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Abstract

We use the method of nested dissection to solve a 2.5D finite difference electromagnetic problem. This
method is considered in some detail, and we have found that the expected theoretical run time savings
over more common methods are realised in practice. The program has been used to model EM propagation
in coal seams with a view to detecting seam disruptions, which can cause a loss of production in longwall
mining operations. Various experimental results and a field survey are discussed and we are able to use
these results to construct a physically reasonable model which explains the field data. Some further
realistic geological structures are modelled and a comparison between our modelling program and several
independent methods shows satisfactory agreement.

1 Introduction

1.1 Kron (1955) proposed and demonstrated an approach to solving the equations for a network
which was too big to fit in its entirety onto the calculating machines then available: he divided
(‘tore’, hence the name ‘diakoptics’) it up into subnetworks which could be accommodated, solved
them and finally reconnected these sub-solutions to form a ‘junction network’. This was not sparse,
but had many fewer nodes than the original network and could be solved directly, using standard
algorithms. This procedure was further expounded and formalised by Savage and Kesavan (1980).
An approach to elimination ordering which appears to use similar ideas in a recursive fashion on
the matrix graph, entitled ‘nested dissection’ was presented in George (1973). This and subsequent
work (e.g. George, 1977) showed that this ordering is potentially considerably more efficient for
those matrices with the topology of 2- or 3- dimensional finite difference or finite element boundary
value problems than the standard row-by-row ordering which generates the familiar banded matrices.
However this technique appears to have been largely overlooked, presumably because of its relative
complexity in programming or uncertainty as to its stability in practice.

In this paper we demonstrate the application of these concepts from graph theory to the solution of
a practical problem in electromagnetic geophysics.

1.2 Modelling problems of geophysics generally deal with the response of a halfspace or wholespace
to some source field. The space may be uniform or made up of regions - horizontal layers or more
complicated geometries - having different physical properties representing different rock types or
conditions. The source may be a plane wave incident from above, or a multipole on, in or above
the halfspace or within a wholespace. Historically the problems arise in petroleum, mineral,
geothermal and groundwater exploration, or in design of dams, bridges and other structures.
Increasingly they arise in planning production from coal and metal mines, oil wells and in a variety
of environmental applications.
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To describe the degree of complexity of a particular structure it is useful to introduce fractional
dimensions. If the physical properties of a model vary in two dimensions and the source is a point
source, then the phase and amplitude of the fields will vary in three dimensions. In a sense, this
model lies between a 2D model with a line source, in which both fields and physical properties vary
in two dimensions only, and a full 3D model. We classify this as a 2.5D model. 2D, 2.5D and 3D
problems usually have to be attacked numerically, although a few important analytic solutions are
known.

One currently important problem is that of wave propagation in coal seams which are disturbed
geologically. As will be indicated, in many environments coals seams are relatively unusual in their
properties compared to the rocks above and below. They have much lower seismic velocities and
have much higher resistivities. Thus if they are undistorted by subsequent geological processes
they form natural waveguides. These are ideal for large scale automated mining (called ‘longwall’
mining) operations. A typical longwall operation in Australia produces $1M worth of coal in 3-4
days uninterrupted operation. However when the machinery encounters a geological irregularity
such as a fault orintrusive in the seam, coal production is lost, fora month or more, and the machinery,
costing upwards of $20M, can be damaged.

Disturbances in the seams disrupt their waveguide characteristics. They locally reduce elastic wave
velocities and, by allowing water to penetrate, reduce electrical resistivities. To detect such
irregularities in advance, elastic wave measurements have been used for 10-15 years with
considerable success, since the irregularities introduce scatterers into the otherwise simple elastic
waveguide. However such ‘in-seam seismic’ surveys tend to be slow and expensive, since holes
must be drilled to allow both sources and receivers to make direct physical contact with the coal.

More recently the use of medium frequency EM fields was introduced, for example in the paper by
Emslie and Lagace (1976) and the radio imaging method (RIM) of Stolarczyk (1986). These involve
horizontal magnetic dipoles consisting of small portable loops, or vertical electric dipoles, which
are equally portable. Neither requires physical contact with the rocks.

In both types of surveys it is often easier to make the measurements than to interpret them. 2D
modelling for the elastic wave problem was implemented several years ago (Drake et al, 1984,
Edwards et al, 1985), and is now used routinely. Modelling for the EM problem was begun more
recently. Publications include analytical solutions for unperturbed coal seams by Hill (1984, 1986),
numerical solutions for unperturbed seams (Shope et al, 1986; Shope, 1987; and Stolarczyk, 1986)
and numerical solutions for perturbed seams (Greenfield and Wu, 1988). A general description of
our numerical modelling results has been submitted for publication (Liu, et al. 1991).

To account for the complexity of geological structures it is sometimes desirable to carry out full 3D
modelling (Hohmann, 1988), but this is computationally expensive and often unnecessary. In this
paper we deal with the 2.5D finite difference problem, in which the source is a horizontal magnetic
dipole in the x-direction and the physical properties change in y and z but are invariant in x. (The
direction in which properties are invariant is known as the strike direction.) This was the geometry
used by Stoyer and Greenfield (1976). In particular we describe the use of Nested Dissection
(George, 1973) for more efficient inversion of the sparse matrices arising in the finite difference
formulation.

2 Physical properties and experimental results

There are few published values for the electromagnetic properties of coals, in part because there
are such a wide variety. These range from very low grade, peaty lignites (brown coal) hardly
distinguishable from garden loam, to high grade anthracite, which can be electrically conductive.
The coals of interest to us are medium grade bituminous, found throughout Eastern Australia but
also commonly in many other parts of the world. Laboratory measurements on wet specimens (as
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in nature) made at frequencies in the 0.1 - 1.0 MHz range give conductivities of 0.0001 to 0.001
S/m. Typical conductivities for the sedimentary beds above and below the coals range from 0.001
t0 0.3 S/m, so that in some exceptional situations the conductivity contrast does not support wave
guiding.

Coal seam thicknesses range from nil to more than 10 m, with 1 - 3 m being the most common for
coal mining.

coal coal
dyke
coal coal
+ +
transmitter recelver
coal dyke coal

Figure 2.1 Plan view of a survey configuration for Kemira Colliery, NSW (Hatherly,
1987). The transmitter and receiver are vertical coplanar loops and the measurements are
taken along a single mine roadway. The effect of the roadway may be neglected.

A typical survey configuration is shown in figure 2.1, while the results from this survey are shown
in figure 2.2 (Hatherly, 1987). Also included in figure 2.2 are computed amplitudes at 300 kHz, for
comparison with the survey data. The coal seam here is known to be 6 m thick. To fit the observed
attenuation rate, conductivities of rock and coal are 0.003 and 0.0003 S/m respectively. The
discontinuity in the model and the observed data near 75 m is due to an intrusive conductive dyke,
a 2 metre thick, near-vertical body of rock injected at high temperature. Where this comes in contact
with the coal, the latter is converted to highly conductive cinder, which reflects electromagnetic
energy and disrupts the waveguide. The intrusive rock itself is usually very hard and may or may
not be conductive, according to its water content. Intrusive dykes are a common occurrence in many
coal fields, so it is important that they can be detected well in advance of mining. It is the effects
of such features on electromagnetic signal propagation that we wish to predict.
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Figure 2.2 Comparison between computed values and field measurements for Kemira
Colliery, NSW, (Hatherly, 1987). The transmitter is fixed 72m to the left of the dyke as
the receiver moves away to the right.

3 Methods

The solution of the modelling problem outlined in the introduction requires the use of Maxwell’s

equations for the electromagnetic field quantities E and H. For an e'® time dependence these
equations are

VXE=-iouH+M,) (3.1)
VxH=0E+], , (3.2)

where M, and J, are magnetic and electrical source terms respectively and 0’ =6+ iwe.

Inmost of the classes of model encountered equations (3.1) and (3.2) cannot be solved using analytic
methods. Instead, the solution requires the finite difference, finite element or integral equation
approaches (Hohmann, 1988). As is well known, the finite difference and finite element methods
are computationally intensive, and the numerical burden increases rapidly with the size of the model
(i.e. the number of nodes). The system of linear equations which results from such modelling in the
frequency domain can be cast into the form of a standard sparse matrix inversion. This may be
accomplished either by direct factorization (Gaussian elimination) or by some kind of iterative
method. Although the latter can be relatively efficient for one-off solutions, the factorization comes
into its own in the context of some kinds of inversion. In particular, when the calculation of the
Fréchet partial derivatives may be achieved by repeated solution of the same matrix equation for a
variety of right hand sides the factorization option is very efficient and elegant (Jupp and Vozoff,
1977). It is similarly attractive for modelling the responses to several source configurations.
However, even while taking advantage of this efficiency in inversion of a small (11x9) 2-D grid,
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Jupp and Vozoff (1977) report that the factorization and subsequent solutions dominate the
requirements of their magnetotelluric inversion program, accountin g for 75% of the total CPU time.
Furthermore this percentage will increase with the number of points in the model mesh, whether it
remains two-dimensional or expands into the third, so an increase in the efficiency of inversion
would have an almost equal effect on the whole inversion.

In order to find solutions to equations (3.1) and (3.2) we select a right handed set of Cartesian axes
with the x-axis pointing in the strike direction and the z-axis vertically downwards. Following Stoyer
and Greenfield (1976) we take Fourier transforms of these equations along the x-axis. For E the
Fourier transform pair is

Bk, y,2)= f "E(x,y,2)e " dx (3.3)

E(x,y,2) =% f Ek,y,2)e ™ dk, (3.4)

with corresponding expressions for H. Assume that the source is a horizontal magnetic dipole in
the x-direction and substitute these results into equations (3.1) and (3.2). Then we find after some
calculation that the problem can be formulated in terms of the fqllowing two coupled second order

partial differential equations for E, and A »» the components of E and H in the strike direction:

A [‘7 A 5 . n
2 ( 1 aHx) a( 12 x)_ikx(a’fxﬂ_a’%%)wﬂy,=_9MM, (35)

oy "oy ) az\ 2 oz 9z dy 9y oz
d( 19 af 10k, oH, 3¢ OH, 3¢ .
N S k| —=——=_ = E_=- 3.6
ay(ZE dy ) az(zE 0z )“k’( 0z dy dy oz +9E =, 3.6)

where k> = —ioud’, Z = (1 - k2k?), 2E = oW1 - kZ7k?), o™ =iwp, 9% = o and E=k2-ky7",
In this way we reduce the problem to a 2D one for each value of k. Furthermore, the unknown

components £ and A, are continuous making it unnecessary to set up gradational boundaries at
conductivity discontinuities within the grid.

3.1 Finite Difference Scheme

Equations (3.5) are solved by using a 5-point difference scheme. The cross-section of the 2-D
geological model is represented by a rectangular grid, where the spacing of the nodes need not be
uniform. Values of A, and E, are computed at each node. We use an area discretization for the
parameters o, € and i by specifying their values for each rectangular element bounded by the grid
lines. These values are keptconstant within the element. Ata typical node (i,/) we integrate equations
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(3.5) and (3.6) over the area shown in figure 3.0. The integrals can be expressed as contour integrals
around the boundary in which only the normal derivatives of the fields arise and for which central
difference approximations can be used.

P Vi
v, v, A
G 4 -
G.J)
OV,

Figure 3.0 The figure shows 4 nodes surrounding a typical node (ij). V denotes either
H, or E,. Equations (3.5) and (3.6) are integrated over the rectangular area shown.

Foranm x n grid there are mn difference equations corresponding to equation (3.5) and mn difference
equations corresponding to equation (3.6). At a generic node, the difference equations are of the
form

4 ﬁxﬂ_ﬁxi Exi_éw N
R @
4 Ew_éxi ﬁxi_ﬁxﬂ \
2{ Z G }*ﬂw:s‘f ’ G8)

where the C; represent coupling terms.

The resulting 2mn equations can be written in a form having a block tridiagonal coefficient matrix
(see appendix), but will in fact be ordered for solution using the previously mentioned nested
dissection method which we describe in more detail below.
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It is necessary to keep grid spacing near the source to about one sixth of a skin depth. For general
purposes, grid spacings of 1 metre are maintained near the source and kept to 6 metres or less within
the area of interest. Towards the sides and top of the grid, spacings are rapidly increased away from
the area of interest. A plane wave terminal impedance boundary condition was found to be adequate
forall grid edges. In the coal seam waveguide mode the fields fall away rapidly as we move vertically

away from the coal seam so that typically we use a short, wide grid (30 x 80).

Having solved equations (3.5) and (3.6) for £, and H, using a number of k, values, we use equation
(3.4) to return to the space domain. In practice we found that for a 2 - 6 metre coal seam a choice
of k, = 0 together with 15 other values logarithmically spaced at 4 samples per decade was adequate
for frequencies in the range 200 - 700 kilohertz. By using appropriate symmetry or skew symmetry,
field values for negative , can be obtained. Intermediate values for the Fourier transforms of the
fields are approximated by a cubic spline which can be integrated to give the inverse transform.

3.2 Tearing Methods and Nested Dissection

The numerical solution of equations (3.5) and (3.6) will dominate the entire modelling program in
terms of CPU time and storage requirements for models of a useful size. This can be seen by
considering an nxn 2D gridpoint model: the effort to set up the equations and interpret the results
will typically increase linearly with the number of gridpoints i.e. as n®. A standard form of these
equations results from a row-by-row ordering of the nodes with the electric and magnetic equations
for each node taken consecutively; the matrix representation is then block tridiagonal with each
2nx2n off-diagonal block being 2x2 block diagonal and each 2nx2n diagonal block being block
tridiagonal. This would require about 8x* multig)lications to factorize by elimination and 4»* storage
locations for the factor i.e. between 4n* and 8n multiplications for each solution after factorisation
depending on the source location. Thus as n increases the proportion of the effort devoted to the
factorization and solutions of these equations will sooner or later be overwhelming. The absolute
requirements will also be very large, and will evcntually exceed the capabilities of any machine.
This problem is even more acute in 3D, where for an n° model factorization is O(n7) and storage
O(n’) for a the corresponding matrix. Clearly any reduction in the multiplication count and storage
requirements here may have a significant impact on the expected cost of running the program for
a given size, and conversely extend the range of effects which can be modelled within the constraints
of the available resources.

Figure 3.1 Schematic representation of the tearing of a network into four subnetworks.
The wavy lines indicate the positions of the tears and points of tearing define the nodes
of the resultant junction network.
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In 1955 Kron proposed a method for solving networks which were too large for solution by direct
application of conventional methods on the calculating machines then in use. This involved ‘tearing
up’ the network into subnetworks which could be directly solved, and then coupling these solutions
together to form a ‘junction network’ which is also small enough to be solved. To illustrate this,
consider the example of the schematic network shown in figure 3.1. By tearing along the wavy lines
shown, four subsystems are created, along with the topology of the junction network . These
subsystems are inverted separately, and their solutions reconnected at the points of tearing to form
the full junction network. This is a microcosm of the whole network in that it behaves exactly as
the original did at those points, but is of considerably reduced dimension. The key to this process
is the validity of the theory of Multi-Terminal Representations (MTRs) which was articulated by
Savage and Kesavan (1980) in their recapitulation and reformulation of Kron’s work. Although
they differ slightly in language and emphasis, the theory of MTRs is essentially equivalent to that
of Diakoptics, cf. Kesavan and Dueckman, (1982). The central postulate of this theory is that ‘an
n-terminal component (subsystem) can be characterized by (n-1) independent equations in (n-1)
pairs of complementary variables where these variables are specified by an oriented tree graph that
connects all the interconnection nodes’. That is, the response of any subsystem to stimuli at the
tearing points, as seen at these points, and so its effect on the remainder of the network, can be fully
described by a network involving only these nodes, no matter how complicated the ‘inner’ part of
the subsystem

/]
;

B
)
7

Figure 3.2 The graph of a subnetwork produced by tearing; in this case the boundary is
assumed to be completely defined by tearing so that the points where the network contacts
this boundary will become nodes of the multiterminal graph of the subnetwork.

For example the graph of a subsystem shown in figure 3.2 may be represented by the multi-terminal
graph of figure 3.3 after appropriate calculations have been performed to derive the network
equations for the new graph. Such MTG’s may then be connected, as shown in figure 3.4, to yield
a new representation of the entire network. The resultant system of equations is typically much
smaller (but less sparse) than the original (2n square rather than %), so that factorization is relatively
cheap (O(»®) rather than O(n*) ). This is only true for networks of relatively low connectivity, so
that the degree of each node is much less than the number of nodes; fortunately this condition is
satisfied in most physical applications, where direct interactions are purely local. The overall
numerical benefit of the tearing/reconnection procedure in our schematic example, if done carefully,
should be a reduction of about half in the leading order term of the multiplication count, albeit at
the cost of larger lower-order terms. Further reduction is in principle obtainable by finer tearing,
but the main computational benefits espoused by Kron (1955, 1963) may be summed up as the
flexibility conferred by the procedure. In particular one might solve several such networks with
common subnetworks connected in different configurations at little extra cost; repeated subnetworks
only need to be solved once, and to solve a network which is only different in one region from one
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previously solved may involve only the re-solution of the relevant subnetwork and the junction
network connecting it to the rest of the network. This latter fact may be of use in modelling when
examining the effect of changing the properties of a particular zone (cf. Brewitt-Taylor and Johns,
1978), or in corresponding styles of inversion. However Brewitt-Taylor and Johns encountered a
significant overhead in their initial modelling run; this was partly due to the fact that they did not
tear for numerical efficiency, and presumably also because of the organisational work involved in
setting up the matrices for solution, which Kron effectively performed by hand. Finally, an entire
network, having been solved diakoptically, may be taken as a subnetwork in a larger network, and
so on to the point where the full network would exceed the limits of the computer; this may be
relevant in 3-D modelling.

Kron and other advocates of diakoptic methods emphasize the distinction between tearing and matrix
partitioning. One aspect of this is the fact that the incidence/connection matrices, which correspond
in a sense to off-diagonal blocks, are purely topological. However the graphical representation of
matrices (see e.g. Bunch and Rose, 1974) enables one to point out the strong similarities: a symmetric
(Hermitian) matrix is represented by a graph with a node for each row/column and edges connecting
nodes corresponding to each pair of off-diagonal non-zero entries i.e. the graph contains an edge
between nodes i and j if the ijth (and so the jith) element of the matrix is non-zero. Therefore a
typical finite difference matrix for a rectangular region has a rectangular grid graph (see figure 3.5).

Figure 3.3 The multiterminal graph of the subnetwork in figure 3.2.

Partitioning the matrix then appears to effect something similar to tearing on the graph. The process
of Cholesky factorization of the matrix by Gaussian elimination is represented by sequentially
deleting each node and its incident edges and adding edges between remaining pairs of nodes which
were previously unconnected but mutually connected to the eliminated node (see figure 3.6). Then
the number of multiplications (or divisions) performed for the factorization is given by

My, = I d@d+1)
nodes

where d; is the degree of (number of edges incident on) the node at the time of its elimination; the
number of non-zero entries in the factor, which is equal to half the number of operations to solve
for a given right hand side after factorization, is

1
M, = X@d+1) .
2 nodes
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Figure 3.4 Part of a graph of a typical junction network, composed of the union of the
MTG’s of several subnetworks.

Figure 3.5 Graphical representation of a typical finite difference matrix.

The ds, and therefore the operation counts above, may be significantly affected by the elimination
order i.e. the permutation of the matrix (note that all permutations have the same initial graph).
Partitioning or pseudo-tearing may be accomplished by an appropriate ordering; in particular George
(1973) suggested an ordering which is at least near-optimal in terms of the factorization count, and
better than standard for storage: he reverse numbered the nodes in a series of separators, each of
which is a minimal set of nodes such that it divides the largest possible block of connected nodes
into two as nearly equally as possible. George entitled this process ‘nested dissection’ (ND), and it
may be continued until no more such divisions are possible (see figure 3.7); iteffectively corresponds
to the hierarchical building up of systems envisioned by Kron (see above). It results in a rather more
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Figure 3.6 Graphical representation of Gaussian elimination of a row/column from a
matrix: the corresponding node (circled) along with its incident edges (dashed) are
removed; new edges (dotted) between nodes which had incident edges eliminated and
were previously unconnected are added.

complicated matrix structure than that of the standard row-by-row ordering, somewhat similar to
the ‘orthogonal inverse’ of Kron (1955) (cf. George, 1977, figure 3.3). Of more immediate interest,
the leading order term in the estimated multiplication count for factorization is O(n*) and the storage
requirement for the factor, or multiplication count for solution is O(n*Inn). The constants multiplying
these leading order terms are quite large - George (1977) calculates about 10 for the factorization
and 8 for the storage for the more complex finite element problem - but the impact of this is mitigated
to some extent by significant lower order terms. In any case, as n increases we should observe
increasing efficiency in both factorization and storage relative to the row-by-row ordering.

Figure 3.7 Demonstration of the set of separators used for the nested dissection of a 7x7
grid (after George, 1977). The uncircled nodes are to be eliminated first and then the
encircled sets in order of increasing size.
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Because of the apparently guaranteed computational advantage even for a one-off calculation, and
lesser organizational complexity, a routine was written to perform factorization and/or solution of
the matrices arising from the finite difference analogs of equations (3.5) and (3.6) on rectangular
domains using the ND ordering. (The relative lack of flexibility of the kind inherent in the methods
of diakoptics and MTRs was not perceived to be important.) In fact the routine was adapted from
a similar one written for substitution into the magnetotelluric (MT) inversion program used by Jupp
and Vozoff (1977). The MT context was used to explore the problems of adapting the algorithm
from the relatively ‘clean’ world of numerical analysis, in which results seem to be proved for nice,
real, positive definite matrices. Here underlying stability is apparently ensured by the physics of
the problem, and the matrix is diagonally dominant, albeit non-Hermitian. However, the typical
range of over 10 orders of magnitude in the diagonal elements was initially problematic: this was
dealt with by factoring out the diagonal values, rescaling rows and columns as

P = CgoC ,

where

C = diag(\P;)

Thus, the problem of solving

Px = s
becomes that of solving
Qy = C's ,
where
y = Cx

and Q has ones down its diagonal.

This routine reduced the runtime of the MT inversion by about 35% for a model with » about 40
and in excess of 50% for n about 60 (note that the numbers of rows and columns used in the program
actually varies slightly with frequency, and are not equal in general). The results were essentially
identical, so it appeared that stability problems were no longer significant.

The routine was further adapted for use with the RIM modelling described in this paper. The finite
difference equations corresponding to (3.5) and (3.6) involve coupling between E and H values: by
ordering them so that the two equations pertaining to a given point are consecutive, the matrix has
the 2x2 block form of a single-variable finite difference problem. Therefore it is appropriate to use
a block-graphical representation in which each node represents two rows and columns for the E and
H values at each point and each edge a 2x2 off-diagonal non-zero matrix. This arrangement proved
successful: there were again no stability problems and significant runtime savings were recorded
despite the fact that the long, narrow shape of the models reduces the theoretical advantage of the
ND ordering over the bandwidth-minimising row-by-row one. Our original inversion routine used
the Greenfield algorithm (Greenfield, 1965), which is described in the appendix. The total time
involved in such a solution is proportional to nm’®, where n is the number of horizontal nodes and
m is the number of vertical nodes. For n and m equal to 31 the runtime saving using the nested
dissection method was around 50% and about 80% for n and m equal to 67. (Table 1).
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| Mauixsize | Time raio

31x31 1:2

40x60 1:4

67x%67 1:5
Table 1 The ratio of the time taken by the nested dissection method to that taken by the
Greenfield algorithm

In general, for an n x n grid the effort involved in factorisation increases asymptotically as n® for
nested dissection as against n' for the Greenfield method, and the effort for each solution after
factorisation goes as n’lnn and n® respectively. In each case the proportionate saving offered by
nested dissection increases with n, but the exact overall ratio will depend upon the number of nodes.

The method of nested dissection may also be applied to non-rectangular meshes (George and Liu,
1981), but require rather greater sophistication in programming than the routine used here.

4 Accuracy of the program

Results for a homogeneous space were tested against the analytic model and found to agree closely.

For example, with 6 =107 and source-receiver distances varying between 6 and 200 metres,
agreement to better than 1 db (over a total range of 73 db) was obtained at all points.

For a 1D (uniformly layered) space the results were compared with those of K-H Lee (personal
communication, 1986) whose program computes electromagnetic fields due to a dipole source
anywhere in a uniformly layered earth. Typical agreement was better than 5%. Results were also
compared against the analytic expression for the azimuthal component of the magnetic field given
by Delogne (1982) and also by Hill(1984); this expression assumes normal mode propagation
throughout the coal seam and so is not valid near the source. Beyond distances of the order of a few
tens of metres the computed and analytic results agreed to graphical accuracy.

Finally a comparison was made with a model discussed by Greenfield and Wu (1988). As discussed
below, agreement was quite satisfactory although the models were difficult to compare directly
because Greenfield and Wu used a line source.

5 Results

Numerous geological models were examined and will be the subject of a later paper. Two of these
models are considered in detail below. In both of these we have restricted ourselves to the case
where the source and receiver are coplanar loops.

The first model is of a 4m thick coal seam interrupted by a vertical dyke of width 2m. The dyke
was extended a distance of 1m above and below the coal seam. Conductivities were 0.0003 S/m for
the coal, 0.003 S/m for the host rock and 0.05 S/m for the dyke, dielectric constants were set equal
to unity and the frequency used was 300 kHz. This model was compared with results obtained for
the same model using two other independent methods (figure 5.1). Method 1 due to G. Liu (personal
communication, 1990) uses a line source rather than a dipole source. Method 2 uses a 3D model
(Liu, personal communication, 1990). In this case the dyke was 60m long, symmetrically placed
gbsout the plane of the dipole. The excess attenuation near the dyke in all three cases was about
.5db.
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Figure 5.1 Comparison of three different numerical models for a coal seam broken by a
dyke

We also considered the model of Greenfield and Wu (1988), in which a 40 metre segment of a coal
seam was replaced by roof rock. The conductivities of rock and coal were respectively 0.001 and
0.00001 S/m, dielectric constants were 10 and 5 respectively and the seam thickness was 2 metres
(figure 5.2).

Our (dipole source) model shows an excess attenuation of 5.7 db crossing the conductive zone, as
compared with 7.0 db obtained by Greenfield and Wu using a line source. The decay rates also
differ, but our rate, which agrees with those of Hill (1984), is the correct one. Given the large size
of the anomaly, its effect is rather small, being less than half the size of that caused by the conductive
dyke considered in section 2. Further, the phase changes only very slightly from that of uniform
coal. This is aresult of energy propagating partially through the rock and the effects are very sensitive
to the conductivity of the rock.
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Figure 5.2 Model for which the coal seam has partially been replaced by roof rock. The
upper curves represent the phase and the lower set represents the amplitude. Dashed curves
are for uniform coal.

6 Conclusions

We have found that, as expected, the method of Nested Dissection offers significant runtime savings
over more common methods. We have not found it to exhibit any stability problems.

We have used the method in an application to the currently important problem of wave propagation
in coal seams which are disturbed geologically. As has been indicated, coals seams in many
environments are often relatively unusual in their properties compared to the rocks above and below
and, if they are undistorted by subsequent geological processes, they often form natural waveguides.
We have demonstrated that typical geological disturbances which disrupt these waveguide
characteristics are detectable using the radio imaging method (RIM) and that we can construct
satisfactory models which agree with survey data. Finally, comparisons with analytic results and
other numerical models indicate that our method is accurate.
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Appendix

The following discussion of the Greenfield algorithm is based on the description by Greenfield
(1965)

The 2mn difference equations (3.7)and (3.8), which involve coupling between the electric and
magnetic fields, are ordered so that two equations pertaining to a single node point are consecutive.
The equations at grid point (i, j) are arranged in the order

Ly QO,1) ... (Q,n) (@,n)
21n @1 ... @2n @,n)

(m., 1) m,1) ... (mn) (m',n)
Here each unprimed (respectively primed) symbol refers to an equation of the type (3.7) (respectively
(3.8)). Since each point is connected only to its neighbours, the set of equations is of the form
TV=S ,

where the coefficient matrix T may be written in the partitioned form

0 . . . 0)
C
A

o >0

~

-

~

A
D
0

w

for certain 2mx2m square matrices A,,C, and D,. Further, C, and D, are block diagonal with 2x2
blocks on the main diagonal. The matrices V and S correspond to field and source values respectively
and may be partitioned as
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( Vl\ S,

\A S,
v=| |, S=
NG S.)

Here V; and §; are column vectors of length 2m with

\
(H, (s,)
Eli s'u
Hy
Vj = E7d , S} =
H, S
\E»'J 8w

Each §; (respectively S ’; ) is zero unless there is a magnetic (respectively electric) source at grid
point (i ,j).

The matrix T is partitioned into two triangular matrices E and F according to

T=EF
with
(1 0 0) ( F, G, 0 0
E I . 0 F, G,
0 E, I
E= 2 , F=
L0 0 E_ I L0 0 F,
By comparing T and EF we readily find that
Fi=A, E =DF; '
F,=A,-EG, E,=D,F;
Fu:An_En»lGn-l Eu—I:Dn—lF;l—l
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If we now define a vector Z by

:

Zz=| "1,

\Z)

where the Z, are column vectors of length n, then we have

Z,=S§,
Z,=S,-E,_Z, k=23,...m
and we can find the required solution V by
V,=FZ,
V,=F\Z,-G\YV,,) k=m-1m-2,..,1

The operations which require the main bulk of the computation are the matrix multiplications D,F'

and the inversion of the matrix F,. Both of these operations increase as m’ and have to be done n
times, so that the total number of operations increases as nm’.
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