the low-level basis functions are defined. 
For an RWG-based scheme, accurate results are 
obtained by extending the original blocks by 
approximately 0.3λ. If no extensions are 
considered, a noticeable degradation of the results 
has been observed in a number of test cases 
simulated. 

It is also possible to use high-frequency 
approaches for the computation of the currents 
induced by the incident plane wave, when the 
block being analyzed is smooth. The PO approach 
can be used to bypass the solution of (1) for 
different plane wave excitations. The expansion of 
the current over the block-i in terms of subdomain 
functions due to the k-th incident plane wave can 
be expressed as: 

 

{
( )

0
0 0 0

0 1

0 0

ˆˆ( , ) 2 ( , )

ˆexp ( , ) ( , ),

iN
i i
k n n k

n

i
k n n n

B u v n u v k E

jK k r u v T u v

μ
ε =

⎡ ⎤= × × ⋅⎣ ⎦

⎡ ⎤− ⋅ ⋅
⎣ ⎦

∑     (2) 

 
where ),( 00 nn vu designates the point on the nth 
rooftop where the current is sampled, and 
corresponds to the center of the associated 
parametric contour, n̂  is the normal vector and r  
is the spatial point. The function ),( vuTn is the nth 
rooftop located in block-i, and Ni is the total 
number of rooftops within this block. Our 
experience shows that PO currents can be used to 
construct the Characteristic Basis Functions even 
for relatively small block sizes (one wavelength or 
even less). One can find that in some cases the 
PO-derived CBFs cannot model appropriately the 
fast current variations in the free edges of the 
geometry. The scheme shown in [26] solves this 
problem by defining a special type of blocks with 
a reduced width near these edges. 

     After generating the induced current vectors 
corresponding to each one of the plane wave 
excitations for block-i, the associated CBFs can be 
obtained by performing the orthogonalization of 
these vectors. The Singular Value Decomposition 
(SVD) [14] is used for this purpose. If we denote 
as M the total number of plane waves considered, 
we can arrange all the calculated currents in a 

NM ×  matrix form, where N is the number of 
low-level basis functions on the block. After 
calculating the SVD of this matrix, we obtain a 
new orthogonal set of basis vectors which can be 
identified with the singular vectors resulting from 
the SVD operation [27]. However, it is not 
necessary to retain the complete set of singular 
vectors as the new macro-basis functions. Those 
singular vectors which correspond to singular 
values with a negligible magnitude can be 
discarded without losing accuracy in the final 
results. In other words, we set a threshold γ, 
relative to the largest singular value, and retain 
only the singular vectors corresponding to those 
singular values above γ times the strongest 
singular value. We recommend γ in the range from 

3102 −⋅  to 310− . It is important to remark that the 
number of orthogonal vector retained after the 
SVD is usually several times lesser than the 
number of original plane wave currents, due to the 
linear relations of dependence of these in the block 
surface. The induced current solutions used to 
represent the CBFs need only be approximate 
solutions at this stage, since the final solution will 
be derived later by adjusting the coefficients of 
these basis functions. In other words, as long as 
we introduce a sufficiently large number of plane 
waves for the CBF generation, the final current 
distribution will be satisfactorily modelled. The 
truncated SVD technique referenced in the 
manuscript is not an exact decomposition of the 
original matrix, but it is a very useful and close 
approximation to the original matrix achieved by a 
matrix of reduced rank (optimal approximation 
considering the Frobenius norm). In the practical 
applications we observe a very rough decrease of 
the amplitude of the singular values. In most cases 
setting the threshold higher that the reference 
value given in the manuscript does not affect 
significatively the number of resulting CBFs. The 
threshold values proposed in this work allow us to 
obtain very good results (in the sense that the 
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resulting set of CBFs can model the currents very 
accurately) and do not depend on the shape or the 
size of the block. 

In Fig. 2 we have depicted the evolution of the 
magnitude of the singular values for two different 
block types and sizes. We show in the figure the 
singular values obtained for a plane block with a 
side length of two wavelengths and for a block 
with the shape of a spherical quadrant with a 
radius of one wavelength. It can be seen that the 
magnitude of these values decays very fast. The 
contribution of those CBFs whose singular values 
have a very small magnitude can be considered 
negligible, so that they can be discarded. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Magnitude of the singular values after 
calculating the currents induced by the plane waves on 
the block for a plane plate case (top) and a spherical 
quadrant case (bottom). 

 
III. THE COMBINATION OF THE CBFM 

AND NURBS SURFACES 
As previously indicated, the CBFM is 

independent from the type of low-level 
subsectional basis functions chosen for the 
expansion of the CBFs. In this work, we consider 
a generalization of the planar rooftops introduced 
by Glisson and Wilton in [22] as the low-level 
basis functions. These functions are located over a 
region of the NURBS patch where they belong. To 
do this, the parametric domain associated to the 
NURBS surface is divided in order to generate a 
mesh of rectangular subdomains. Each one of the 

contour segments between two consecutive 
subdomains is then associated with a basis and a 
testing function. It is necessary to define two sets 
of rooftops, for modeling the u- and v-components 
of the current over the patch. The testing functions 
selected are razor-blades, also be separated into 
two groups. For the Electric Field Integral 
Equation (EFIE) formulation we place the razor 
blades perpendicular to the contour shared by each 
pair of subdomains, while they should be parallel 
to the contour for the case of the Magnetic Field 
Integral Equation (MFIE). Note that these basis 
and testing functions are totally conformed to the 
NURBS surface. Figure 3 shows a scheme of an 
arbitrary surface with its control points, and the set 
of subdomains obtained when we divide its 
parametric domain into regions. Also, we show in 
the figure how a basis function along the v-
direction and a testing function along the u-
direction are placed. Note that this testing function 
corresponds to the EFIE formulation, according to 
the above explanation (perpendicular to the 
contour shared between two subdomains). Further 
details can be consulted in [28-30]. 

 
 

 

 

 

 

 

 

 

                    (a)                              (b) 
Fig. 3. (a): Arbitrary NURBS patch and control points; 
(b): Discretization of the surface in the parametric 
domain and collocation of basis and testing functions. 
 

As a validation of the CBFM approach 
described so far in this work, we consider a PEC 
cube with two square facets parallel to each 
canonical plane (XY, XZ and YZ). The length of 
each side is 1 meter, and a frequency of 900 MHz 
has been set for the simulations. We have obtained 
monostatic RCS values and we have compared 
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them with those returned by the conventional 
MoM, for the θ-θ and φ-φ polarizations. Figures 4 
and 5 show a good agreement between the results 
obtained using both methods. The number of 
unknowns required by the Method of Moments 
has been 11532, while the CBFM has needed 1140 
unknowns. Each one of the six faces of the cube 
was identified as one CBFM block, so we obtained 
190 CBFs for each block. The CBFs have been 
obtained from a set of incident plane waves 
considering Δθ=Δφ=7º. The MoM CPU time is 
44022 seconds; the CBFM CPU-time is 3526 
seconds. Both results have been obtained using a 
SUN Fire V65 workstation (2 Xeon 3GHz 
processors with 8 Gbytes of RAM).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. θ-θ polarization results for the PEC cube 
monostatic RCS analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. φ-φ polarization results for the PEC cube 
monostatic RCS analysis. 

In the following test case we consider the 
COBRA cavity with a flap (Fig. 6), modeled using 
24 NURBS surfaces. In figures 7 and 8 we show 
the monostatic RCS results obtained for an angular 
sweep with a fixed value of φ=0º and θ=0º to 90º 
with an angular step of 1º at a frequency of 10 
GHz with the proposed method, compared with 
the values given by the Finite Element-Boundary 
Integral method in [31]. From the discretization 
process, 59147 unknowns arise considering the 
standard sampling rate of λ/10. An angular step of 
5º has been considered in this case for the CBF 
computation. Only 4711 high-level functions have 
been retained after orthogonalizing the PO-derived 
induced currents. The simulation has been carried 
out in 65966 seconds using an Opteron processor 
at 2.4 GHz with a total RAM of 64 Gbytes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Geometrical scheme of the COBRA cavity with 
a flap. 

 

The next example consists of a PEC almond-
shaped target (Fig. 9), similar to the NASA 
almond [32], but with a different size. The total 
length of the object is 2.5 meters with a total 
surface area of 4 m2. The geometry is defined by 
the equations: 
 

 

194 ACES JOURNAL, VOL. 24, NO. 2, APRIL 2009



0.583333t0for ,

sin96.0
083350.2

1611148.1

cos96.0
083350.2

1833450.4

2

2

<<

<<−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛−=

=

πψπ

ψ

ψ

tdz

tdy

tdx

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. θ-θ polarization results for the COBRA cavity 
with a flap. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. φ-φ polarization results for the COBRA cavity 
with a flap. 

                                                                      
 
 
 
                                                                        
 

           (3) 
 
 
 
 
    
                                                                        (4) 
 
         

where d is the length of the almond, 2.5 m. 

 
 

 
 

Fig. 9. “Almond” test case. 
 
Figures 10 and 11 show the bistatic RCS results 

at a frequency of 2 GHz for the θ-θ and φ-φ 
polarizations, respectively. We have compared the 
MoM results with those obtained by utilizing the 
CBFM with PO-derived CBFs. We have 
considered 181 observation directions ranging 
from φ=0º to φ=180º, for an incidence angle given 
by θ =90º and φ=180º. The number of unknowns 
is 55460 when using the MoM, while 5801 CBFs 
are retained in the CBFM approach. The almond is 
modeled using 8 NURBS patches which, in turn, 
are identified as 8 CBFM blocks, so the average 
number of CBFs and low-level unknowns per 
block are 725 and 6932, respectively. Both cases 
show good agreement. The total time needed to 
solve this case example has been 12123 seconds 
using the same machine as in the previous cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Bistatic RCS results for the almond test case, θ-
θ polarization. 
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Fig. 11. Bistatic RCS results for the almond test case, 
φ-φ polarization. 
 

IV. COMBINATION OF MLFMA AND 
CBFM 

In previous sections, we showed the advantages 
of CBFM in terms of the reduction of the number 
of unknowns, leading to a coupling matrix whose 
size is much smaller than that obtained in the 
conventional Method of Moments. As a 
consequence, direct solvers can be applied to solve 
medium size problems, which could be addressed 
in the past by relying upon iterative techniques. 

However, when the size of the scatterer 
becomes very large, the CBFM system matrix can 
become so large as to preclude its solution without 
resorting to iteration, despite a significant 
reduction in the matrix size realized via the 
CBFM. Additionally, the memory needed to store 
the reduced matrix can present a problem as well. 
One of the most common approaches to easing the 
burden on the computational resources entails the 
storing of only the near-field terms of the coupling 
matrix and computing the far-field interactions via 
the Fast Multipole Method, or its multilevel 
implementation, MLFMA. The use of the 
MLFMA avoids the need of calculate and store the 
coupling terms between near elements in the 
reduced matrix, thereby optimizing the memory 
storage requirements. In addition, the MLFMA 
improves the CPU-time required to solve the 
system via an efficient evaluation of the matrix-
vector product operations in an iterative solution 
process. In the application of the MLFMA we 
compartmentalize the whole geometry into several 
first-level cubical groups which, in turn, generate 
higher-order cubes as they are grouped. A first-

order group size of a quarter of wavelength is 
recommended [10], and the aggregation point of 
every cube is chosen to be its geometrical centre. 
For the first level, the cubes include a few basis 
functions, and the coupling between basis 
functions associated to geometrically close cubes 
is calculated in a rigorous way and stored for later 
use. Figure 12 depicts the volumetric distribution 
of these cubical volumes, given a generic 
geometry. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 12. Compartmentalization of the target geometry 
into cubical groups. 

 
The application of the FMM/MLFMA entails 

the storage of only the near-field terms of the 
coupling matrix and the efficient computation of 
the far-field interactions in the iterative process. 
This is achieved by computing the matrix-vector 
products as shown in (5). For both the EFIE and 
MFIE cases we have: 

 
                                                                      , (5) 
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where Nm is the number of subdomain functions 
within the cubical group, and mjr ,  represents the 
vector that extends from the sampling point to the 
aggregation point. Analogously, the dissagregation 
term can be computed as: 
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                                                                 ,      (7) 
 
 
 

and the translation term between points m and m’ 
is given by: 

 
                                                                  ,     (8) 
 
 

where )()1( xhl is a spherical Hankel function of the 
first kind and )(xPl is a Legendre polynomial. 

The first step in the computation of the far-field 
interactions embodies calculating the aggregation 
terms for each first-level cube, according to (6). 
These terms represent the outgoing wave 
expansions of each cube. For each higher-level 
cube, the aggregation is obtained by taking into 
account the aggregation terms of the lower-level 
cubes contained in it, and by using shifting and 
interpolation in order to reduce the computational 
resources. After the aggregation stage, translation 
between well-separated cubes that belong to the 
same level is performed. 

The last step of the algorithm consists of the 
disaggregation process, in which all the cubes 
have received the contributions from the rest of the 
cubes belonging to the same level, and these 
contributions are released to their children cubes, 
via shifting and anterpolation. If the parent cube is 
a first-level cube, the contribution released to the 
subdomain functions is given by (7). 

Following the MLFMA strategy, the scatter 
geometry is compartmented into several first-level 
groups and higher-order cubes are generated. Each 
high-level cube groups several cubes in the lower 
level and so on. According to this idea, a tree 
structure is created from the highest level to the 
first one. 

Next, the CBFM blocks are defined and the 
macro-basis functions are obtained via SVD as it 
was shown in previous sections. Each CBF 
included in a block extends over the entire block, 
so its size is usually much larger than the size of 
the subdomains. Therefore, it is common that a 
CBF can be defined over several MLFMA groups. 

It shall be pointed out that the size of the groups 
and the corresponding number of levels in the 
application of the MLFMA can be different when 

we are dealing with CBFs instead of low-level 
basis functions. In the conventional MoM-
MLFMA application, it is recommended to 
maintain a size of about 0.25 λ for the first level 
groups. However, in the presented scheme 
(CBFM-MLFMA) the size of the groups of the 
first level should be as small as possible, but with 
the restriction that it is not much smaller than the 
size of the blocks (the surfaces over which the 
CBFs extend). From our experience, the best 
choice for the size of the groups at the first level is 
between the half and the whole size of the CBF 
block. If a block extends over many small groups 
we would require a large amount of memory 
usage, since each group included in a block must 
store the multipole information for all the CBFs in 
that block. 

The reduced matrix is calculated containing 
only the coupling terms between near blocks, 
which are on or close to the diagonal of the matrix. 
The reaction terms corresponding to distant are 
efficiently calculated using the MLFMA. 
Considering the EFIE formulation, we compute 
the aggregation for the CBF j inside the block m as 
follows: 
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where nj ,α is the coefficient of the CBF-j 
associated to the nth basis function Tn, and 

EFIEAGG
nmV −

,  is the aggregation term for the nth basis 
function inside the block m. Analogously, the 
dissagregation term can be computed as: 
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and the translation term between points m and m’ 
is calculated according to (8). 

For the MFIE formulation, the aggregation and 
disaggregation terms for the CBFs are computed 
as: 
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                                              .          (12) 
 
 

 
The previous expressions can be used for 

solving the problem employing an iterative 
algorithm. The coupling terms corresponding to 
geometrically close blocks can be calculated by 
means of direct matrix-vector products, while far-
field coupling terms can be computed through the 
MLFMA. As a consequence, the CPU-time is 
reduced, while simultaneously optimizing the 
memory storage requirements, since the number of 
CBFs is much smaller than the number of 
subdomains. It is important to note that the 
aggregation and disaggregation terms are 
computed for the CBFs, which allows the analysis 
of electrically larger problems. Obviously, the 
CBF generation process increases the 
preprocessing CPU-time, as will be seen in the 
numerical examples shown below. However, as 
the electrical size of the problem increases the 
preprocessing time is smaller compared to the 
CPU-time required for the system solution, which 
in turn involves a higher efficiency of the 
presented approach when compared to the MoM-
MLFMA technique. 
     It is also interesting to make a remark about the 
appropriate group and block size in the CBFM-
MLFMA combination. The reduction in the 
number of unknowns depends only on the block 
size, as the memory requirements depends on the 
group and block size. From the experience 
obtained in this work and previous ones, we 
conclude that block sizes from λ to 2λ and group 
sizes from 0.5λ to λ constitute a good 
compromise. 

The first test case considered for the validation 
of the CBFM-MLFMA approach is the COBRA 
cavity with a cap previously depicted in Fig. 6. We 
have obtained monostatic RCS values at a 
frequency of 10 GHz for an angular sweep θ from 

0º to  90º with a fixed value of φ=0º. Results for 
both the θ−θ and φ−φ  polarizations are showed in 
Figures 13 and 14, respectively, in which we 
compare the MoM-MLFMA technique, the 
conventional CBFM and the CBFM-MLFMA 
approach. The conventional MoM-MLFMA 
approach required about 304000s for the θ-θ 
polarization and 456000s for the φ-φ polarization 
using the EFIE formulation and the BiCGStab 
solver without any preconditioner. As indicated in 
a previous section, the conventional CBFM CPU-
time was 65966 seconds for each polarization. The 
presented CBFM-MLFMA  approach required 
23821s for the θ-θ polarization and 27544s for the 
φ-φ polarization with the same solver used for the 
MoM-MLFMA  case. All the simulations have 
been performed using an Opteron processor at 2.4 
GHz with a total RAM of 64 Gbytes. 

The next case consists of two parallel square 
plates with a size of 32λ and a separation of 16λ 
between them. The frequency considered is 2.4 
GHz. Bistatic RCS values for an incidence 
direction defined by θ=0º and φ=0º and a sweeping 
θ from 0º to 180º for the θ-θ polarization have 
been obtained. Figure 15 shows the results 
obtained compared with the MoM -MLFMA, and 
Table 1 contains the corresponding CPU-times and 
the resulting number of unknowns considered. 
Regarding the memory comparision between 
MoM-MLFMA and CBFM-MLFMA, the former 
approach needs 9.9 Gbytes of RAM  while the 
latter only requires 6.7 Gbytes, for a group size of  
λ.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. θ-θ polarization results for the COBRA cavity 
with a flap. 
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Fig. 14. φ-φ polarization results for the COBRA cavity 
with a flap. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15.  Bistatic RCS values at 2.4 GHz for the two-
plate test case. 

 
Table 1: Analysis of the RCS of the two-plate test case 
at 2.4 GHz 

 
 
 
 
 
 
 
 
 
 
 

V. PARALLELIZATION OF THE 
MLFMA-CBFM APPROACH  

It is also important to recognize that currently 
the parallelization of computer codes plays a very 
important role, because it enables the code to run 
on multiple processors, resulting in considerable 

time-saving if the algorithm scales efficiently as 
the number of processors is increased 
progressively [32]. In order to take advantage of 
these clusters, it is necessary to modify the initial 
code, following a parallel-computation standard. 
The Message Passing Interface (MPI) paradigm 
[7] is at the present time widely used for the 
parallelization of codes based on the use of 
computer clusters. 

The design of the parallel CBFM-MLFMA 
follows the so called data-parallel approach [33]. 
In this approach the data is partitioned among the 
processes, and each process executes 
approximately the same set of commands on its 
data. This approach usually leads to more scalable 
programs.  

In the design of the parallel approach, all the 
groups are distributed between the processors [34]. 
Each group is assigned to a processor, which 
manages the information about all the coupling 
terms of the CBFs located in that group. In the 
delivering process, it is essential to apply load-
balancing for the near-field. Each processor 
computes the near-field terms that correspond to 
the associated CBFs, and it obtains the rigorous 
coupling terms with the rest of CBFs by sharing 
information with other processors. Each processor 
calculates the aggregation and disaggregation 
terms of its assignated CBFs, and it exchanges this 
information at the corresponding level with those 
processors which require it. 

In order to improve the efficiency of a 
parallelized program, the communication between 
processors and duplicated computations must be 
minimized. In a simple parallelization technique 
[32], we can obtain the highest level at which the 
MLFMA cubes are coupled. Next, we distribute 
and assign equally the cubes of that level to the 
processors, and, for the lower levels, if a cube in 
the higher-level belongs to a processor, then all its 
sub-cubes are also assigned to the same processor. 
By following this procedure, the aggregation and 
disaggregation steps from the bottom of the 
hierarchical tree up to the higher-coupling level 
can be performed without any communication. 

This scheme avoids the communication 
between processors in the aggregation and 
disaggregation process, but it can lead to an 
inefficient speed-up in some cases. When the 
geometry of the scatter is irregular, by applying 
the higher-coupling level distribution a processor 
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can be in charge of cubes that have a low number 
of non-empty low-level cubes, so the processor 
can wait for long periods of time. 

To overcome this disadvantage, a new strategy 
in the distribution of the cubes has been 
developed. We fixed the level of the distribution 
of the cubes to be different to the highest-coupling 
level. To avoid communication between 
processors in the aggregation and disaggregation 
processes for the cubes at a level above the 
distribution level, it is allowed that these cubes can 
be duplicated in different processors. For this 
cubes, each processor computes the aggregation of 
its sub-cubes, and adds its partial contribution in 
the translation process, so the contributions from 
different processors are combined automatically 
for the duplicated cubes. Applying this new 
strategy, the speed-up is improved for geometries 
with irregular shapes [35]. 

In Fig. 16 the speed-up for the COBRA cavity 
with a flap is shown. All the simulations have been 
performed using dual-core Opteron processors at 
2.4 GHz with a total shared RAM of 64 GBytes. 
Table 2 shows the CPU-times for both 
polarizations using the presented approach, and a 
comparison between CBFM-MLFMA and MoM-
MLFMA using the same parallelization scheme. 
The conventional CBFM CPU-time was 65966 
seconds for each polarization with a single 
processor.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Evolution of the CPU simulation time as a 
function of the number of processors. 

 
 
 
 

Table 2. CPU-times for the simulations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI CONCLUSIONS 
 
We have presented an overview of a very 

efficient, recently developed technique (CBFM), 
based on the definition of macro-basis functions 
which can be generated using different 
approaches. Also, we have presented an 
implementation of the CBFM combined with the 
MLFMA. The conventional MoM memory 
requirements are highly reduced due to the 
reduction of the number of unknowns via the 
CBFM and to the reduction in the size of the 
reduced matrix via MLFMA. Also the CPU-time 
is smaller due to the reduction of the size of the 
linear problem to be solved and to the efficiently 
computed matrix-vector products in the iterative 
solution process. 
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