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Abstract – Efficient and accurate evaluation of the EM
field radiated by a current flowing along a wire is essential
to solve the electromagnetic coupling between arbitrary
oriented wires. In this paper, a numerically efficient
algorithm for the evaluation of coupling is presented.
The currents along the wires are expressed in terms of
local basis functions. The coupling between each two
expansion functions of different wires, using an exact
kernel and the Galerkin Method of Moments, requires an
integration over the mantle of the radiating element and
an integration over the mantle of the receiving element.
The computational cost for this2 × 2D integration is
reduced by an interpolation technique. In order to reduce
the number of evaluation points and to control accuracy,
the interpolation technique is applied to a function that
represents the difference between the electric field radi-
ated by a wire element and the analytically known point
dipole field. The proposed algorithm is implemented using
already available standard routines.

Keywords: Exact and reduced kernel, electromagnetic
scattering, Method of Moments, integral equation, fast
algorithms, and antennas.

I. INTRODUCTION

Consider the analysis of the electromagnetic coupling
between arbitrary oriented wires along which the currents
are expanded by means of basis functions. Applying the
Galerkin Method of Moments (MoM) [1], the computa-
tion of electromagnetic coupling between different wires
is based on the evaluation of the electric field radiated
by the current of a single wire expansion function over
the surface of the observation element (e.g. a segment
or two adjacent segments). This field induces a current
on all other wires, appointing therefore the mutual inter-
action. Efficient and accurate field evaluation is therefore
essential to solve electromagnetic coupling between wires
especially when wires are close to each other.

Focusing on the analysis of scattering from an arbi-
trary oriented wire, an Electric Field Integral Equation
(EFIE) known as Pocklington’s equation is solved by
applying the Galerkin MoM. The induced current and the
scattered fields are interrelated by a so called “kernel”.

Choosing the observation point on the central axis of the
wire results in the “reduced kernel” formulation, while
choosing the observation point on the mantle surface
results in the “exact kernel” [2, 3]. In particular the exact
kernel formulation provides more accurate results than the
reduced one for the analysis of thick wires (ka ≈ 0.1, be-
ing a the wire radius) [4, 5]. As a consequence, in order
to be consistent with the exact kernel formulation, the
evaluation of coupling matrices requires the calculation of
the field on the mantle of wires yielding the computation
of 2D integrals.

Even though efficient techniques are employed for the
computation of impedance matrix elements of a single
wire [4, 5], a computational burden is present when
coupling matrices have to be evaluated.

A similar computational bottleneck has been encoun-
tered in the analysis of electromagnetic scattering from3D
objects [6] where the time spent on calculation of matrix
elements is much more than solving the system matrix.
Furthermore when computing time-harmonic scattering
from 1D/2D large PEC objects, the computational com-
plexity is in the evaluation of fields produced by a given
current distribution [7, 8]. In all these cases, tabulationand
interpolation techniques have been investigated in order to
accelerate the evaluation of the problem solution and to
guarantee the required accuracy.

In a similar fashion this paper presents a novel,
efficient and accurate scheme well suited to accelerate
the computation of coupling matrix elements. The electric
field radiated by a current flowing along a wire element
can be adequately sampled on a non-uniform grid defined
in a way that is consistent with the field behavior [9]
and subsequently interpolated [10]. In order to further
accelerate the generation of coupling matrix elements
and to control the accuracy, an interpolation technique
is applied to a smoothed function obtained by subtracting
a properly chosen analytical term from the actual electric
field contribution.

II. FORMULATION

In this section, our attention is firstly focused on the
analysis of the current induced along a single wire by
an impressed voltage and/or by an incident plane wave.
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Secondly, an expression for the electric field radiated by
such induced current distribution is derived.

A. Single Wire

In free space consider a single PEC wire antenna
along the positivez axis fed by a voltage delta gap or/and
illuminated by an incident field. A cylindrical coordinate
system(ρ, ϕ, z) is introduced. The induced current along
the mantle satisfies the frequency domain electric field
integral equation (EFIE), well-known as Pocklington’s
equation [2],

(
∂2

z + k2
)

L∫

0

KE(z − z′, ω)I(z′, ω)dz′ =

−jωε
(
V (ω)δ(z − zg) + Ei

z(ziz, ω)
)

(1)

whereL is the wire length andKE(z − z′, ω) denotes
the exact kernel [4, 5]. Equation (1) is discretized by
applying the Galerkin Method of Moments [1]. Therefore,
a set ofN rooftop basis functionsψn(z) is defined with a
uniform mesh-size∆ = L/(N + 1) such that the current
distribution is approximated as,

I(z) ≈

N∑

n=1

Inψn(z). (2)

Next, by choosing the same type of rooftop functions
ψj(z), j = 1, . . . , N as testing functions, an inner prod-
uct is defined and applied on both sides of equation (1).
Thus, equation (1) is discretized as,

Z I = Fe (3)

whereZ denotes aN×N symmetric Toeplitz matrix, and
theN -dimensional vectorsI, Fe represent the unknown
current distribution vector and the weighted forcing exci-
tation vector due to external sources, respectively.

The general expression of the electric field as a
function of the magnetic vector potential is here recalled,

E =
1

jωε

(
k2

A + ∇ (∇ · A)
)

(4)

A(r) = iz

L∫

z′=0

I(z′)

2πa

2π∫

ϕ′=0

exp (−jkR)

4πR
adϕ′dz′, (5)

and then employed in order to find the electric field
radiated by a straight wire. In equation (5),R = |r − r

′|
denotes the distance between the source pointr

′ on the
wire mantle and the observation pointr where the field
is computed. In particular, since the current is expanded
in terms ofN rooftop basis functionsψn(z), the radiated
electric field can be expressed as a sum ofN separate
electric field contributions,

E(r) =

N∑

n=1

InEn(r). (6)

The elementary fieldEn represents the field radiated
by the current of then-th basis function (i.e., two adjacent
segments). This field is explicitly formulated as,

En(r) =
1

jωε

1

8π2

(n+1)∆∫

z′=(n−1)∆

ψn(z′)

2π∫

ϕ′=0

exp(−jkR)

R3
×

{
−

[
(jkR)2 + jkR+ 1

]
iz +

[
(jkR)2

+ 3jkR+ 3]
(r − r

′)

R

(z − z′)

R

}
dϕ′dz′. (7)

Note the double integration that follows from con-
sidering the electric current flow on the surface of the
wire.

B. Mutual Coupling

As a simplification, without loss of generality, the
mutual coupling between two wires in the configuration
depicted in Fig. 1 is here discussed.

wire 1

wire 2

z′

z

Fig. 1. Wires geometry.

Consider two perfectly conducting wires, wire1 and
wire 2, with their own local coordinate systems. External
sources are present (i.e., voltage delta gap or/and incident
field). The currents are approximated by means ofN1 and
N2 rooftop basis functions defined onN1 +1 andN2 +1
segments, respectively. It is noted that a wire element is
formed by two adjacent wire segments which represent
the support of an expansion function. Henceforth, then-
th basis function of wire2 and them-th testing function
of wire 1 will be referred to asn-th source (or radiating)
and m-th observation element. In this environment, an
induced current of then-th basis functionψn of wire 2,
radiates an elementary electric fieldEn(r) as in (7). This
field impinges on wire1 and induces a current along each
of its segments. To describe the mutual coupling, the total
incident field on them-th observation element of wire1
is written as the sum of two parts,

E
(1)
m (r) = E

(1)
ext(r) +

N2∑

n=1

E
(1,2)
n (r). (8)

The first term on the right-hand side of equation (8)
denotes the field due to external sources. The summation
represents the field induced on wire1 by the current
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flowing along all the source elements of wire2. It is noted
that wire1 and wire2 can be interchanged without losing
validity of the approach.

By applying the Galerkin MoM procedure to this
problem, the system matrix equationZI = Fe, is ele-
gantly extended as follows

[
Z

1 −C
1,2

−C
2,1

Z
2

][
I
1

I
2

]
=

[
F

1
e

F
2
e

]
(9)

in which each forcing vector on the right-hand side repre-
sents the weighted field of external origin. The diagonal
“self matrices” Z

1, Z
2, represent the interaction be-

tween elements of the same wire, while, the off-diagonal
“coupling matrices”C1,2, C

2,1, describe the interaction
between elements of different wires.

In a similar fashion equation (9) can be expanded to
a generic number ofP arbitrary oriented wires by using,




Z
1 −C

1,2 . . . −C
1,P

−C
2,1

Z
2 . . . −C

2,P

...
...

...
...

−C
P,1 −C

P,2 . . . −Z
P







I
1

I
2

...

I
P



=




F
1
e

F
2
e

...

F
P
e



. (10)

III. EFFICIENT EVALUATION OF MATRIX
ELEMENTS

Elements of self matrices and the known excitation
vectors are efficiently evaluated as explained in [4]. Our
attention is focused on the computation of coupling matrix
elements. Each one of them involves the evaluation of two
times a double integral. Consider the(m,n)-th element of
matrix C

1,2. It represents the mutual interaction between
the field radiated by a current flowing along elementn
of wire 2 and them-th element of wire1. A first double
integration has to be carried out to evaluate the fieldE

(2)
n

radiated by a current distribution along then-th source
element of wire2, (see equation (7)). An additional double
integral has to be computed to determine the mutual
interaction between this field and the induced current
distribution along them-th observation element of wire
1. This kind of straightforward calculation is a time-
consuming process since many integrals are involved. To
simplify the notation, then-th radiating element is placed
in the center of a cylindrical coordinate system(ρ′, ϕ′, z′)
as shown in Fig. 2.

Noting that the electric fieldE(2)
n is rotationally

symmetric, the observation region of then-th source
element can be defined in a plane(ρ′, z′) with ρ′ > 0
by ρmin, ρmax, zmin, zmax, as depicted in Fig. 2. This
region contains the projection of the mantle of them-th
observation element of wire1.

zmin zmax

ρmin

ρmax

z′

ρ′

n-th element

m-th element

Fig. 2. Interpolation area defined to evaluate the electro-
magnetic interaction between two wire elements.

A. Interpolation technique

Instead of carrying out the straightforward double
integration in equation (7), the fieldE(2)

n is computed on a
discrete grid of points within the observation region and
is subsequently interpolated. For this purpose, we have
investigated tabulation and interpolation techniques for
the evaluation of the radiated electric field in order to ac-
celerate the computation of coupling matrix elements, [6].
Even though uniform and random sampling algorithms
have been explored, the most efficient technique in choos-
ing points is by sampling the radiated electric field in a
way that follows the behavior of the field. The proposed
algorithm is developed based on the following three ideas:

1) An interpolation technique is applied to reduce the
number of points where the radiated electric field
is computed.

2) By making use of standard routines a set of points
on a non-uniform grid is generated and an interpola-
tion function is then defined. A numerical adaptive
multidimensional integration routine [9] has been
modified in order to generate a set of points used in
a subsequent interpolation step where a piecewise
polynomial surface is defined as interpolant func-
tion following the method proposed by Renka and
Cline [10] (routines E01SAF, E01SBF). In this way,
the integration routine will choose the distribution
of points according to the behavior of the fieldE

(2)
n

which is to be interpolated.
3) By subtracting the analytically known point dipole

field from the elementary electric fieldE(2)
n and by

applying the interpolation technique to this differ-
ence, the efficiency of the method is improved for
a fixed accuracy.

In order to accelerate the generation of coupling matri-
ces, further efficiency is expected by observing that the
function to be interpolated is relatively smooth. This term
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should be quick to evaluate and resemble the (far) field
of then-th radiating element. A function differenceD(2)

n

is defined as the difference of the fieldE(2)
n and the

electric fieldE
(p) radiated by a point dipole placed in the

origin of the coordinate system. FunctionE(p) behaves
asymptotically (i.e., forR → ∞) asE

(2)
n and is singular

when the distanceR vanishes,

E
(p)(r) =

1

jωε

∆1

4π

exp(−jkR)

R3

{
−

[
(jkR)2 + jkR

+1] iz +
[
(jkR)2 + 3jkR+ 3

] rz

R2

}
. (11)

Thanks to these properties, the resulting func-
tion D

(2)
n = E

(2)
n − E

(p) has a behavior considerably
smoother thanE(2)

n and is therefore interpolated in a
numerically easier way with a higher accuracy. The flow
chart in Fig. 3 shows the fundamental steps of the
proposed algorithm. Our numerical scheme begins by
setting a desired accuracyε with which the elementary
radiated electric field of equation (7) has to be evaluated.
While the adaptive routine [9] integrates numerically the
function differenceD(2)

n , choosing points(ρ′i, z
′

i) in the
observation region[ρmin, ρmax] × [zmin, zmax] following
the behavior of this function, the implemented scheme
gathers the firstNa points {(ρ′i, z

′

i)}
Na

i=1. Next, on this
non-uniform set ofNa points an interpolated function
D̃

(2)
n is defined by using a NAG routine [10]. To examine

the obtained accuracy of̃D(2)
n compared toD(2)

n and
normalized to the incident fieldE(2)

n , a relative error̃ε
has been defined as,

ε̃ =
|D

(2)
n − D̃

(2)
n |

|E
(2)
n |

. (12)

The proposed algorithm calculates the errorε̃ in Ne

points and terminates if̃ε ≤ ε. If the error condition is not
met, extraNa points are added via the integration routine
to the previously defined set. An interpolant function is
determined on this new grid ofNa + Na points and
the error ε̃ is subsequently calculated. Until the error
condition is met, the algorithm keeps addingNa points.
Finally, the approximated value of the radiated field is
computed as follows,

Ẽ
(2)
n = D̃

(2)
n + E

(p). (13)

It is worth mentioning that the computational effi-
ciency of the proposed algorithm is strictly related to
the numberNa and on the termination condition (i.e.,
the choice of theNe points). Based on our numerical
experience, we suggestNa to be in the order of ten and
1 ≤ Ne ≤ 4. TheNe points are chosen in anticipation of
the subsequentNa points by the implemented algorithm.

Fig. 3. Flow chart of the proposed numerical interpolation
algorithm.

IV. NUMERICAL RESULTS

To validate the method, three representative examples
containing mutually coupled wires are given. All simula-
tions were performed on an Intel Xeon platform running at
2 GHz with 3 GB of RAM. First, the case of two parallel
thin wires of lengthL = λ/2 and radiusa = λ/1000,
placed at a distanced, is considered. Both wires are
subdivided inN + 1 segments andN rooftop functions
are defined. A desired accuracy ofε = 10−3 is used.
The computational time required for evaluating the system
matrix Z by the straightforward double2D integration
and by the interpolation method is compared by varying
the distanced and the number of expansion functionsN .
As can be observed in Table 1, the interpolation method
greatly reduces the CPU time needed to calculate the
impedance matrix even in case of a coarse discretization,
(e.g.N = 10). When the two wires are close to each
other (e.g.d ≤ 0.1λ) the computational time reduction
can be appreciated only by refining the segmentation. As
a matter of fact at small distances the function difference
Dn may not be as smooth as when the distances are larger
since the source fieldEn differs from the point dipole
field E

(p). Moreover, the maximum relative errorεc on
coupling elements is defined as,

εc = max

{
|Cm,n − C̃m,n|

|Cm,n|

}N

m,n=1

(14)

and evaluated as the distanced and the number of expan-
sion functionsN vary (see Table 1). Coupling valueCm,n

represents the value computed with the integration method
while C̃m,n is computed with the proposed interpolation
method.

The number of field evaluations using the straight
forward 2D integration and using the interpolation
method is also analyzed. Fig. 4 shows how the number
of evaluationsNp required for the computation of
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Table 1. Computational cost analysis and maximum rel-
ative error on coupling elements of two parallel thin wires
ka ≈ 0.006 by varying the distanced and the number of
expansion functionsN . Desired accuracyε = 10−3.

d [λ] CPU Time ratio

(2 × 2D Int) : (Interp)

N = 68 N = 34 N = 10

1 10.12 : 1 10.09 : 1 7.00 : 1

0.5 10.14 : 1 9.34 : 1 5.00 : 1

0.3 8.72 : 1 7.45 : 1 3.28 : 1

0.1 5.31 : 1 1.32 : 1 0.046 : 1

d [λ] εc = max

{
|Cm,n − C̃m,n|

|Cm,n|

}N

m,n=1

N = 68 N = 34 N = 10

1 4.958 · 10−13 2.000 · 10−11 1.952 · 10−9

0.5 4.058 · 10−12 1.673 · 10−10 1.221 · 10−8

0.3 7.767 · 10−11 3.094 · 10−9 1.662 · 10−6

0.1 2.114 · 10−6 4.290 · 10−5 9.628 · 10−5

coupling matrixC1,2 varies as a function of the desired
accuracy ε for the configuration depicted above of
two parallel thin wires at a distanced/λ = 0.5 and
discretized with35 segments. Fig. 4 shows that the total
number of evaluations for the interpolation method is
usually far less than for the integration, resulting in a
considerable reduction of computation time. Fig. 4 also
shows that increasing the accuracy in computing the
electric field corresponds to an increase in the number
of field evaluationsNp. This increment is much smaller
when the double integration is carried out than when the
interpolation is applied.

Second, we compare the computational time together
with the relative errorεc on coupling elementsCm,n for
the case of two parallel mutually coupled thick wires. In
this caseL = λ/2, the radiusa = λ/60, and the wires
are equally discretized withN + 1 segments. A desired
accuracy ofε = 10−3 is defined. Table 2 again shows
how the proposed method enhances efficiency in the
computation of coupling matrix elements even for thick
wires.

Finally, two arbitrary oriented thin wires with
L1 = λ/2, L2 = 0.2236λ and radiusa1 = a2 = λ/1000
are analyzed. The first wire has end points
r1 = (0.3, 0.3, 0.5)λ and r2 = (0.3, 0.3, 1.0)λ, while the
second wire has end pointsr3 = (0.3, 0.7, 0.5)λ and
r4 = (0.3, 0.8, 0.7)λ. Again the CPU time comparison
is carried out for different segmentations with a desired
ε = 10−3. Note that minimum and maximum distances
between the two wires aredmin = 0.4λ, dmax = 0.64λ,
respectively. Results for this case are shown in Table 3.
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Fig. 4. Number of evaluationsNp versus the desired
accuracyε for two parallel thin wires of lengthL = λ/2
and radiusa = λ/1000 placed at a distanced/λ = 0.5
and discretized with35 segments.

Table 2. Computational cost analysis and maximum rela-
tive error on coupling elements of two parallel thick wires
ka ≈ 0.105 by varying the distanced and the number of
expansion functionsN . Desired accuracyε = 10−3.

d [λ] CPU Time ratio

(2 × 2D Int) : (Interp)

N = 50 N = 20

1 10.13 : 1 9.29 : 1

0.5 10.11 : 1 8.49 : 1

0.3 8.37 : 1 8.04 : 1

0.1 0.12 : 1 0.18 : 1

d [λ] εc = max

{
|Cm,n − C̃m,n|

|Cm,n|

}N

m,n=1

N = 50 N = 20

1 2.726 · 10−9 1.086 · 10−9

0.5 1.141 · 10−8 1.383 · 10−9

0.3 1.043 · 10−7 1.920 · 10−8

0.1 2.396 · 10−5 5.201 · 10−5

Table 3. Computational cost analysis of two arbitrarily
oriented thin wireska ≈ 0.006, by varying the number
of expansion functionsN . Desired accuracyε = 10−3.

N CPU Time ratio

(2 × 2D Int) : (Interp)

68 10.83 : 1

34 10.83 : 1

10 7.07 : 1

V. CONCLUSION

A numerically efficient interpolation algorithm for
the calculation of the coupling matrix elements has been
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presented. Within a prescribed accuracy, coupling ma-
trix elements can be computed more efficiently than by
straightforward double integrations. This method is devel-
oped based on three main ideas elucidated in Sec. III-A.

Numerical examples show that the proposed algo-
rithm results in a reduction of the CPU time of typically
a factor 7. When the distance between the source and the
observation element is small compared to the wavelength
(e.g.d ≤ 0.1λ) the smoothness of the function difference
deteriorates and the advantages of the algorithm are lost.
This is mainly due to the different behavior of the point
dipole field and the field radiated by a source element
in the near-field region. In this case the straightforward
double integration may be more efficient than the inter-
polation technique.

When designing antennas to be installed on conduct-
ing surfaces, optimization routines can be used to properly
select the best configuration. In this case, the proposed
basic concept can be used to gain efficiency in the
optimization process, drastically reducing the filling time
of the wire-surface coupling matrices. Research towards
the feasibility of this application is pursued.
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