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Abstract ─  In this paper, KP method is applied to 
study the scattering of a 2D loaded crack on a 
ground plane, coated by a dielectric layer for TM 
case. For simplicity, the geometry is divided into 
three regions, whose fields are expressed in terms 
of Bessel eigen functions. The governing 
equations involve several infinite summations with 
infinite number of unknown coefficients. By the 
use of Weber-Schafheitlin discontinuous integrals, 
these infinite summations could efficiently be 
truncated with high numerical accuracy. Boundary 
conditions are applied to determine unknown 
coefficients. We employ finite element method 
(FEM) and convergence analysis to confirm our 
results. Finally, the influence of coating dielectric 
layer and filling material is investigated on the 
scattered field. 
 
Index Terms ─  2D coated crack, dielectric layer, 
Kobayashi and Nomura method, plane wave 
scattering, and Weber-Schafheitlin discontinuous 
integrals.  

 
I. INTRODUCTION 

An assessment of the surface cracks is a 
significant area under discussion in nondestructive 
testing and evaluation (NDT/NDE).  There are two 
main near-field category techniques reported by 
the engineering community for crack detection. 
These methods are based on waveguide techniques 
[1-3] and the resonator method [4-6]. These 

techniques are not applicable to the non-accessible 
cracks like those on boilers or blast furnaces, thus, 
far-field electromagnetic (EM) scattering 
measurement is recommended. 

The scattering from the rectangular crack can 
be approached in a variety of ways including the 
method of moment (MoM) [7], quasi-static 
approach [8, 9], approximate boundary conditions 
(ABC) [10, 11], Fourier spectrum analysis [12],  
finite element boundary integral method (FE-BI) 
[13], transparent boundary condition (TBC) [14], 
and overlapping T-block method [15-17]. 
Additionally, Morgan and Schwering utilized 
mode expansion scattering solution for wide 
rectangular cracks in 2D [18] and cavities in 3D 
[19]. Deek et al. extracted the natural frequency 
poles with matrix pencil method (MPM) for 
detecting cracks in buried pipes [20]. Bozorgi et 
al. reported a direct integral equation solver 
(DIES) method for determining the backscattering 
signatures of a crack in a metallic surface by 
omitting singularities in hyper singular integrals 
[21, 22]. Honarbakhsh et al. presented mesh free 
collocation method for 2D filled crack in infinite 
ground [23]. 

The Kobayashi potential (KP) is an analytical 
technique for solving mixed boundary problems 
and it has been applied to various EM scattering 
problems [24-32]. KP utilizes the discontinuity 
properties of Weber-Schafheitlin's integrals and is 
closely related to MoM approach. Some of the 
advantages of KP method are cited here. First, the 
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KP method is accurate and simple in the sense of 
not dealing with singularity of the Green's 
functions. Second, the solution converges rapidly 
due to the satisfaction of a part of the boundary 
condition by each basis function involved in the 
integrand [31].  

Hongo et al. used KP method to find 
scattering of EM spherical wave from a PEC disk 
[24]. Imran et al. utilized this method  to compute 
diffraction of plane wave from a perfectly 
electromagnetic conductor (PEMC) strip [25]. 
Sato et al. used KP method to analyze TM plane 
wave scattering by a 2D filled rectangular crack on 
a ground plane without any dielectric coating [26]. 
They applied KP method to two rectangular 
troughs on a ground plane [27] with a standard 
impedance boundary condition (SIBC) [28] and 
estimated the depth of the crack [29]. They also 
used KP method to model the propagation through 
slits array [30].  

In most cases, paint, primer, rust, and oil coat 
the corrosion (crack) and it cannot be visually 
detected. Near-field techniques for detecting 
cracks under paint were applied [1, 3] but a fast, 
accurate and rigorous method for analyzing the 
scattering signature of the coating crack with far-
field methods is in demand. Previously, EM plane 
wave scattering by a 2D rectangular gap in a PEC 
ground plane, coated by a dielectric layer was 
reported for TE case [32]. In this paper, the TM 
case of this problem is investigated. 

The paper is organized as follows. In section II 
the KP method is used to derive the governing 
field equations with unknown excitation 
coefficients and truncated unknown excitation 
coefficients are computed. The numerical results 
and validations are shown in section III. 
Conclusion remarks are provided in section IV. 

Here, the time harmonic factor tie  is assumed 
throughout the context. 

 
II. PROBLEM DISCRIPTION AND 

FORMULATION 
We assume a dielectric rectangular crack that 

is filled by a dielectric material and is coated by a 
dielectric slab. The cross section for the crack is 
2a  b and the height of the slab is yt as shown in 
Fig. 1. The relative permittivity and permeability 
of the filling material are r and r, respectively, 
and (1, 1) are of the coating material. The filling 

and the coating materials could be both lossy, 
meaning that r, r, 1, and 1 could be complex. 
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Fig. 1. Geometry of the filled rectangular crack 
underneath a coating layer in an infinite ground 
plane. 

 
The incident angle is 0 and the observation 

point is represented by  and  in the cylindrical 
coordinate system. Assuming   is the total 
electric field in a dielectric slab. The crack is filled 
by a material with relative permittivity and 
permeability of r and r, respectively. The 
relative permittivity and permeability of the slab 
are 1 and 1, respectively.  
 

A. Expansion of electromagnetic fields 
The geometry of the problem is divided into 

three regions, which are described as follows. 
 

Region I: Semi-infinite half space  tyy   

In this region the total z-component of the 
electric field is denoted by 

zi E1 which is, 

,11
srit                 (1)

where,  i and  r represent the incident and the 
reflected field, respectively. Additionally, S

1  
characterizes the scattering contribution of the 
crack in this region. The material in this region is 
free space (0, 0). 
 
Region II: Slab Region  0 yyt  

The total z-component of the electric field in 
this region is given by, 
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2 2 .t s                                       (2) 

Here,  is the total electric field in the dielectric 
slab and its calculation is given in the Appendix. 
Scattering contribution of the crack in this region 
is denoted by S

2 . 
  

Region III: Cavity Region  axyb  ,0  

This region is like a parallel plate waveguide. 
Therefore, the total field is expressed by a 
summation of waveguide modal eigenfunctions. 
Considering the boundary conditions at x =  a 

and y = b, t
3  is given by, 
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where  22
0 wnkh rrn    stands for the 

propagation constant of the nth parallel plate 
waveguide mode and Ln is the excitation 
coefficient inside cavity region. 
 

B. Applying KP method for scattering fields 
In this section, the scattering fields s

i (i = 1, 2) 

are derived by utilizing the KP method and the 
boundary conditions are applied to find the 
unknown coefficients. Since the scattering fields 

s
i (i = 1, 2) satisfy the homogeneous Helmholtz 

equation, they could be represented as an integral 
of the general solutions by using the separation of 
variables method [26]. Without loss of generality, 
all variables and parameters are normalized with 
respect to a as follows, 

0 1
0 1, , , , ,tyx y

u v k k t
a a a a a

 
        (4) 

therefore, 
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and 
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where, d(.), e(.), f(.), g(.), h(.), and k(.) denote the 

unknown weighting functions. It is notable that 
s

1 includes only the up-going wave, while s
2  

contains both up-going and down-going waves. 
Noting the relation between trigonometric and 
Bessel functions, 
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The weighting functions are expanded in term of 
the Bessel functions. Thus, 
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By substituting equations (8) and (9) into 
equations (5) and (6) we have, 
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     (11) 

In equations (10) and (11), all integrals are 
identified as a class of Weber-Schafheitlin 
integrals, which automatically satisfy the zero 
tangential electric field boundary condition on a 
part of the ground plane where 0,1  vu . 

 
C. Boundary conditions 

The unknown coefficients of the fields 
consisting of Dm, Em, Fm, Gm, Hm, Km, and Ln are 
determined by applying the boundary conditions. 
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The boundary conditions at the interface between 
regions I and II, where  tyytv  , are given by, 
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Also the boundary conditions at the interface 
between regions II and III, where  00  yv , are  
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By substituting equations (12) and (13) and 
equations (7) and (9) into equations (10) and (11) 
and after some mathematical manipulation, the 
following equations are derived,  
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where     bihe 2.1.  ,     bihe 2.1.  , Gc  
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These equations are solved by KP method and 
separated into odd and even groups in accordance 
with Euler's formula. One may end up with the 
following simultaneous equations. 
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:4.BC Even Identity: 
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:4.BC Odd Identity:   
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where  
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Equations (19) to (26) are eight sets of 
equations to be solved for eight sets of unknown 
coefficients Dm, Em, Fm, Gm, Hm, Km, L2k, L2k+1. In a 
cylindrical coordinate system where the 
observation point is represented by  and θ the far-
field scattering is [29], 
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The above summations are all convergent and 
therefore, n and m are limited to N and M, 
respectively. 

 
III. VALIDATION AND NUMERICAL 

RESULTS  
In this section different simulations for both 

filled and coated cracks are given. Two 
approaches are utilized for validation of this 
method. First, FEM calculates the equivalent 
magnetic current density |Mx| on the aperture for 
several incident angles. Second, for rigorous 
validation, convergence analysis is performed by 
changing the truncation numbers N and M [33]. 
Different cases of the simulations are listed in 
Table 1. 

A. Magnetic current density analysis 
 Referring to Fig. 1 and Table 1, in the case (a), 
the non-filled crack is coated by a dielectric layer 
with a complex permittivity and permeability, 
while in the case (b); the crack is additionally 
filled by a complex material. Figure 2 shows the 
equivalent magnetic current density distribution, 
|Mx| on the crack (|x| < a, y = 0) for various 
incident angles (0 = 15o, 30o, 45o, 60o, 75o, 90o). 
In this figure, truncation number of the series is 
assumed to be N, M = 14. Comparison of the 
results with the FEM solution demonstrates the 
accuracy of the method for all incident angles. We 
plot the electric field distribution, calculated by 
KP method, at normal incident angle for case (b) 
(see Fig. 3). As shown, the boundary conditions 
are satisfied at the edges of the crack (x / 0 =  1, 
y / 0 = 0), while the field maximum occurs near 
the slab layer (y / 0 = 1).  It can also be observed 
that the field values at y / 0 = 1 is equal to the 
black solid line in Fig. 2 where 0 = 90o. 

 

 
Table 1: Different scenarios of coated/filled 
cracks. 

 2a b r r 1 1 yt 

a 20 10 1 1 i1.0

2   
i1.0

4.1 
0/10 

b 20 10 
i2.0

5.2 
i1.0

8.1   
i1.0

2   
i1.0

4.1 
0/10 

c 0.50 0.20
i1.0

3   
i02.0

2.1   
i53.1

1.2   
i1.0

4.1 
0/6 

d 0.80 0.30
i03.0

7.2 
i1.0

8.1   
i53.1

33.5   
i1.0

4.1 
0/7 

e 0.90 0.50
i03.1

42.8 
i1.0

6.1   
i12.0

48.3   
i2.0

2.1 
0/5 

f 20

[26] 
10 

i2.0

5.2 
i1.0

8.1   
1 1 ‐‐‐ 

g 20 
[26] 

10  1  1  1  1  ‐‐‐ 

h 1.50 100 i12.0

48.3 

i02.0

2.1   
1 1 ‐‐‐ 

 
 

B. Convergence analysis 
For rigorous validation, the error analysis is 

carried out and the convergence curves are 
represented in Fig. 4 for various cases c, d, and e. 
The error function and Euclidean norm are 
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where xk denotes the position of the kth point on the 
crack and K represents the total number of the 
observation points. The results are calculated 
using K = 25 for all three cases.  

According to Fig. 4, the summations converge 
rapidly, such that for N and M close to 8~10, the 
error is equal to 10-1.7 = 0.02. This result is 
expectable due to the fact that Weber-Schafheitlin 
type integrals satisfy the boundary condition on 
the PEC (|x| > a, v = 0) automatically. The rapid 
convergence of the analytic method makes it 
desirable for efficient calculation of the scattered 
field in the inverse problems.  
 
C. Results 

In this section, we compute backscattered 
RCS, bistatic RCS, and far-field scattering patterns 
for several filled and coated cracks. We make 
comparisons with other computed results of the 
backscattered RCS for the simpler geometry, such 
as the case of no coating layer. Figure 5 shows the 
normalized backscattered RCS of cases f and g 
from Table 1 and compare the results of this 
method with those on [26]. A very good 
agreement is observed between these methods. 
Cases of coated layer with height yt = 0 / 3 and 
relative permittivity 1 = 3 + 0.1i and relative 
permeability 1 = 1.6 + 0.2i are also simulated. 
Black dash line and cyan dot line depict the results 
of proposed method for coated cases f and g, 
respectively. Observation shows that coating layer 
on the crack alters the RCS signature significantly.  

Figure 6 shows the variation of the normalized 
RCS versus observation angle for case g where the 
crack is coated by various materials. The crack is 
illuminated by an incident plane wave at 0 = 45o. 
Additionally, the depth of the dielectric layer is 
assumed yt = 0.6 0 for all of the coating layers. As 
shown the dielectric constant of the layer does not 
have a monotonic effect on RCS. Additionally, 
RCS drops down when very lossy material coats 
the crack (solid pink line with diamonds).  

Next, to show the validity of the proposed 
method for narrow cracks the normalized 
backscattering RCS of the case g is presented in 

Fig. 7. We also coat this case by a material with 1 
= 2.7 + 0.03i, 1 = 1.4 + 0.1i and the thickness of 
yt = 0/4.  
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Fig. 2. Magnetic current densities on the crack (|x| 
< a, y = 0) computed by the proposed method and 
FEM for cases a and b.  
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Fig. 3. Distribution of magnetic current density in 
the crack computed by the KP method for crack of 
case b. 
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Fig. 4. Convergence curves for cases c, d, and e.  
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Fig. 5. Normalized RCS as a function of incident 
angles for case e, and with a dielectric layer of 
case f. 
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Fig. 6. Normalized bistatic RCS of the crack 
versus observation angle for various coated 
dielectric materials of case g. 
 
 The variation of the normalized RCS versus the 
dielectric layer thickness for various permittivity 
and permeability are shown in Figs. 8 and 9, 
respectively. The parameters of the crack are w = 
0.2 0 and b = 0.2 0, also it is illuminated by 
normal plane wave. In addition, the cracks in all 
cases are filled by rust with r = 2.7 + 0.03i and r = 
1. As shown in Fig. 8 when the dielectric constant 
increases, normalized RCS almost increases. 
According to Figs. 8 and 9, by increasing the 
dielectric slab thickness RCS has oscillatory 
behaviour.  
 Next, the scattering far-field pattern for an 
empty and covered crack with w = b and 2ka = 15  
is shown in Fig. 10. We compare our results with 
those on [26] for non-coated crack. The crack is 
coated by a common paint with relative dielectric 
constant 1 = 3 + 0.1i and height of yt = 0.6 0 for 

plane-wave incident angle of 0 = 30o. Also, the 
crack is coated by a layer of salt  rust with relative 
dielectric of 1 = 5.33 + 1.53i height of yt = 0.5 0 
for plane-wave incident angle of 0 = 75o. 
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Fig. 7. Normalized backscattering RCS of the 
narrow crack of case h and this case with a 0 / 4 
dielectric layer of 1 = 2.7 + 0.03i and 1 = 1.4 + 
0.1i.  
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Fig. 8. Normalized RCS of the crack with w = 
0.20, b = 0.20 as a function of coating thickness 
for different permittivities.  
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Fig. 9. Normalized RCS of the crack with w = 
0.20, b = 0.20, r = 2.7 + 0.03i, r = 1 versus 
paint thickness for different permeabilities. 
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Fig. 10. Scattering far-field pattern for an empty 
crack where w = b and 2ka = 15. 
  

:  300  , 1,1 11   , Ref.[26], 

:  300  , 011 6.0,1,1.03   tyi , 

:  750  , 1,1 11   , Ref.[26], 

:  ,750
  011 5.0,1,53.133.5   tyi . 

 
 As shown a thin layer of lossy dielectric alters 
the scattering pattern significantly. The maximum 
scattering peak value occurs at the vicinity of the 
corresponding specular direction for both cases of 
incident angles. Finally, in Fig. 11, the scattering 
far-field pattern for a crack with w = b and 2ka = 5 
is shown. We compare our results with those on 
[26] for non-coated crack. Relative permittivity and 
relative permeability of r = 2.5 + 0.2i and r = 1.8 
+ 0.1i are used to fill the crack and Fe2O3 powder 
(Rust) with relative dielectric  constant 1 = 2.7 + 
0.03i and height of yt = 0.7 0 is utilized to cover 
the crack.  Additionally, the results are shown for 
two incident angles 0 = 15o, 60o. As shown in Fig. 
11, scattering pattern varies significantly even for a 
thin layer of coating layer. 
 

IV. CONCLUSION 
In this paper, we analyzed the EM plane wave 

scattering of a 2D rectangular filled and coated 
crack on a ground plane by the use of KP method 
for the TM case. The validation of the proposed 
method was accomplished by utilizing two 
techniques; consisting of FEM to investigate the 
equivalent magnetic current density on the 
aperture and the convergence analysis. The 
proposed method is shown to be accurate for both 
narrow and wide cracks and also is applicable to 
all lossy and lossless materials for filled and 
coated cracks. In addition, the sensitivity of RCS 

to permittivity, permeability, and thickness of the 
overlaying layer was presented. 
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Fig. 11. Scattering far-field pattern for a crack 
where w = b, 2ka = 5, yt = 0 / 7, and dielectric 
filled material characteristics are depicted in the 
figure legend 

:  150  , 1,1 11   , non-filled, Ref.[26], 

:  150  , 011 7.0,1,03.07.2   tyi , filled, 

:  600  , 1,1 11   , non-filled, Ref.[26], 

:  ,600
 011 7.0,1,03.07.2   tyi , filled. 
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APPENDIX  

STANDING WAVES IN THE SLAB 
A dielectric slab on an infinite PEC ground is 

shown in Fig. A. The height of the slab is yt and 
the relative permittivity and relative permeability 
of 1and 1, respectively are the material 
characterization of the slab. Here, 

0 0 0k     

and 
1 0 1 1k k   are respectively the free space and 

the dielectric slab wave numbers. The slab is 
illuminated by a TM polarized EM plane wave, 

   ,000 sincos  yxiki
z

i eE                             (A.1) 

and the reflected plane wave is, 

   ,Re 000 sincos  yxikr
z

r E                        (A.2) 

where, R is the reflection coefficient, 0 is the 
incident angle, t is the transmission angle. 
Assuming  is the total electric field in the 
dielectric slab. Therefore,  
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   ,cossinsin 111 xikyikyyik tttt eBeAe          (A.3) 
 

where A and B are unknown coefficients. The first 
term and the second term in (A.3) describe the 
down-going and the up-going wave, respectively. 
In order to find the aforementioned unknowns 
first, we note that the tangential electric field is 
zero over the PEC boundary (y = 0), thus, 

,sin1 ttyikAeB                                (A.4)

Second, imposing the continuity of the tangential 
field components Ez and Hx at y = yt yields,  
 

 

 
,

sin

sin
1

sin

sin
1

2

001

1sin2

001

1

sin

1

00


















 



k

k
e

k

k

e
A

tyikt

yik

tt

t

and 

 
 

(A.5) 
 

    

    

 ..

11
sin

sin

11
sin

sin

00

11

11

sin2

sin2sin2

001

1

sin2sin2

001

1












t

tttt

tttt

yik

yikyikt

yikyikt

e

ee
k

k

ee
k

k

R








 

 
 

(A.6) 
 

Thus, the electric field in dielectric slab can be 
expressed as, 

     .cossinsin 111 xikyyikyyik ttttt eeeA      
(A.7)

where A is given in equation (A.5). 
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Fig. A. Geometry of a dielectric slab on an infinite 
ground plane. 
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