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Abstract — A novel method for estimating the dielectric
properties of materials by applying different soft comput-
ing techniques is presented. Dielectric properties allow us
to know other material characteristics such as moisture
content, bio-content, chemical concentration, etc., which
are of great importance on industrial or science fields. In
this paper, we present a free-space measurement method
along with soft computing techniques, such as Genetic Al-
gorithms (GA) and Particle Swarm Optimization (PSO),
and other approaches like Artificial Neural Networks
(ANN), for estimating the dielectric properties of materi-
als. The proposed method is validated by measurements
and synthetic materials, which were generated to test the
performance of these soft computing algorithms.

I. INTRODUCTION

For many years, the evaluation of dielectric prop-
erties of materials has been a fundamental aspect and
a challenging problem with an important variety of ap-
plications [1]. There are several works focused in the
estimation of dielectric properties of materials in the
investigations of material and structural assessment [2,
3]. Application of materials in the aerospace, textile,
microwave, microelectronics, and communication indus-
tries requires the exact knowledge of material parameters
such as permittivity and permeability [4, 5, 6]. Complex
dielectric permittivity and magnetic permeability (e, 1)
are two fundamental parameters that describe the response
of matter to the external electric and magnetic fields.
Nowadays, a heightened interest on the development
of new methods that provide accurate determination of
both parameters has arisen, particularly, from the fact
that contemporary Electronic Design Automation (EDA)
software contribute to the design process by allowing us
to extensively characterize a constructed device prior to
making a physical prototype. To prepare a trustworthy
simulation, it is necessary to have good knowledge of the
dielectric properties of all media involved.

During the last years, INTA’s Detectability Lab
has investigated in the field of material measurements
[7, 8], as well as in characterization of their elec-
tromagnetic properties [9, 10] for radar applications

(protective/coating materials, Radar Absorbing Materials
(RAM),...) in which a plane wave will impinge on a target.
There are many ways to measure the complex electro-
magnetic constants of samples in the time and frequency
domain [11] and they all basically fall into two categories:
either destructive methods, in which sample preparation
is needed for accurate evaluation, or nondestructive meth-
ods, which require very little or no sample preparation
[12]. The measured quantity(s) of the sample will enable
the computation of its permittivity and permeability.

The open-ended coaxial probe is a cut-off section
of a transmission line. The material is measured by
immersing the probe into a liquid or touching it to the flat
face of a solid (or powder) material. The method offers
the advantages of being a broadband and nondestructive
method, but in the case of solids requires perfect contact
between the probe and the sample. The surface roughness
of the sample seriously limits the accuracy of the mea-
surement [13]. Other techniques such as the perturbation
of a resonant cavity by the introduction of a dielectric
sample can be utilized to compute electrical properties
by measuring the change in resonant frequency and its
quality factor. However, the sample should fit exactly into
the sample holder, and small misalignments can cause
large measurement errors [14]. Recently, the methods
based on numerical techniques have been arising due to
the increase of capacity and accuracy of the numerical
methods [15, 16].

In the free-space method (Fig. 1), the antennas focus
microwave energy at the measurement plane, and the
sample is fixed at the common focal plane between the
two antennas. Since the sample is at the focal plane of
the antenna and is not in contact with the applicator, it
can be adapted easily for measurements at high or low
temperatures and hostile environments [17]. Traditionally,
whatever the measurement method may be, an iterative
process need to be implemented to find the roots of
the error function and extract complex permittivity and
permeability (e, p) from the measured quantity(s) [18].

Soft computing is a general term covering a number
of methodologies, where the common thread through all
of them is that, unlike conventional algorithms, they are
tolerant of imprecision, uncertainty, and partial truth. Soft
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Fig. 1. Free-space measurement set-up.

computing techniques offer adaptivity, since they can
track a changing problem quite well. The aim of this
paper is to apply soft computing techniques to estimate
the electromagnetic characteristics of materials, using
the free-space method. First, the measurement method
is described and the problem is defined. Then, the soft
computing techniques used in our experimentation are
presented. This techniques are Genetic Algorithms (GA)
and Particle Swarm Optimization (PSO) and Artificial
Neural Networks (ANN). GA and PSO are used to obtain
the dielectric constant from artificial, synthetic materials.
After that, different topologies of ANNs are applied to the
same set of materials to compare performance. Finally,
these techniques are used on real measurements obtained
from INTA’s anechoic chamber.

II. PROBLEM DEFINITION

In this section, a theoretical representation of the
estimation problem is introduced. The free-space method
employed at INTA follows the configuration shown in
Fig. 2(a), where a PC controls the positioner and a Vector
Network Analyzer (VNA), which is also connected to a
transmitting and receiving antenna. For radar applications,
this method has some advantages:

1) Allows broadband and contactless nondestructive
measurements.

2) The materials are measured under free-space con-
ditions, which are the same conditions of the actual
applications of the these materials.

3) The samples used must not be highly elaborated in
shape.

Using this setup, S7; parameter is measured and re-
flection coefficient is obtained for a metal-backed sample
(Fig. 2(b)). From transmission line theory, reflection coef-
ficient is related to complex permittivity and permeability
via the following general equations (no assumptions or
approximations for low losses materials have been made)
derived from [19],

\/ Z—fcos(@i)tanh(jkod\/uieicos(et)) — cos(0y)
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\/ 2= cos(0; ) tanh(jkody/iietcos(0;)) + cos(6;)
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where I' | and I'| are perpendicular and parallel reflection
coefficients, d is the sample thickness, kg = 277’ is the
free-space wavenumber, 6; is the incidence angle, 6; the
transmitted angle (Fig. 2(b)) and € and p are relative
complex permittivity and permeability,

€ = 6; — je, 3)

P = My = Jfhy - 4)

Because € and p) cannot be easily expressed in
terms of the reflection coefficients and d, this paper
propose to find them by soft computing techniques.

Anechoic Chamber

Material Antenna (Tx/Rx)
Test Sample .

Metallic Plate

Material
(b)

Fig. 2. Measurement set-up in anechoic chamber.

III. SOFT COMPUTING TECHNIQUES IN THE
ESTIMATION OF DIELECTRIC PROPERTIES
OF MATTER

Bearing in mind equations (1) and (2), the first
approach to solve the problem has been the use of Genetic
Algorithms (GA) and PSO algorithms, that looks for the
proper values of € and g starting from the reflection
coefficients of the test samples.
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A. Genetic Algorithms

Evolutionary algorithms are a broad class of stochas-
tic optimization algorithms, inspired in the biological pro-
cess that allow populations to adapt to their surrounding
environment [20]. One of the first proposals of these kind
of algorithms was the Genetic Algorithms (GA) by John
Holland [21]. GA maintains a population of candidate
solutions to a specific problem, and makes it evolve by
iteratively applying a set of stochastic operations, known
as mutation, recombination, and selection [22]. In GA,
individuals are codified as strings of binary digits, which
represent the solution to the problem and it is called
chromosome. The selection of the best candidate solution
(or chromosome) is guided by how the candidate solution
minimize a fitness function.

For the work contained in this document, MATLAB
has been used to perform the optimization by GAs
(Genetic Algorithms and Direct Search Toolbox). This
implementation of GA uses several typical parameters
such as population size (PopulationSize), number of gen-
erations (Generations), number of individuals to be kept
for next generation (EliteCount), selection, crossover and
mutation functions (SelectionFcn, CrossoverFcn, Muta-
tionFcn), etc, which can be adjusted and modified.

The main GA parameters selected in our experimen-
tation are depicted in table 1.

B. Particle Swarm Optimization

Particle swarm optimization (PSO) is a recently pro-
posed algorithm by James Kennedy and R. C. Eberhart in
1995 [23], motivated by social behavior of organisms such
as bird flocking and fish schooling. PSO are very similar
to Genetic Algorithms, where a population of random
solutions is initialized and the aim is the search for
optima by updating generations. However, in PSO there
is no evolution operators such as crossover or mutation.
The potential solutions, called particles, ’fly’ through the
problem space by following the current optimum particles.

This optimization approach was first applied to elec-
tromagnetic by [24]. In this case, a PSO code has been
programed specifically for this work. For the propose
of our experimentation, authors have developed a PSO
tool that includes a graphical user interface that permits
different simulations varying easily its parameters, and
seeing its results and convergence. The main parameters
used to obtain the results contained in this paper are
presented in table 1.

IV. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN) have their origin
in the attempt to simulate by mathematical means an
idealized form of the elementary processing units in the
brain and of their interconnections, signal processing,
and self-organization capabilities [20]. An important issue
about ANN is the ability to progressively improve their
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performance on a given task by somehow learning how
to do the task better. They are at their best for problems
where there is little or incomplete understanding, so that
building a faithful mathematical model is difficult or even
impossible.

Our next approach to solve the described problem
is to model it through ANNs using the Neural Network
Toolbox provided by MATLAB.

The actual reflection coefficients measured in the
anechoic chamber are contaminated with noise and it is
well known the skill of ANNs to adapt its behavior to
noisy signals and to obtain good results. Moreover, before
feeding the search algorithms with the actual reflection
coefficients, some kind of preprocessing must be done.
For the case of ANNSs, this preprocessing can be avoided,
reducing the time and complexity of the process.

Another theoretical advantage is the fact that the
ANN training is time and computational consuming, but
is done only a limited number of times, and after that the
determination of the dielectric constants for a material is
practically instantaneous. On the other hand, the search
algorithm (GA or PSO) is time consuming each time it is
executed. So, the global computational cost derived from
the ANNs will be less than the derived from the GA or
PSO.

V. RESULTS

For this first approach, both synthetic and real mate-
rials are used to test the algorithms proposed. As actual
available materials in our lab are non-magnetic, there is
no need to measure off-normal, so §; = 0 and equations
(1) and (2) are the same, and consequently one of them is
enough to extract real (e].) and imaginary parts (e;:) of €.
For this reason, the synthetic materials created are non-
magnetic and the problem is reduced to the estimation
of the dielectric permittivity. This simplification diminish
the complexity of the problem but does not limit its utility
as the conclusions could be easily extrapolated to oblique
incidence and p determination.

A. GA and PSO

Given electric permittivity, thickness, and frequency,
reflection coefficients can be calculated from equation (1).
Table 2 shows the fifteen different synthetic materials
generated.

For each of these materials, GA and PSO are applied
separately using the MATLAB Toolbox and the tool
developed respectively. For the GA the genes are formed
by two chromosomes whereas for PSO each position
vector has also two coordinates, it is, in both cases, real
and imaginary parts of € are searched. Codification is
real for both alternatives and the chosen fitness function
to be minimized is,



Table 1. GA and PSO parameters.
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GA PSO
Parameter Value Parameter Value
PopInitRange [1 0;20 20] Range [1 0;20 20]
PopulationSize 50 Population 20
EliteCount 4 Cl1, C2 2
Generations 100 Iterations 140
SelectionFcn @selectionroulette Initial inertia 0.9
CrossoverFcn @crossoverintermediate,0.5 Final inertia 0.4
Table 2. Synthetlc materials. GA vs PSO. AR15: Complex Relative Permittivity - Real Part
22006 T . T T T T T T
Material e; e;, d(mm) | Freq. (GHz) * CA Redl Pat
i N S 0 I S O s L0 N7 |
AR2 5 0 2 8-12.4 :
AR3 10 0 2 8-12.4 22002 : : ; ; ; ; :
AR4 10 I 2 8-12.4 i
AR5 10 10 2 8-12.4 2.2 et
AR6 2 0 1 8-12.4
AR7 5 0 1 8-12.4 -~ 21998
ARS8 10 0 1 8-12.4 ET
AR9 10 1 1 8-12.4 = 21996
ARI10 10 10 1 8-12.4
AR11 2.45 0 0.796 8-12.4 2.1994
AR12 2.55 0 1.589 8-12.4
ARI3 2.01 0 1.539 8-12.4 2.1992
AR14 9.8 0 1.234 8-12.4
ARI15 2.2 5.2 1.2 8-12.4 2199}
] oe s Y 10 105 " e 12 12.5
f{GHz)
GA vs PS0O. AR15: Complex Relative Permittivity - Imaginary Part
52008 , . . v . ; ; :
f=1Re(T'1, u) — Re(LLiperarion)| + S IR
(T L, cuar) = (T Lo rarion)] - o0 b L T30 e

The output of both algorithms is excellent, as they can
match the desired real and imaginary parts of the complex
permittivity for all the cases at all the frequencies with
practically inexistent error. As an example, material AR15
is shown in Fig. 3.

To emulate the measurement error and evaluate its
influence in the determination of e;. and e;, the reflection
coefficient related to AR1S5 is contaminated with a gaus-
sian error (zero mean and a variance of 0.5 dB in modulus
and 0.1 in phase). The results obtained are nearly the same
for GA and PSO (Fig. 4), and the influence of this error
become clear, deriving in an incorrect estimation of €.

In the next step, a 20x20 cm real sample of Arlon©
CuClad 250GX-0620 55 11 is measured in the anechoic
chamber, and the reflection coefficient is treated with GA
and PSO to obtain the dielectric constant. The sample has
a thickness of d = 1.70 mm and the manufacturer asserts
that its nominal real part and loss tangent (tand = Z:/,')
are 2.55 and 0.0022 respectively, with minimum variations
over a wide frequency band'. Comparisons with results
obtained with the estimation presented in this paper are

IThe measurement method followed by Arlon® is the accepted
industry standard IPC TM-650 2.5.5.5, a stripline resonator test for
permittivity and loss tangent (dielectric constant and dissipation factor)
at X-Band-3/98

N mn T
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Fig. 3. Estimated real and imaginary part of AR15 for
GA and PSO.

shown in Fig. 5, proving that soft computing techniques
are a good and easy-to-implement alternative. This good
results are supported by the fact that the actual measure-
ment error is lower than the proposed for ARI1S5.

B. ANN

Different multilayer feed-forward backpropagation
networks are designed. All of them have four inputs and
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GAve PSO. AR1E with Gaussian Error (0.05dB / 0.17)

F30 - Keal
PRO - Imag
Agtual - Real
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Fig. 4. GA and PSO results for AR15 reflection coeffi-
cient contaminated with noise.

G vs P30, Cuclad 250 GX. d=1.70mm
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Fig. 5. Real part and loss tangent estimation with GA
and PSO of CuClad 250GX.

two outputs. The inputs are the real and imaginary parts of
the reflection coefficient, the frequency and the thickness
of the sample and the two outputs are the real and
imaginary parts of complex relative permittivity (Fig. 6).
For training, validation and test, a set of twenty synthetic
materials is used, where random values have been chosen:
e, € [1,10], €. € [0,10] and d € [0.5,2] mm. After
grouping the materials by frequency, 1/2 of data is used
for training, 1/4 for validation and 1/4 for test.
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Minmax normalization is applied for input and out-
put parameters and hyperbolic tangent sigmoid transfer
function (tansigq), linear transfer function (purelin)
and Levenberg-Marquardt backpropagation (trainlm)
are used as hidden layers activation function, output layer
activation function and training function respectively.

Different architectures have been tested, namely with
one hidden layer and 10, 15 or 20 neurons and with
two hidden layers with 20-10 neurons or 25-15 neurons.
Starting at a given value, increasing the number of layers
and neurons, the net follows better the training, test and
validation materials but fails in predicting new materials.

The best output is achieved for the one layer and 20
neurons case. In Fig. 7, it can be seen the training perfor-
mance for the materials used for test in this configuration.

Real () 3>

Imag (I") 3> ANN 2 Feal &)
Frequency 3> > Imag (€,)
Thickness 3 o

Fig. 6. Aurtificial neural network inputs and outputs.

Training Performance

Training-Blue ‘alidation-Green Test-Red

1o

0 10 20 30 40 50 60 70 80 90 100

Stop Training 100 Epochs

Fig. 7. Training Performance: 1 Layer and 20 neurons.

The result for AR15 material (table 2) without noise
is presented in Fig. 8 and with noise in Fig. 9. Figure 9
also shows the performance for the synthetic test material
ARPr (with dielectric constant e; = 6.52 e: = 2.22).
Simulations show that GA and PSO have better perfor-
mance than ANN except for the case of AR15 with noise.

The measurements made for Arlon©® CuClad 250GX-
0620 55 11 are introduced to the trained network and the
output obtained is presented in Fig. 12. GA and PSO
approaches show better performance also for the real
measurement.

At this point, the net is trained with the random
artificial materials but adding gaussian noise in phase
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ANN 1 Layer 10 Neurons: AR15 Complex Relative Permittivity
T T T

ANN 1 Layer 20 Neurons: AR15 Complex Relative Permittivity 55

i | ——ANN - Real

— ANN - Imaginary

5

—+— Actual - Real

— — Actual - Imaginary

T8 86 93 99 106 11.2 1.8
1= f (GHz)

Fig. 8. ANN applied to synthetic material AR15: 1 layer, ~ Fig. 10. ANN applied to synthetic material AR15: 1 layer,
20 neurons. 10 Neurons.

ARN - ARTS with Gaussian Eror (0.05 dBS0.17)

g T T T T T I ANN 1 Layer 10 Neurons: ARPr with Gaussian Error (0.05 dB/0.1°)
: : ; : *  ANN Real
= ANN Imag |
Actual - Real

Actual - Imag | |

0 I I I I I I
g 8.5 a L 10 10.5 " 1.5 12
Freq (GHz)
ANM ARPr+noise Train Without Noise 1Layer 20 Meurons
14 T T T T T I I
e 3 ; ; i * AN Real
e R i e i e s S *  AlNImag: Fig. 11. ANN applied to synthetic material ARPr+Noise:
; H Actual - Real
Actual=imag 1 layer, 10 Neurons.

and amplitude (with zero mean and 0.05dB and 0.1 of
variance) to the odd materials. Then, half of the training,
test and validation samples contains noise. In this case,
the adaptation of the net to the training materials is worse,
and the training error is higher. The best output is achieved
1 : : : : : : ; for the one layer and 10 neurons case. Figure 13, shows
L B i i i i i i the training performance for the materials used for test in

-4
8 &5 @ 95 10 @5 11 115 12 125 . .
Freq (GHz) this configuration.

The results for AR15 and ARPr+Noise can be seen in
Figs. 10 and 11. It can be appreciated that no improvement
has been reached with this training.

Fig. 9. ANN applied to contaminated synthetic material
ARI15 and ARPr: 1 layer, 20 neurons.
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AMM 1Layer 20 Meurons: CuClad 250 GX 55 d=1.7mm

I I
H H H || — AN - Real
P R S e hiiillbll| — N mag [
; ; ; i | ——Actual - Real

— — Actual - Imag

u™
2 | | | | | | |
f (GHz)
Fig. 12. ANN applied to measured Arlon©® CuClad

250GX-0620 55 11: 1 layer, 20 neurons.

. Training Performance
T T T T T

Training-Blue ‘Validation-Green Test-Red

.
0 10 20 30 40 50 60 70 80 90 100

100 Epochs

Stop Training

Fig. 13. Training Performance: 1 layer, 10 neurons.

VI. CONCLUSIONS AND FUTURE WORK

The application of soft computing techniques to di-
electric constant estimation via free-space measurements
has been presented. Results obtained are promising and
demonstrate the validity of this approach.

GA and PSO show better performance for actual
measurements if the error is not high. This approach can
be used for real tests. On the other hand, ANNs present
promising behavior in presence of high noise, although
further improvement is needed.

Future work must include the training of networks
with a set of actual measurements, and the experimenta-
tion with other architectures/topologies.
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