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Introduction

EMAP (ElectroMagnetic Analysis Program) is a three-dimensional finite element modeling
code that was developed as a tool to be used for education and research. Like commercial finite
element modeling codes, it solves for the field distribution in a variety of bounded, 3-dimensional
geomeitries. Unlike commercial finite element modeling codes however, it is relatively easy to learn
to use and it is distributed in source code form. EMAP can be used for student projects and
demonstrations in undergraduate electromagnetics courses or in graduate microwave system
courses. It is also a very useful laboratory aid for courses in numerical modeling techniques.

EMAP is not intended to compete with commercial codes. 1t does not have a sophisticated mesh
generator, graphical output, or unlimited technical support. The purpose of the EMAP code is to
provide an affordable tool that students can use to learn about electromagnetics and finite element
modeling.

There are currently three versions of the EMAP code. EMAP-1 uses a variational formulation
described by Maile [1]. EMAP-2 employs the Galerkin formulation described in papers by Paulsen
and Lynch [2,3]. EMAP-2P is a parallel version of EMAP-2 designed to run on the Intel hypercube
platforms. Each of these codes employ tetrahedral, first-order, nodal elements. The EMAP-1 code
effectively demonstrates the problem of "vector parasites” or “spurious modes’ that often arise in
finite element modeling. EMAP-2 and EMAP-2P have been formulated to eliminate the vector
parasite problem. EMAP-1 and EMAP-2 are written in *C” and can be compiled and run on PCs,
workstations, or mainframes.

The EMAP codes are readily available to educational and research institutions. They can be
freely copied or distributed in unmodified form.

Structure of the EMAP code

The finite element mesh is defined on a cartesian grid using brick-shaped elements (hexahedra).
The EMAP code automatically subdivides each hexahedron into five tetrahedra as shown in
Figure 1. Linear functions of electric field strength with unknown coefficients at each node are the
basic building blocks of the finite element solution. A matrix equation relating constants derived
from the fixed (or constrained) node coefficients to linear functions of the unconstrained node
coefficients is derived using one of the procedures outlined in the following sections.

The code is modular and both EMAP-1 and EMAP-2 follow the same basic solution procedure.
A flowchart outlining the basic structure of the EMAP codes is provided in Figure 2. Specific
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Figure 1: Division of hexahedron into 5 tetrahedra

subroutines are assigned to each task in the chart. Note that many subroutines are common to both
EMAP-1 and EMAP-2. A brief description of each subroutine is provided below:

nitialize
no_of_hex

assign.dim

hex_nodes

div.hex

vol.det
cofac
A.matrix
hex_max

global.mat

cal.nodes

Reads the data input file and initializes variables.
Calculates the number of hexahedra and number of global nodes.

Assigns to each node a global coordinate (x,y,z) and stores the result in the
array asdncol].

Assigns each vertex of every hexahedra a unique global node number and
stores the result in the array hexhed[].

Divides a hexahedra into 5 tetrahedra and assigns node numbers based on
connectivity. Node numbers are stored in the array tetrnod]].

Calculates the volume determinant of the specified tetrahedron
Calculates the cofactors of the specified tetrahedron matrix
Calculates the tetrahedral matrix coefficients (12 x 12 matrix).
Assembles the hexahedron matrix.

Assembles the global matrix exploiting the sparsity to reduce the memory
required.

Determines which nodes are tree, forced or boundary nodes and stores their
node numbers in the arrays unodes|], fnodes[], and bfnodes|]

respectively. Values of forced nodes are stored in the array

forval(].
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Figure 2: Flowchart for EMAP-1 and EMAP-2 codes
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partition Partitions the global matrix
lin.form Prepares a matrix equation of the form Ax=B.

LU.solver Solves the linear system of equations. Currently this is done using an
LU-decomposition technique.

print.out Formats and prints the electric field coefficients at each node.

EMAP-1 Formulation

EMAP-1 employs the variational formulation described by Maile [1]. Variational methods solve
for the field distribution using a suitable functional. The functional is a function of the field
distribution that is known to be stationary (i.e. has a minimum or maximum value) when the
distribution is the true solution. Generally, the functional is an expression relating to the total energy
in the configuration. The functional used by the EMAP-1 code is of the form,

Fo=1 e[ EE" -
v

! VBV VE)
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where E is the electric field distribution, £ is the permittivity of the material and & is the wave number
(k= wVep). To determine the field distribution that minimizes this functional, this expression must
be partially differentiated with respect to the vector components of E and the resulting expression
set equal to zero. Using the procedures and notation of Maile [1], which is also described in the
text by Silvester and Ferrari [4], the discretized partial derivative of the E-field functional in a
tetrahedral element is given by,

SES 20 36V )
where Ej(»ﬁ) 15 the i[h component of E at the m? vertex. 1,j,k each take on valucs of 1,2,3 and m,n
range from 1 to 4. V is the volume of the tetrahedron. bmj, bnj, bmk, and bni represent cofactors of
the volume determinant. The expression in Equation 2 is used to find the coefficients of a

tetrahedron submatrix of order 12 (4 tetrahedron vertices x 3 vector field components).

Partial derivative coefficients are evaluated for each tetrahedral element. The tetrahedron
submatrices are then assembled into hexahedron submatrices, which are subsequently assembled
to form a global matrix. A matrix equation is then formed which equates these coctficients to zero,
thus enforcing the stationary condition.

The global matrix at this point is singular. The system of equations cannot be solved until a
sufficient set of boundary conditions is applied. This involves constraining the electric field at some
nodes to take on a particular value. Generally, the tangential component of electric field is
constrained to have a value of zero on metallic boundaries. Sources are included in the model by
constraining the field at some nodes to take on a fixed non-zero value.
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After imposing boundary conditions, the matrix equation can be put in the form Ax=B where
X is a vector of coefficients describing the electric field at each unforced node. The coefficients of
A and B are known functions of the problem geometry, mesh geometry and boundary conditions.
Solving the matrix equation for x yields the coefficients necessary to describe the field distribution
throughout the problem region.

EMAP-2 Formulation

EMAP-2 does not employ a variational method. Instead it applies a Galerkin method to solve
a modified form of the vector Helmholtz equation introduced by Paulsen and Lynch {3]. The
modified form below includes a term which explicitly enforces the condition that V-E must be () in
a homogeneous medium,

V><(.L VxE)~ V’[L V-aE]+jmsE =0

Jou JOUE (3)
The expanded weak form of this equation used by the EMAP-2 code can be written as,
1 1
<— (VxEVe; >+ < ——VeE) Vo, >+ < joeE ¢; > =

where < and > indicate integration over the problem domain. @; are the basis functions associated

with the Galerkin procedure (in this case the linear field distribution associated with each finite
element).

Expanding E in terms of weighting functions ¢; such that,

N
E=Y Ejo
~ (5)

and substituting for the electric field in Equation 3, results in an expression that can be written in
matrix form as Aj; Ej = 0 where,

O, 0g;  Bpideg: B d¢i _ - 80,50; 39,30, < B8 B¢, 3,
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(6)

The entries in this matrix can be expressed as functions of the tetrahedral element volume {V) and
the corresponding cofactors (bi,c1,d1) {5] resulting in the expression below,
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Assembly of the hexahedron matrices and global matrix proceeds in the same manner as
In fact, although EMAP-1 and EMAP-2 are very different in terms of their solution
method, only two subroutines are significantly different in the two codes. The subroutines that
calculate the cofactors and create the tetrahedral submatrix are necessarily completely different.
The subroutines that read the data, define the elements, and assemble and solve the matrix equation
are virtually identical.

EMAP-1.

One additional difference between EMAP-1 and EMAP-2 is that the EMAP-2 code permits the
electric field to be discontinuous at a dielectric boundary. This feature significantly improves the
codes’ ability to model configurations with dielectric interfaces. The procedure used is similar to

L=l
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description
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that described by Paulsen [6]. Nodes on a
dielectric interface are effectively split in two
during the initial stages of the algorithm. Each
half of the split node 1s in a different dielectric.
During the final stages of the global matrix
assembly, the halves are recombined and the
discontinuity in the normal electric field is
explicitly enforced.

Data Input and Output

The EMAP codes read data in as an ASCII
text file and print data out in the same form.
This allows the source code to remain free of
non-standard graphical 1/O commands or rou-
tines. As a result, the EMAP source code is
highly portable and has been run on a variety
of platforms without modification.

The basic format of the input data is a short
header followed by a list of the mesh node
coordinates. A sample input file 1s illustrated
in Figure 3.

Because it can be difficult and time con-
suming to create an error-free data input file
for 3-D contigurations, a translation code has
been written that allows the user to draw the
input configuration using a commercial com-



puter aided drawing program. DesignCAD 3-D [7] is a powerful, but relatively easy to learn CAD
program that can be used to generate fairly complex 3-D geometries. The translation code reads
the DesignCAD output file and creates an EMAP data input file. The translation code associates
DesignCAD grid points with mesh nodes. Colors in the CAD drawing are used to represent different
material properties and arrows are used to provide excitation sources [&].

The DesignCAD interface has proven to be an invaluable aid for creating and verifying input
configurations. DesignCAD 3-D runs on PCs and Macintoshes and is available to educational
institutions at a nominal charge. It is also possible to develop translation codes for other CAD
programs running on other platforms. In many cases, the effort involved in writing a new translation
code is less than the effort required to learn to use a non-standard graphical interface.

Figure 4: Shorted, air-filled waveguide of Example 1
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Figure 5: Field at a point inside the waveguide
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Figure 6: Waveguide with dielectric loading
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Figure 7: Vertical E-field in diclectric loaded waveguide

Output from the EMAP code consists of a listing of the node coordinates and the electric field
strength at each node. This data can be easily read by a variety of spreadsheet programs and
rearranged, plotted, or manipulated as desired.

Examples

As an illustration of how the EMAP codes can be used, two sample configurations are analyzed
below. The first configuration is a TE ¢ wave propagating in an air-filled waveguide shorted at one
end (see Figure 4). Despite the relatively crude finite element mesh and the small number of
elements used to model this configuration, fairly good agreement is obtained between the EMAP-2
calculated field and an exact analytical calculation as shown in Figure 5a. This figure shows the
vertical electric field at a point 3 cm away from the shorted end as a function of wave number, £.
Note that the frequency of the first resonance shown is predicted very accurately even though at
this frequency each element is 1/7th of a wavelength long. At the second resonance, where each
element is greater than 1/5th of a wavelength, there is understandably significant error. A finer mesh
is required to analyze this structure at these higher frequencies. Figure 5b compares the EMAP-2
results with the results from EMAP-1. Spurious modes in the EMAP-1 resuits are clearly observed.
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This configuration is particularly prone to spurious modes at the higher wavenumbers where modes
other than TE 10 are supported.

The second sample configuration is the dielectric loaded waveguide illustrated in Figure 6. This
waveguide is also shorted at one end and driven in the TE 9o mode. The vertical electric field strength
is plotted as a function of position along the center of the waveguide in Figure 7. With or without
the dielectric loading, there is very good agreement between the finite element model and analytical
results calculated using standard transmission line theory.

Conclusions

The EMAP codes have been developed to fill a need for an easy-to-learn and use, 3-D
electromagnetic finite element modeling code. EMAP is primarily intended for use in education,
but the technique is powerful enough for a variety of applications.

EMAP-1 is a variational formulation exhibiting spurious mode phenomena, while EMAP-2 15
a Galerkin formulation that is immune to spurious modes. Both versions are distributed in source
code form and run on a variety of platforms. These codes are available by anonymous ftp from
emclab.ee.umr.edu. In the near future, they should be available on diskette through the Apphed
Computational Electromagnetics Society (ACES) and the Center for Computer Applications in
Electromagnetics Education (CAEME).
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