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1 ABSTRACT

The Numerical Electromagnetics Code (NEC) has been adapted to run in paraliel on a 16
transputer PARSYTEC machine. The modification of the code involved the manipulation of
the Fortran source code and the development of parallel algorithms to fill and factor the matrix.
The performance of the parallel NEC improved as the number of segments used in the simulation
increased. When simulating a model with 300 segments the time taken was 45 seconds which
is 13.3 times faster than using one processor.

2 INTRODUCTION

The ACES PC version of the Numerical Electromagnetics Code (NEC2)' has been run on a PC
at the University of the Witwatersrand for much of its electromagnetic work. The main advantage
of the PC is its convenience, but it is unfortunately exceedingly slow and insufficient memory
limits the electrical size of structures that can be analyzed. This is especially so when one
simulates structures at specific frequency increments, or when the structure is electrically large.
As an example of the limitations encountered with available PC’s (80286, 20 MHz clock
frequency) the time taken to simulate a 100 segment structure is 50 minutes.

Stellenbosch University introduced a method of maintaining the convenience of a PC whilst
considerably improving its performance. This was achieved in April 1988 when Stellenbosch
University announced the successful running of NEC on a single INMOS T800 transputer”.

A transputer is a single chip microprocessor which was developed by the British company
INMOS. Itconsists of an on-chip processor, floating point unit, memory and four communication
links for direct communication to other transputers. This microprocessor distinguishes itself

from others in that it is designed as a building block for parallel processing. Concurrent systems
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may be constructed from a collection of transputers operating concurrently and communicating
through links (see Figure 1 for a block representation of the T800). This paper presents the
modifications made to the NEC algorithms to allow paralle! execution on 16 transputers. The
machine used is a portion of the Parsytec Super Cluster with 16 transputers, each with IMByte
of RAM.
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Figure 1: The internal architecture of the T800 transputer.

Table 1 was drawn up to compare a single transputer, in terms of its performance and cost, to
various well known micro-processors. The performance of each is gauged by the time required
to simulate a 100 segment single wire structure using NEC.

Processor Run time Cost
(secs) {dolars)

286/20 (w/80287) 750 600

386/20 (w/80387) 60 2100

386/20 (w/1167) 24 2600

T800/20 transputer 45 1200

Table 1: A comparison of the performance and cost of various well known processors
(mother board with 1 MByte of memory included for all cases).
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The advantage of the transputer over other processors is that itis easy toincrease the performance
of a processing system by adding transputers. This could be achieved at a cost roughly
proportional to the increase in processing power. Improving the performance of other computers
normally requires discarding the existing processor and purchasing a more advanced processor.

3 ADAPTING THE CODE TO RUN ON PARALLEL PROCESSORS

There are a number of routines in the code that may be adapted to run in parallel. For many
simulations, however, experience has shown that the most time consuming section is the solution
of the integral equations using Method of Moments. Thus the Method of Moment (MOM)
solution was taken as a starting point in the parallelization process. Mention is made, however,
of how one might adapt the radiation pattern routines for use on the transputer network. The
MOM solution was considered in two parts, first the filling of the interaction matrix and secondly
the solution of this matrix.

3.1 FILLING THE MATRIX

The approximation of the current in a segment used for the method of moment solution in
NEC is of the following form :-

fj = Aj + BjSin k(z-z’) + CjCos k(z-2’)

This function peaks on segment j and extends onto all segments connected to segment j as
shown in figure 2 :-

Basis Function for Segment j

<Segment J-1 ( Segment | CSegment j* 1@

Figure 2: The basis function employed in NEC.

In the process of filling the matrix each segment is considered individually and its current
determined in terms of their Sine and Cosine components. The value of the constant term
A;isunknown at this stage and is setequal to - 1. Using this current, the values of the tangential
E field induced at the centre of all segments in the structure are calculated. These values
make up the elements of the interaction matrix.
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The parallelization of any code requires knowledge of the data dependence on the various

steps made in the computation. In filling the matrix one must consider calculation of the

current and the fields induced by this current. The calculation of the currents on a particular

segment requires consideration of local boundary conditions of the segment in question.
These boundary conditions are functions of the antenna geometry in the vicinity of this

segment. The fields induced in the structure at the segment centres are functions of the

geometric location of the source and observation segments. Thus the individual calculations

of the induced fields due to the current on a particular segment are independent of each other

and are purely a function of the antenna geometry.

Parallelization of the filling of the matrix was thus accomplished by distributing the entire
geometry of the structure to all the processors and giving each processor the task of calculating
the fields induced by the currents on specific segments.

On completion of their tasks the processors return their results to a host processor which
places them in their corresponding matrix locations. Thus the matrix is filled in parallel.

3.2 SOLVING THE MATRIX

The matrix in NEC is solved using Gaussian Elimination with back substitution. Of these
two processes the triangularization of the matrix is the most time-consuming and it was this
part of the code that was parallelized. The sequential algorithm for triangularizing an n*n
matrix using pivoting is given in figure 3. The parallel implementation of this algorithm was
based on the algorithm presented in a paper by Giest and Romine’, The algorithm is as shown

in figure 4.

FORk=0TO n-1
determine pivot row
swap elements
FORi=k+1TO n-1

a; = a,la,
END (FOR i)
FORj=k+1TO n-1
swap elements of column j
FORi=k+1T0n-1
a; = a; - Guay
END (FOR i)
END (FOR j)
END (FOR k)

Figure 3: The serial algorithm for triangularizing an N*N matrix.
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FORk=0TO n-1
IF (I own column k) THEN
determine pivot row
interchange
FORi=k+1TOn-1
L, :=ay/a,
END (FOR i)
broadcast | and pivot index
ELSE
receive | and pivot index
END IF
FOR (all columns j>k that I own)
interchange
FORi=k+1TOn-1
a; = a; - Lay
END (FOR i)
END FOR {(all columns j>k that I own)
END (FOR k)

Figure 4: The parallel algorithm presented by Giest and Romine.

Where g is an element in the i row and /* column of the coefficient matrix a,
[ is a temporary vector housing the pivot column

n is the dimension of the matrix

Implementing the algorithm in figure 4 on a network of transputers requires that, for good
load balancing, the columns of the matrix be wrapped onto the processors (i.e for a network
of 16 processors the first processor receives columns 1, 17, 33 etc the second processor gets
columns 2, 18, 34 and so on). The reason for the wrapped column mapping is that once a
processor has operated on the pivot column (column k), this column is not used in any
calculation for the completion of the algorithm. The work load of the processor is therefore
reduced. Thus to ensure that the processors each have equal loads throughout the execution
of the algorithm, a wrapped column mapping is employed.

The communication between processors during the computation involves only the
broadcasting and reception of the pivot column. On completion of their individual tasks, the
processors return their respective columns to the host processor. In this manner the matrix

is triangularized on the transputer network.
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Other methods of solving matrix equations such as the conjugate gradient or banded matrix
approximations have not been considered during this study. Such methods may well improve
code execution, especially on parallel processors and deserve careful consideration in future

attempts.
3.3 NEAR AND FAR FIELDS

The calculation of the near and far fields are ideally suited to evaluation in parallel. This has
not been done in the version of the parallel NEC2 discussed in this paper but a quick

explanation of how this may be done follows :

Consider, for example the calculation of the radiation patterns, where the far fields at a
number of points are evaluated from the currents on each segment. Parallelizing this code
may be accomplished by specifying that each transputer calculate the field at specified points
in the radiation pattern. Alternatively, if there are many radiation patterns to compute,

designating a complete radiation pattern to each processor may be a more efficient solution.

The only information required by the network processors to do the field calculations would
be the current in each segment of the structure. The geometry of the structure would already

exist on the processors since it would have been required by the matrix filling algorithm.

3.4 MEMORY REQUIREMENTS FOR THE NETWORK

The minimum memory required for p processors on the network is 1/p of the memory required
for an in-core solution on one processor. The reason for this minimum requirement is that
the network processors do not have access to a storage device, and thus have to be able to

store 1/p of the matrix in memory.

The host processor memory requirements are slightly different. If an in-core solution is
required then the host processor must have enough memory to store the entire matrix. It is
possible however, to use an out-of-core solution. Thus if the processor does not have enough
memory to store the matrix, then the matrix may be stored on disk.

4 THE TRANSPUTER NETWORK

The aforementioned two parallel sections of code for the Method of Moment solution both have

some communication characteristics in common. They both require initialisation by the host

transputer and both return portions of the matrix to the host. The triangularization algorithm

requires the ability to broadcast information from one processor to every other processor in the

network. Thus in choosing a suitable network on which to run the foregoing algorithms two

important points have to be taken into consideration. First, it is important to ensure that the

communication path from one processor to any other is minimised and secondly, that the

algorithm controlling the communication is kept as simple as possible. With these points in

mind the network mapping shown in figure 5 was employed® :
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Figure 5: The transputer network.

The maximum number of processors through which one has to pass in order to communicate
with any other processor is two. This figure is one less than the maximum required on other
structures considered in choosing a suitable network, for example, the hypercube. The algorithm

for sending information from one processor to any other is as shown in figure 6:-

IF (recipient on my.board)
send message on link (recipient.id REM' 4)

ELSE
send message on link (recipient.id DIV* 4)

! The expression @ REM b yields the remainder of ;

2 The expression @ DIV b yields the truncated value of 3

Figure 6: The algorithm used to control the communication in the transputer network.

where my.board is found using (my.id DIV 4) and the recipients’ board number is found by

evaluating (recipient.id DIV 4).

In the case where there is no direct path to the recipient, the above algorithm is repeated on the

intermediate processors and the message is redirected.
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5 RESULTS

In assessing the performance of an algorithm on a network of transputers it is useful to compare
the time taken to complete the task on the network to the time taken on one processor, Thus in
gauging the performance of the parallel versions of the matrix filling and the triangularization,
the efficiency and speed up of these processes were calculated.

Efficiency and speed up are defined as follows :-

time takento complete task onone processor
(timetakentocompletetaskonp processors) X p

Efficiency =

time takento complete task onone processor
time takento complete taskonp processors

Speed Up =

where the time taken to complete the task on p processors is made up of the time spent

communicating between processors and the time spent doing the computation.

Tables 2 and 3 show the times taken to fill and factor matrices of various dimension. It should
be noted that the speed up attained for smaller matrices is considerably less than the speed up
attained for the larger matrices. The reason for this is that the ratio of communication to
computation is larger for the smaller matrices.

Matrix  |Filling Time |Filling Time| Speed Up | Efficiency
Dimension One 16 in %

Processor | Processors

(secs) (secs)

50%50 8.1 0.9 9
100*100 31 2.5 124
200%200 119 g9 134
300%300 271 19 14.3

Table 2: Times taken to fill the matrix.

The times taken to simulate structures of various electrical sizes (matrix dimension) with NEC
are tabulated in table 4. These times include all the serial components of NEC, for example, the
manipulation of the input data and the solution of the matrix equation.
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Matrix Factoring | Factoring

| Dimension | Time One Time 16
Processor | Processors
(secs) (secs)
0.16
0.85
5.1

15.5

Table 3: Times taken to factor the matrix.

Number of | Time to Time to Speed Up | Efficiency |
Segments | Simulate on | Simulate on in % |
16
Processors

one
Processor

(secs) (secs)
50 10.14 1.98 5.1
100 45.3 5.17 8.7 54
200 182 18.0 10 63

300 476 45 10.6 66

Table 4: The times required to simulate structures of various electrical sizes.

In the Stellenbosch paper® announcing the execution of NEC on a single T800 transputer, a
comparison was made between the execution times of the NEC code on various computers. The
simulation used as a benchmark was the 12 element Log Periodic Dipole Array given at the
back of the NEC user manual.

This simulation is not a good benchmark for the transputer network for a number of reasons.
First, the simulation requires the use of the transmission line card. This facility has not yet been
implemented in parallel and it thus considerably increases the serial component of the simulation.
Also the simulation usesonly 78 segments and the transputer network efficiency with this number
of segments is about 35% as opposed to an efficiency of 66% when simulating structures of 300
segments. A comparison of the times taken in the various sections of the program for the serial
(1 transputer) and parallel versions are given in table 5.

Bench mark results for the NEC2 code on the CONVEX C210S computer equipped with 128
MBytes of core memory has recently become available. This computer contains a vector
processor and the code was optimized by the vendors of the machine to take the best advantage
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Program Tasks Serial Parallel Comment
Version | Version
(secs) (secs)
Processing data cards 1.17 1.17 Serial
Processing control cards 0.33 0.33 Serial
Filling matrix 17.1 1.9 Network Efficiency "
42%
Factoring matrix 5.67 0.8 Network Efficiency
33%
Calculating effect of 5.88 5.88 Serial- takes 50% of
transmission line the parallel NEC time.
Back substitution (.26 0.26 Serial
Radiation pattern 1.3 13 Serial
Total time 31.7 11.6 Efficiency of 17%

Table 5: The times taken in the various stages of the simulation of the Log Periodic
Dipole Antenna using the parallel and serial versions of NEC.

of this processor. The CONVEX is a multi-user Mainframe computer but results quoted were
obtained with only one user present. Results for this machine are compared to those obtained
using a 16 transputer network for a 1000 segment NEC2 problem.

C2108 16 transputer network
CPU Time 1812 770
(sec) I
Approx. cost $ 0.5 to 3 Million $ 40 000.00 ||

Table 6: A comparison of the performance of the CONVEX C210S and a 16 transputer
network,

6 CONCLUSION

The speedup attained by the 16 processor network indicates that it is possible to significantly
reduce the execution time of NEC by distributing the program onto a network of processors and
executing the code in parallel.
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The transputer connection network was specifically designed to satisfy the communication
requirements of the parallel fill and factor algorithms. The most attractive feature of the network
is the ease and efficiency of communication between processors.

A parallel implementation may be achieved by substituting another processor for the transputer
in the network. The transputer was chosen because its design allows easy extension of a network
with a corresponding increase in performance and price. A transputer based machine is therefore
a cost effective way of speeding up NEC.
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