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Abstract─ We present a numerically efficient 
technique, called the Characteristic Basis Function 
Method (CBFM), for computing the scan 
impedances of antenna elements located inside an 
electrically large subarray, which is surrounded by 
(many) other actively phase-steered subarrays. We 
construct a reduced moment matrix for a single 
subarray, and modify its entries in a manner that 
accounts for the mutual coupling between the 
surrounding subarrays. This enables us to 
circumvent the difficult problem of having to deal 
with the entire large array geometry in one step 
and reduces the total solve time significantly. 
Furthermore, the reduced moment matrix can be 
constructed in a time-efficient manner by 
exploiting the translation symmetry between pairs 
of Characteristic Basis Functions (CBFs). 
However, since we propose an overlapping 
domain decomposition technique for arrays of 
electrically interconnected antenna elements, 
symmetry can only be exploited if the mesh 
partitioning facilitates a one-to-one mapping of 
CBFs. To fully utilize the translation symmetry, a 
strategy has been developed to mesh the structure 
and to take advantage of this geometrical property. 
A numerical example is presented for a large array 
of subarrays of Tapered Slot Antennas (TSAs). 

The proposed method has good accuracy, 
excellent numerical efficiency, and reduced 
memory storage requirement. 
  
Index Terms─ Characteristic Basis Function 
Method, Moment Methods, Scan Impedance, 
Tapered Slot Antennas, Square Kilometre Array. 
 

I. INTRODUCTION 
The Square Kilometer Array (SKA) project is a 

world-wide project to design and construct a 
revolutionary new radio telescope with a 
collecting area which is on the order of 1 million 
square meters in the wavelength range from 3 m to 
1 cm [1–3]. It will have receiver sensitivity orders 
of magnitude higher than the current radio 
telescopes in operation, and an unprecedented 
large instantaneous field-of-view (FOV). The 
Netherlands institute for radio astronomy 
(ASTRON) is engaged in the development of   the 
aperture array concept, by designing and 
examining small-scale prototype arrays, thereby 
demonstrating the feasibility of the instrument [4]. 
Concurrently, the knowledge gained from the 
SKA design studies is being used to realize cost-
effective solutions for inexpensive fabrication of 
the instrument [5]. An electromagnetic field 
simulation is required at each step to analyze the 
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antenna impedance and radiation characteristics, 
which, in turn, facilitates the evaluation of the 
potentials of various array technologies [6, 7]. 

In some of these studies it is vitally important to 
accurately analyze electrically large – but finite – 
array antenna problems and associated truncation 
effects. Given the electrical size and geometrical 
complexity of such structures, the numerical 
analysis presents a severe computational burden 
when only limited computing resources are 
available [8]. In order to mitigate the 
computational burden, a vast number of 
numerically efficient techniques have been 
developed over the last few decades. 

In the present paper, we only provide a brief 
overview of the literature relevant to the approach 
employed in this paper, namely, iteration-free 
integral-equation techniques. Moreover, while 
focusing in this paper on the challenging case of 
large arrays of strongly coupled TSAs, we point 
out that the radiation and scattering characteristics 
of such arrays have been considered by others as 
well. Much work has been performed on the edge 
truncation effects and the efficient computation of 
embedded element patterns and element 
impedances by the authors of [9], both in the time 
and the frequency domain. Furthermore, in [10], 
the Finite Element Method has been combined 
with an Integral-Equation technique (FEM-IE) to 
iteratively solve for the fields in TSA arrays that 
involve dielectric materials. 

In this paper, we present an integral-equation-
based technique, called CBFM, which enhances 
the conventional method of moments by 
compressing the moment matrix such that the 
resultant reduced matrix equation can be solved in 
an iterative-free manner, and simultaneously for 
multiple right-hand sides (MRHS) [11, 12]. The 
above compression is achieved by employing 
macro basis functions, which themselves are 
constructed as fixed combinations (aggregations) 
of subsectional basis functions [13, 14]. Hence; 
these macro domain functions can conform to 
arbitrarily shaped geometries, provided that the 
underlying subsectional basis functions also 
satisfy this geometrical property. An additional 
advantage in using these macro domain functions 
is that existing computer codes that employ 
subsectional basis functions can be reused with 
only minor modifications. Furthermore, in CBFM, 
the entire computational domain is subdivided into 

smaller subdomains, each of them supporting a set 
of numerically generated macro basis functions, 
referred to herein as CBFs. The inherent advantage 
of such a domain decomposition technique is that 
many algorithmic steps involved can be carried 
out in parallel, on supercomputers or on platforms 
with multiple processors [15]. Furthermore, the 
modular setting of a domain decomposition 
technique enables one to analyze/optimize the 
entire structure at minimal cost by only 
reconsidering the domains that have been altered 
[16]. 

The concept of reducing the matrix equation by 
employing numerically generated macro basis 
functions, and decomposing the problem into 
smaller problems, has also been widely exploited 
in other recently developed iterative-free methods 
for solving large-scale problems. For instance, the 
Synthetic-Functions Approach (SFX) [17, 18], the 
Sub-Entire-Domain Basis Function Method (SED) 
[19], the eigencurrent approach [20], and a 
subdomain multilevel approach [21]. Although the 
above methods all have similar objectives, namely 
to reduce the matrix equation and to solve it in an 
iterative-free manner, the differences between 
these methods can be considerable. For example, 
within the framework of each of these methods, a 
variety of techniques have been proposed to 
numerically generate the macro basis functions. 
Among these, it is possible to distinguish between 
two categories, namely the overlapping and non-
overlapping domain decomposition techniques. 
Furthermore, different methods have been 
proposed to ensure that the surface current at the 
interfaces between adjacent domains are smoothly 
varying functions without the presence of 
truncation effects [17, 22]. Obviously, the 
accuracies of the aforementioned iterative-free 
methods depend upon the type of domain 
decomposition employed. In each of these 
methods, several techniques have been proposed 
to arrive at a computationally efficient 
implementation. 

For electrically large problems, the overall 
solution time of CBFM is governed by the time it 
takes to construct the reduced matrix equation, as 
opposed to solving it. The construction of the 
reduced matrix involves the calculation of reaction 
integrals between pairs of CBFs, for many of 
which the computation time can be reduced 
significantly, especially for those that are well-
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separated. Various acceleration techniques have 
been proposed to reduce the matrix construction 
time, including; multipole approaches [23, 24]; the 
Adaptive Cross Approximation (ACA) technique 
[25]; a multi-level decomposition approach [26]; 
and the Adaptive Integration Method (AIM) [27]. 
These methods all rely on the fact that the electric 
field, generated by a macro basis function, is a 
relatively smoothly varying function over the 
support of the macro test function. Obviously, the 
electric field function becomes increasingly 
smoother over the support of the macro test 
function, for increasingly large separation 
distances. Hence, for electrically large antenna and 
scattering problems, many of the reduced matrix 
entries (CBF reactions) can be computed rapidly. 
     In addition to these acceleration techniques, the 
reciprocity theorem is often used to compute only 
the upper triangular part of the reduced matrix, 
and this saves approximately a factor of two in the 
total fill time. More importantly, and also for array 
antennas with electrically interconnected antenna 
elements, a significant degree of translation 
symmetry exists when the elements are positioned 
on a uniform grid. This can be understood by 
realizing that many reactions between (groups of) 
CBFs are replicated elsewhere in the array. Thus, 
even though the moment matrix may not have a 
full block Toeplitz symmetry, many entries (even 
blocks) of the reduced matrix are identical and, 
hence, can simply be copied during the matrix 
construction process. Depending upon the array 
geometry, the computational complexity of the 
matrix filling may even be of linear order. 

The structure of this paper is as follows. First, 
we provide a brief description of the CBFM and 
the steps that are involved in the process of 
generating a reduced matrix equation, as well as 
the CBFs for antenna-type problems. Second, we 
focus on an overlapping domain decomposition 
technique and describe a strategy for meshing a 
large array structure efficiently to optimally 
exploit the translation symmetry between the 
CBFs. Third, in accordance with the SKA concept 
of using disjoint phased-array tiles, we outline an 
approximate technique for an efficient solution for 
the computation of the scan impedance of antenna 
elements, located within an electrically large 
subarray and surrounded by (many) other actively 
phase-steered subarrays. Results will be presented 
for a 576 TSA element array, which is subject to 

several different scanning scenarios, showing that 
the proposed approximate method is first-order 
accurate for these types of problems and therefore 
represents a viable alternative to a full CBFM 
solution. The significant savings realized in 
memory and computation time will be described. 
 

II. OUTLINE OF CBFM 
A. Domain Decomposition and Matrix 
Equation Reduction 

Let S denote the perfectly conducting surface of 
an antenna array. In CBFM, we subdivide the 
entire domain S into N smaller subdomains. N is 
typically chosen to be equal to the number of 
antenna elements. If the nth subdomain is denoted 
by Sn, then 

∪
N

n
nSS

1=

= .          (1) 

Since we propose an overlapping domain 
decomposition technique, ∩ 0≠qp SS , in general, 
for { }Nqp ,,2,1, …∈ . However, in our approach, 
we require that Sp and Sq overlap only if the 
corresponding antenna elements p and q are 
electrically interconnected. Furthermore, the 
overlap is restricted to the adjacent antenna 
element only. Each subdomain Sn is geometrically 
represented by an adequate number of triangular 
patches that are subsequently grouped into pairs to 
form the Rao-Wilton-Glisson (RWG) vector basis 
functions used to represent the surface current 
distribution [28]. Note that as subdomains overlap, 
some triangular patches, as well as the 
corresponding RWG basis functions, are common 
to multiple subdomains. Let Nn denote the number 
of RWG basis functions on the nth subdomain Sn. 
Typically, Nn is chosen to be at least 10 
RWGs/wavelength in order to achieve a high 
phase accuracy of the final surface current 
solution. Moreover, Nn may be governed by tiny 
geometrical details that need to be represented 
with sufficient accuracy. Also, let the nth 
subdomain Sn support a set of Kn CBFs, each of 
which is expanded using the Nn RWG basis 
functions. The generation of these CBFs is 
discussed in Sec. II B. Furthermore, let nJ be a 
column-augmented matrix, whose kn

th column 
vector represents the RWG expansion coefficients 
of the kn

th CBF on the nth subdomain. Then, if the 
uncompressed matrix block RWG

pqZ  represents the 
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mutual reaction matrix between the source and test 
RWGs belonging to domains q and p, respectively, 
the reduced matrix block CBF

pqZ is readily computed 
as 

q
RWG
pq

T
p

CBF
pq JZJZ ,= ,     (2) 

where T denotes the transposition operator, and 
⋅⋅,  denotes a symmetric product. Note that the 

size of the reduced matrix block CBF
pqZ  is Kp × Kq, 

whereas the uncompressed matrix block RWG
pqZ  is 

of size Np × Nq. 
     Similarly, if the uncompressed RWG excitation 
vector for the pth subdomain is denoted by RWG

pV , 

and its size is Np × 1 (single excitation), the 
reduced excitation vector CBF

pV  is of size Kp × 1, 
and is computed by evaluating 

RWG
p

T
p

CBF
p VJV ,= .     (3) 

Finally, after constructing all the reduced 
matrix blocks, as well as the reduced excitation 
vectors for all subdomains, we obtain a reduced 
matrix equation that has the form 

CBFCBFCBF VIZ = ,  (4) 
which can be solved directly for the unknown CBF 
expansion coefficient vector CBFI , in an iteration-
free manner, provided that the size of CBFZ  is 
sufficiently small. In fact, depending upon the type 
of problem and required solution accuracy, the 
size of vector CBFI  can be a factor 50-500 smaller 
than RWGI . 
 
B. Generation and Windowing of CBFs 

A rather attractive feature of the physics-based 
CBFM is the way CBFs are generated. We will 
briefly describe this procedure for an overlapping 
domain decomposition approach, applied to 
antenna array problems. The details can be found 
in several previously published works [12, 22] and 
[25]. 

For large antenna array problems, we first 
extract several distinct and relatively small 
subarrays from the fully meshed array, typically 
from the center, corners and edges of the array. 
The subarray sizes are chosen such that the direct 
electromagnetic environment for the center, corner 
and edge elements of the corresponding subarrays 
closely resemble their original electromagnetic 
array environment. For instance, Fig. 1b illustrates 
two subarrays that are extracted from a 4 × 3 × 2 

dual-polarized Vivaldi array1. These two subarrays 
represent a corner and center element along with 
their interconnected neighboring elements, 
respectively.

Subarray
Extraction

CBF
Windowing

CBF
Mapping

a

b

c

d

 
Fig. 1.  Approach to generate and window primary 
CBFs. (i) Subarray extraction and generation of primary 
CBFs, (ii) Trapezoidal post-windowing of CBFs, (iii) 
One-to-one mapping of CBFs throughout the array 
lattice. 

 
Next, we solve for a set of surface currents 

induced in each of the subarrays, by sequentially 
exciting the antenna terminals of the 
corresponding subarray (Fig. 1b). Hence, for our 
example, 4 primary CBFs are generated for the 
subarray comprising the corner element, and 7 
primary CBFs for the subarray comprising the 
center element. 

                                                 
1 4 elements in the E-plane, 3 elements in the H-plane, 
and 2 polarizations. 
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Next, we apply a (trapezoidal) post-windowing 
function to the sets of primary CBFs to suppress 
the undesired edge-truncation effects by reducing 
the support of the so-generated primary CBFs 
(Fig. 1c). In essence, the RWG expansion 
coefficients making up the CBFs are post-
multiplied with suitable weights. Note that the 
partially overlapping windowing functions have to 
add up to unity, so that the tapered CBFs add up in 
a correct manner as well, particularly in the 
overlapping regions. In our specific example (Fig. 
1), the support extends to one-half of the 
neighboring elements, though this can be changed 
in a manner discussed in [22]. For instance, in 
[25], very good accuracy has been realized with 
only a one-cell overlap. 

Finally, the set of CBFs are mapped, one-to-
one, onto the corresponding edge and center 
elements so that each array-element/subdomain 
will have its own set of CBFs (Fig. 1d). Note that 
for our example, 6 subarrays have to be extracted 
in total so as to accommodate CBFs on all the 
array elements (3 subarrays per polarization, i.e., 2 
subarrays for the opposite edge elements, and 1 for 
a center element). 

The number of CBFs on array elements can be 
enlarged in order to model surface currents on 
array elements that can have a large degree of 
freedom, namely, by appending a set of 
secondarily generated CBFs to the already existing 
set of primary CBFs [12]. This is accomplished by 
taking the primary CBFs as distant current sources 
to the subarrays, which then induce extra surface 
currents on these subarrays after which these 
newly generated currents are truncated/windowed 
again and added to the primary set of CBFs. 

Regarding the generation of CBFs, it is 
instructive to consider how the CBFs differ from 
eigencurrents employed in the eigencurrent 
approach [20]. In CBFM, the induced surface 
current on each subarray is computed for a certain 
excitation vector V  by solving the corresponding 
matrix equation VZI =  for the unknown RWG 
expansion coefficient vector I . The complex 
symmetric moment matrix TZZ =  is assumed to 
be nondefective and diagonalizable by its 
eigenvectors. Hence, an eigenvalue decomposition 
of Z  exists and is herein expressed through the 
block factorization 

1−= UDUZ ,   (4) 

where the nth diagonal entry nν of diagonal matrix 
D  is the nth eigenvalue of Z , and where the nth 
column nu  of U  is the nth eigenvector of Z . 
Hence, the unknown coefficient vector I  can be 
expressed in terms of the eigenvectors u , 
eigenvalues ν , and excitation vector V  as 

1

1 ,
N

n n
n nν=

=∑I u V u .              (5) 

     In the eigencurrent approach [20], the 
eigencurrents u  of Z  are used as macro-domain 
basis functions. Essentially, the set of 
eigencurrents forms a fingerprint of the physical 
structure and simultaneously forms a complete 
orthonormal basis for the currents that can exist on 
this structure. Accurate solutions have been 
obtained for arrays of disconnected antenna 
elements, by using only an (incomplete) subset of 
u . However, this reduced orthonormal basis does 
not include information about the port position of 
the antenna element or excitation field applied to 
the actual problem, and therefore will, in general, 
not lead to the most optimal/smallest basis. On the 
contrary, in CBFM, a representative excitation 
field V  is applied to each subarray to generate 
CBFs, implying that we identify the left-hand-side 
of (5) as a basis. This can be advantageous, 
because when an antenna port of a subarray is 
excited, the induced surface current (and thus the 
CBF) naturally accounts for a possibly 
asymmetrical port position, and may therefore 
represent the final surface current quite well even 
when we employ only a limited number of the 
above macro-domain basis functions. However, 
one major drawback in generating macro basis 
functions in this manner is that these CBFs will 
not be mutually orthogonal in general. As a 
remedy, one would need to orthonormalize the 
CBFs, and retain only a minimal number of them. 
This can both be accomplished with the aid of a 
Singular Value Decomposition (SVD) and a 
thresholding procedure on its singular values [29, 
30]. 

 
III. EXPLOITING TRANSLATION 

SYMMETRY 
Once each (extended) subdomain supports a set 

of CBFs, the reduced moment matrix can be 
constructed efficiently by exploiting the 
translation symmetry. As an example, Fig. 2 
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graphically exemplifies that the reduced matrix 
block CBF

pqZ  equals CBF
qp 1;1 ++Z , because  both blocks 

represent reactions between identical, though 
translated, set of CBFs. 

qJ

qS pS

1+qS 1+pS

pJ

1+qJ
1+pJ

pqZ

1;1 ++ qpZ

a

b

 
Fig. 2.  Construction of identical reduced matrix blocks 

CBF
pqZ  and CBF

qp 1;1 ++Z . 

 
Therefore, 

CBF
qpq

RWG
pq

T
p

CBF
pq 1;1, ++== ZJZJZ , (6) 

provided that the extended subdomain Sq (Fig. 
2a), that supports a set of source CBFs, maps 
one-to-one onto the one-element translated 
subdomain Sq+1 (Fig. 2b). Furthermore, the 
testing CBFs supported by the subdomain Sp 
have to map one-to-one onto the subdomain 
Sp+1 when the same translation vector is used. 
However, this requires a consistent 
triangulation as well as a consistent 
partitioning of the RWGs of all subdomains 
(and thus array elements) as further clarified 
with the aid of Fig. 3. 
 

A. Array Meshing Method 
The entire array mesh can be efficiently 

constructed from a few elementary meshed array 
elements, called the base elements. The geometry 
of each base element is discretized by a number of 
polygonal facets of which the outlines are 
described by a set of boundary nodes. Figure 3 
(Step I) shows a discretized TSA base element 
comprising of 3 polygonal surfaces (two tapered 
fins and one tiny port polygon across the slotline), 
where the polygonal boundary nodes are 
designated by (red) dots. Every polygonal facet is 
supplied by a non-uniform grid of internal nodes 
and subsequently triangulated (in a 2-D plane) 

using a Delaunay meshing routine [31, 32]. The 
internal grid is distributed such that the elementary 
triangles are very nearly equilateral. Subsequently, 
nodes and triangles are added along the boundaries 
to ensure that the triangulations will be consistent 
with those of the electrically interconnected 
adjacent elements when these base elements are 
placed in the array environment. Next, triangulated 
base elements are equipped with the RWGs. Step I 
(Fig. 3) shows a possible RWG polarity 
distribution, visualized by vectors that join the 
common edges of each pair of triangles to form an 
RWG. 

I

II

III

IV

Connection Line of RWGs

Discretized Base Element

Base Element Copying

r1 r2 r3 r4 r5 r6 r7

Final Discretized Array

Recursive Mapping onto 6 Connection Lines

 
Fig. 3.  Efficient and consistent meshing of the antenna 
array structure to fully exploit translation symmetry. 
 

Step II illustrates a one-to-one replication of the 
discretized base element at array element locations 
r1…r7. Note that, at this stage, the RWGs ensuring 
the electrical connection between array elements 
have not yet been defined. This is accomplished in 
Step III, where the triangles along a connection 
line are separately equipped with RWGs and 
subsequently mapped (recursively) onto the 
various corresponding connection lines that 
remain to be equipped with RWGs. For this 
purpose, we utilize the array symmetry as detailed 
in the next section. A pseudo code of the 
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recursive-mapping algorithm is included in App. 
A using Matlab’s notation. 

Finally, a full meshing of the array geometry 
(Step IV) facilitates a one-to-one mapping of the 
CBFs, even though each supporting subdomain 
extends beyond the outer boundaries of an array 
element, as shown in Fig. 2. 

 
B. Array Symmetry Extraction Method 

For the full array geometry, the degree of 
translation symmetry between pairs of 
subdomains, each of which supports a set of CBFs, 
can be determined as explained below. Following 
the generation of the boundary nodes for the array 
in a manner shown in Fig. 3 of Step-II where we 
replicate the boundary nodes of the base 
element(s) at their respective array positions, we 
can determine which array elements are 
electrically interconnected. Furthermore, when 
using multiple base elements, such as in the case 
of dual-polarized arrays, one can also keep track 
of the type of base element that is interconnected. 
Let the element interconnection and the 
corresponding base element type be stored in two 
separate matrices. Then, for our example, using 
only one type of base element (Fig. 3), we have: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

067
756
645
534
423
312
021

   and   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

011
111
111
111
111
111
011

 

where the first rows of the left- and right-hand 
matrices indicate that element-1 is connected to 
element-2, and that they are both base elements of 
type-1 (ignore the zero entries). 

Also, for each array element, one can determine 
the relative positions of the electrically 
interconnected elements surrounding it. Upon 
comparing the groups of relative position vectors 
in conjunction with the corresponding base 
element types (rows of second matrix), one can 
readily determine which subdomains (and 
therefore corresponding set of CBFs) are identical. 
For our example, subdomains {2, 3, 4, 5, 6}; {1}; 
and {7} form 3 unique groups. As explained in 
Section II B, we need to only generate one set of 
CBFs per unique subdomain, in this case for 
subdomains 1, 7 and 4, where subdomain 4 is 

chosen from the first group as the most centralized 
element. Elements 1, 7 and 4 are extracted from 
the fully meshed array, together with their 
neighboring array elements (within a specified 
radius), to form the resulting three subarrays that 
are used to generate the CBFs. Note that, after 
windowing these CBFs, the CBFs supported by 
subdomain 4 are mapped onto the subdomains 2, 
3, 5 and 6. 

After determining the unique subdomains (1, 4 
and 7), from which the CBFs are mapped, we also 
compute the relative element array position 
vectors between all the array elements and store 
these in a matrix form. For our example, we have 

1 1

1 2

1 3

7 5

7 6

7 7

1 1
1 4
1 4

,
7 4
7 4
7 7

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

r r
r r
r r

r r
r r
r r

# # #

 

where the first column holds the 49 relative array 
position vectors between element pairs, and the 
last two columns denote the corresponding two 
array elements that support the same set of CBFs 
from which they were initially mapped, namely 
either 1, 4 or 7. By comparing the rows, one can 
readily determine which element/subdomain pairs 
are identical in terms of the sets of CBFs 
supported by them (last two columns), as well as 
their mutual orientation and separation distance 
(first column). Upon selecting the unique rows, the 
minimal number of impedance matrix blocks that 
need to be filled can be determined (out of the 49 
possible combinations). For convenience, we 
create a new matrix showing how the reduced 
matrix is built-up from only a limited number of 
unique matrix blocks. For our example, the 
structure of the 7x7 block matrix is: 
 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

18
178
1698
151098
14111098
1312111098
7654321

 

 

Subdomain # 1   2   3   4   5   6   7 
1
2
3
4
5
6
7 
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where only 18 out of 49 non-redundant mutual 
impedance blocks have been identified, since we 
also exploited reciprocity (only the upper 
triangular part of the matrix is required). Note that, 
for this example, the matrix entry 11 denotes that 
the reactions between the CBFs supported by 
subdomains 2 and 5 are identical to the reactions 
between the CBFs supported by subdomains 3 and 
6, as we can verify by using Fig. 3. 

In summary, symmetry can be exploited for 
arrays of electrically interconnected elements to 
reduce the complexity of the matrix filling 
process. For the present example (Fig. 3), the 
computational complexity becomes linear when 
the symmetry is exploited. 

Furthermore, symmetry can also be used to 
efficiently compute the array far-field pattern 
function totf  by expanding totf  in terms of M 
known CBF far-field patterns CBFf  as follows (see 
also [23]): 

),(),(
1

ϕθϕθ ∑
=

=
M

m

CBF
m

CBF
m

tot I ff ,        (7) 

where CBF
mI  is the mth expansion coefficient for 

the mth CBF. The coefficient vector CBFI  is 
computed via the CBFM for a certain array 
excitation. Because many of the subdomains 
support the same set of CBFs, the respective CBF 
patterns are identical as well, apart from a phase 
correction due to their translated position. For 
instance, we can write 

),(ˆ, ϕθrrff pqjkCBF
q

CBF
p e−= ,   (8) 

where the pth CBF pattern is derived from the qth 

one by accounting for the translation vector pqr . 
The unit vector ),(ˆ ϕθr  denotes the direction of 
observation, and k the free-space wavenumber of 
the medium. Note that, for our example (Fig. 3), 
we only need to explicitly compute the CBF 
patterns for the sets of CBFs supported only by the 
subdomains 1, 4 and 7. The remaining CBF 
patterns are obtained simply via translation. 
 

IV. ARRAYS OF ELECTRICALLY 
LARGE SUBARRAYS 

A rigorous full-wave analysis of phased arrays, 
each of them surrounded by a number of other 
disjoint actively phased-steered arrays, becomes 
computationally prohibitive for a large number of 
electrically large subarrays. Despite the fact that 

the computational complexity of solving the 
matrix equation can be reduced by a large factor 
by employing a relatively small number of CBFs, 
the numerical analysis of a much larger array of 
subarrays will inevitably pose a computational 
burden, along with an increase in the number of 
unknowns beyond a certain point. Conventional 
infinite array approaches may be accurate and fast 
for an extremely large array of subarrays, although 
the subarrays have to be electrically small and 
positioned over a uniform (possibly skewed) 
rectangular lattice. 

In the method proposed herein, the CBFM is 
used to construct a reduced moment matrix for 
only one of the subarrays, and the matrix entries 
are modified so as to account for the mutual 
coupling by using the characterization of the 
actively phase-steered surrounding subarrays. 
Towards this end, we enforce the final surface 
current solution to be identical on every subarray, 
apart from a phase difference depending on the 
scan angle and position vector of a subarray, 
whereas within each subarray, surface currents 
may differ per element. 

Computing the fields in a given region of a 
periodic structure, while assuming that they are 
identical in other regions is a perturbation 
approach, has also been exploited by Skrivervik 
and Mosig [33, 34]. The first exposes a spectral-
domain approach, the latter shows a spatial-
domain approach. In its implementation, the latter 
is closer to the approach considered in this paper; 
the main difference being that in the Skrivervik 
and Mosig papers, the region referred to above is 
one (microstrip) antenna, while in this paper, it 
corresponds to a sub-array. 

Basically, the CBFM is used at antenna element 
level, whereas an infinite array approach is used at 
subarray level. The concept of combining infinite 
array approaches with macro-domain basis-
functions have been examined before in similar 
methods, e.g., in [35] and [36]. 

The use of an infinite array assumption at the 
subarray level obviates the need to solve for all the 
subarrays at once, and reduces the total solve-time 
significantly. Obviously, such an approximate 
method is exact for infinite arrays of mutually 
coupled subarrays, as well as for finite arrays of 
non-coupled subarrays (isolated subarrays), or for 
mutually coupled subarrays where the end-effects 
of bordering subarrays do not disrupt the 
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impedance characteristics of the subarray under 
study. Hence, for a finite and all-excited array, the 
active mutual coupling (or active mutual scan 
impedance) between the subarrays is one of the 
primary factors that determines the approximation 
error of the proposed method. Generally, the 
accuracy of the approximate method depends upon 
the scan angle, number of surrounding subarrays, 
the electrical distance between the subarrays, the 
electrical size of a subarray, and the type of the 
antenna element. 

Let us refer to Fig. 4, in which we depict the 
scheme for computing the scan impedance matrix 
of the six antenna elements that comprise the 
central subarray. Basically, the scan impedance 
matrix is obtained by adding the phase-shifted 
coupling impedance matrices of the surrounding 
subarrays to the array impedance matrix of the 
central subarray. 

As we impose the condition that the final 
surface current solutions among the various 
subarrays be identical, except for a phase shift, we 
are led to conclude that the corresponding CBF 
expansion coefficients have to be equal, though 
phase shifted as well. Figure 4a illustrates how the 
(active) reduced matrix block CBF

pqZ  is computed 
by testing the electric field, which is generated not 
only by the source CBF qJ , but also by the 
respective phase-shifted neighboring source CBFs 

φj
q eJ  and φj

q e −J  (coupling terms), where the 

phase shift φ  depends on both the scan direction 
),(ˆ ϕθr  and the relative position of the subarray 

w.r.t. the central subarray. 

qJ pJφj
qeJ φj

qe
−J

1+qJ 1+pJ φj
q e−+1J

qJ pJφj
peJ φj

pe
−J

φj
q e1+J

Scan direction

a

b

c

),(ˆ ϕθr

 
Fig. 4.  Reduced matrix construction for the central 
subarray while accounting for the coupling with the 
actively phase-steered surrounding subarrays. 

In the process of computing all the mutual 
reactions, the translation symmetry can again be 
exploited for fast construction of the CBFZ . This 
can be observed by comparing Fig. 4a to Fig. 4b 
(see also Sec. III), where an identical though one-
element translated reaction between the CBFs is 
visualized. 

Finally, for an off-broadside scan direction, one 
can easily verify that the active reduced matrix 
block ( )TCBF

qp
CBF
pq ZZ ≠ . This is depicted in Fig. 4c, 

where the source and test domains on the central 
subarray have been interchanged with respect to 
the domains shown in Fig. 4b. Consequently, the 
final active reduced matrix CBFZ  will be non-
symmetric; therefore, both the upper- and lower-
triangular part of the matrix must be computed, at 
least partially. 

 
V. NUMERICAL RESULTS 

The numerical accuracy and efficiency of the 
modified CBFM approach, relative to a direct 
CBFM approach, will be evaluated in this section 
for an array of disjoint subarrays of TSA elements. 
The anomalous antenna impedance effects, 
associated with the (resonant) gaps/slots between 
disjoint subarray tiles, have been reported in [37, 
38] and will therefore not be discussed in this 
paper. These gaps may need to be introduced for 
servicing purposes, so that, e.g., individual 
subarrays can be installed and/or removed as 
modular units. Furthermore, the transport and 
manufacturability of relatively small units may be 
advantageous. 

Unless specified otherwise, a threshold of 10-2 
is used both for the SVD procedure in CBFM, and 
in the Adaptive Cross Approximation Algorithm 
[25]. These parameter settings are chosen to be 
equal for both the direct and modified CBFM 
approach and we will exploit the translation 
symmetry for all the cases that are studied, which 
enables us to make relative comparisons. 

All the computations have been carried out by 
using double-precision arithmetic on a Dell 
Inspiron 9300 Notebook, equipped with an Intel 
Pentium-M processor operating at 1.73 GHz, and 
2.0 GB of RAM.  

The TSA element geometry has been adopted 
from [22] and [25], and serves here as a reference 
case for further study. 
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Fig. 5. Array of 9 subarrays (3x3), each of them composed of 64 TSA elements (8x8). To illustrate coupling 
effects, the active antennas within the central tile are excited by a voltage-gap generator placed over the slot of 
each TSA element. The central tile scans to broadside (end-fire direction), whereas the TSAs of the surrounding 
tiles are short-circuited. The magnitude of the surface current distribution is shown (log scale) as computed by a 
direct CBFM approach. 
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Fig. 6. (a) Scan reflection coefficient of the central element of the central subarray for broadside scan; (b) 
Average relative error of all the scan reflection coefficients of the central tile\subarray, for broadside scan; (c) 
Scan reflection coefficient of the central element of the central subarray for a 22.5 Deg E-plane scan; (d) Average 
relative error of all the scan reflection coefficients of the central tile\subarray, for a 22.5 Deg E-plane scan. 
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Time to build 
MoM blocks 

Total 
Execution Time 

9 Tiles 375192 4320 331776 8394 144 m. 29 s. 209 m. 25 s. 
1 Isolated Tile 41688 464 4096 294 3 m. 54 s. 11 m. 45 s. 
1 Tile + Coupling 41688 480 4096 294 8 m. 42 s. 16 m. 48 s. 
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Figure 5 illustrates an array of 9 TSA subarrays 
(3×3) for which a total of 375,192 RWG basis 
functions have been employed. We compute the 
antenna impedance matrix of the 576 TSA 
elements by using a direct CBFM approach, and 
then go on to derive the scan reflection coefficient 
for each TSA element (150Ω source-reference 
impedance). These scan reflection coefficients are 
taken as references for further comparison. It 
should be noted that the scan impedances (or scan 
reflection coefficients) are not only of interest for 
the characterization of transmit antennas, but can 
also be used to evaluate noise coupling in receive 
antennas [39, 40]. 

Let the scan reflection coefficient of the nth 
antenna element be denoted as scan

nΓ , and the total 
number of the central subarray elements be subN . 
Then, within the central subarray, the average 
relative error between the actual and approximated 
scan reflection coefficients can be defined as 

%100
|),(|

|),(),(|

2
00

,

2
00

,
00

,

×
Γ

Γ−Γ
=

∑

∑
sub

sub

N

n

refscan
n

N

n

approxscan
n

refscan
n

Error
ϕθ

ϕθϕθ , (9) 

where 0θ  and 0ϕ  designates the scan direction. For 
the sake of comparison, the error in the scan 
reflection coefficients has been computed for a 
single isolated subarray, as well as for a single 
subarray where we account for the coupling 
effects with the neighboring subarrays (Sec. IV). 
Figures 6a and 6c show the scan reflection 
coefficient of the central element of the central 
subarray, obtained by using the direct CBFM 
(reference solution). The same figures also plot the 
results obtained by using both the single isolated 
subarray configuration and the subarray 
configuration with coupling. The corresponding 
average relative errors for the two scan directions 
have been plotted in Figs. 6b and 6d as a function 
of the frequency for the reference case; the 
isolated array case; and, for the approximate 
method as proposed in this paper. 

As compared to the single isolated subarray 
case, the accuracy of the scan reflection 
coefficients is higher for the one-tile array with 
coupling, particularly for off-broadside scan 
directions. Obviously, a relatively good accuracy 
can be obtained for a solve time that is comparable 
to the time required to solve a single isolated 
subarray problem (~17 min. versus ~12 min.). The 

larger solve time is due to the overhead required to 
construct the reduced matrix while accounting for 
the coupling terms with neighboring subarrays. 
Despite this overhead, the overall solve time is 
about 12 times shorter than the total time required 
when we use the CBFM approach. 

 
VI. CONCLUSIONS AND 

FUTURE WORK 
In this paper we have outlined a strategy for 

meshing arrays of electrically interconnected 
antenna elements in a manner that optimally 
exploits the translation symmetry between the 
groups of Characteristic Basis/Testing Functions. 
As a consequence, the reduced matrix has a block 
Toeplitz structure and can therefore be constructed 
in a numerically efficient manner by realizing that 
many matrix blocks are identical and, hence, can 
be simply copied during the matrix generation 
process. The complexity of the matrix-filling 
process can be reduced to linear order, for 1-D 
arrays of interconnected single-polarized antennas, 
by exploiting the Toeplitz symmetry. 

In addition, an approximate method has been 
presented for computing the antenna scan 
impedances of elements within a subarray, which 
is surrounded by (many) disjoint phased-steered 
subarrays. The reduced matrix is constructed only 
for one of the subarrays, while the coupling 
between the adjacent subarrays is accounted for 
explicit in the process of constructing the reduced 
matrix. Numerical results have been shown for the 
central subarray of an array of 9 subarrays of 64 
tapered slot antennas each. It was shown that the 
scan reflection coefficients of a single isolated tile 
resemble those of a central tile which is 
surrounded by 8 phase-steered subarrays. 
However; a higher accuracy was obtained for the 
proposed approximate technique, where a single 
subarray has been considered while accounting for 
the coupling with the neighboring subarrays. As 
expected, the accuracy remains reasonably good 
(error is less than 10%) for off-broadside scan 
directions. The total solve time is approximately 
12 times faster than that of the direct CBFM 
approach, though the result has to be recomputed 
for each scan angle. It should be noted that the 
scan impedances (or scan reflection coefficients) 
are not only of interest for the characterization of 
transmit antennas, but can also be used in the 
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[ConnRWGList, rOffsetList]=MapRWGLine 
(rOffsetGlobal, ConnectionRWGs, rOffsetList, ConnRWGList) 

- Determine subdomains/elements attached to the 
connection line under consideration; 

for m=1:NumberOfAttachedSubDomains 
- Determine list of subdomains that are 
  equal to this mth attached subdomain; 

   for k=1:NumberOfEqualSubDomains 
-   Compute rel. pos. vector rOffset 
    between mth attached subdomain and kth  
    equal subdomain; 
-   rOffsetGlobalNew = rOffsetGlobal + 
                       rOffset; 
if rOffsetGlobalNew not in rOffsetList? 
 -   Append rOffsetGlobalNew to  
          rOffsetList; 
 -   Map ConnectionRWGs using rOffset,  
          yielding MappedRWGs; 
 -   Append MappedRWGs to ConnRWGList; 
 -   Call the recursive function: 

[ConnRWGList, rOffsetList]=MapRWGLine 
(rOffsetGlobalNew, MappedRWGs, 
rOffsetList, ConnRWGList) 

end 
 end 

end 
 

Recursive function MapRWGLine: 

evaluation of noise coupling in receive antennas 
[39, 40]. 

In this paper we enforce the condition that the 
final surface current solution be identical on each 
subarray, apart from a phase difference depending 
upon the scan angle and position vector of a 
subarray, though the surface currents may differ 
per element within each subarray. It is conjectured 
that the solution accuracy can be further increased 
by post-correcting the amplitude level of the 
initially computed solution of the current per 
subarray, while maintaining their shapes. For our 
example, we then have to solve a system of 9 
unknowns (per scan angle) in order to accurately 
synthesize the edge effects in current amplitudes 
of bordering subarrays. 

 
APPENDIX  

The mapping of the 6 consecutive connection 
lines of RWGs (Fig. 3, step III) is straightforward 
when we use the array symmetry as described in 
Sec. III B. For this procedure, a recursive mapping 
algorithm is employed, which has been developed 
and summarized below using a pseudo Matlab 
notation. 

Essentially, the main program is executed to 
construct a list of connection RWGs, termed 
ConnRWGList, which holds the final set of 
connection RWGs for all lines. To build this list, 
we first iterate over all RWG connection lines that 
have been identified (6 identical lines in Fig. 3, 
although, in general, many more lines may exist 
that are different from one another). During each 
iteration, we select a line that is free of RWGs, 
then equip this line with RWGs, and map this line 
onto the corresponding translated lines that are yet 
to be equipped with RWGs, and in a recursive 
manner by invoking the function MapRWGLine. 

 

 
The recursive function MapRWGLine (detailed 

on second last page) determines which 
subdomains are sharing the present RWG 

connection line at hand. We iterate over the 
pertaining subdomains and determine, for each 
subsequent subdomain, which other subdomains 
are equal, in the sense that they support the same 
set of CBFs. Within this first loop, we then also 
iterate over the equal subdomains and, during each 
iteration, compute the corresponding relative 
position vector of the corresponding identical 
subdomain. Within this second loop, we 
translate/map the RWG line under consideration 
using the same relative position vector, except if 
we have mapped this line to the same position 
before. After the mapping has been successfully 
completed, we recall the recursive function at this 
newly mapped position. 

The total recursion depth is approximately 
equal to the total number of maps that have to be 
made. When the procedure returns from the 
deepest recursion, most of the maps have been 
carried out so that the double loops within each 
recursion are not as time-demanding as one may 
think at a first glance, because identical maps are 
skipped. However, the double loop is required to 
ensure that one also maps the RWG connection 
line onto the left-hand-side of element 7 (Fig. 3) 
for instance, which is not obvious by only 
considering the identical subdomains that belong 
to subdomain 2. 
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Main program to build a list of all connection RWGs: 
ConnRWGList=[]; 
for n=1:NumberOfConnectionLines 
 if triangles along nth line without RWGs? 

- Equip these connection triangles with 
ConnectionRWGs; 

- rOffsetGlobal=rOffsetList=[0 0 0]; 
- Call recursive function: 

[ConnectionRWGs, rOffsetList]=MapRWGLine 
(rOffsetGlobal, ConnectionRWGs, rOffsetList, 
ConnRWGList); 

-  Append ConnectionRWGs to 
ConnRWGList; 

 end 
end
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