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ABSTRACT: A fast and efficient adaptive sampling algorithm
is applied to model-based parameter estimation of a Method-
of-Lines implementation of two- and three-layer shielded
planar structures, creating a pole-free function for the
calculation of the propagation constants. The technique
minimizes the number of characteristic equation evaluations,
and hence reduces the computation time by orders of
magnitude when compared to methods wusing the
characteristic equation directly. Examples of a shielded
microstrip line and a finline structure are shown. Between 3
and 15 evaluations of the characteristic function are typically
required per determination of an imaginary or a real zero.

1. INTRODUCTION

The calculation of the propagation constants of modes in
quasi-TEM microwave structures is a well-known problem in
literature [1-5], and increasingly of interest in hybrid
numerical analysis techniques incorporating Mode-Matching
[6-8]. In the case of shielded planar structures, the two-
dimensional Method-of-Lines (MoL) offers a very efficient
analysis option, as it involves discretization in one direction
only [9, 10]. However, in this method, as in many other
formulations, the propagation constants of the modes are
calculated by solving the function in equation (1), a severely
non-linear function with an infinite number of solutions,
normally interspersed with an infinite number of poles,
together with very sharp non-zero local minima. For loss-less
problems, the zeros can be purely real, purely imaginary or
complex.

J(r)=det[Y(y)]=0. (1)

As the existence of poles in the equation to be solved creates
significant problems for most root-finding algorithms, a
number of attempts to find pole-free solutions have been
published. These include pole-free formulations [11], the use
of a singular-value decomposition method (SVD) [12], and
finding the pole-positions analytically and either removing
them, as reported in [9], or searching between them [8]. Of
these, the SVD method seems to produce the best results, at
the cost of creating a function with a discontinuous first

derivative, making the use of fast gradient root-finding
algorithms difficult.

Rational interpolation, specifically approaches using adaptive
sampling algorithms, have been used by various authors to
good effect in reducing the number of EM-evaluations for the
determination of responses of microwave systems [13-19].

In this paper, an efficient model-based parameter estimation
technique, based on a rational interpolation formulation, is
used to provide an accurate, pole-free approximation to the
roots of (). The technique uses a novel adaptive sampling
algorithm to minimize the number of required EM-analysis
points, and the resulting approximation can be written as the
ratio of two polynomials, of which only the numerator needs
to be solved for the zeros of the function. An added
advantage of the polynomial representation is that the
derivatives of the function can easily be calculated, enabling
the use of gradient root-finding algorithms.

For the purposes of this paper, the technique is applied to the
analysis of covered two-and three-layer planar structures,
with the EM analysis performed by the two-dimensional
MoL. The method is, however, not restricted to this specific
formulation, but can be used for any analysis technique,
which requires the solution of equation (1). It is shown that
dramatic reductions in the number of evaluations of the
characteristic function are achieved without loss of accuracy.

2. RATIONAL INTERPOLATION

Rational interpolation defines a function R of variable y as a
ratio of polynomials,

Ry =l = @

with ¢ the order of the numerator, v the order of the
denominator, and p, and g, the polynomial coefficients. We
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assume R(y) exists for the function that we are trying to
model. Since there are {+v+1 unknown coefficients (qo is
chosen arbitrarily), a set of N+1=/+ov+1 support points
(7, S,) are required to completely determine R(y). R(y) is
then a curve passing through the ordinates S, at the abscissas
yifori=0,1,,N.

The interpolation function R(y) can be calculated with the
three-term recurrence relations given in equation (3)
initialized with No()=8,, Dy(») =1,

Ni(7) =171, 7o Ng () + (¥ —=70) and Dy(»)=1(71,70)
and using the inverse differences defined in equation (4) [20].

The inverse differences, determined recursively from the
support points, are the partial denominators of a continued
fraction that represents Ry), and are essentially the
polynomial coefficients defining %R,(y). The rational
expressions R,(y) are partial fractions of equation (2). As a
consequence of the recursive equations used for k even

k+1

-1
é‘zz):g and for £ odd (:—2— and uzﬁ,—)—. Every

new support point increases the order of the rational function
by one, until R(y) = Rn(y).

The derivative of Ry(y) with respect to ¥ can be calculated
recursively by taking the derivatives of equation (3),

N, (=0 ¥e> Vet
D, ()= 0% Ye-15

s TI N D+ (7= %) N2 ()
)P D+ (= %) D ()

nitialized with 20 _o Do) o MG 4 g
oy oy oy
aD1(7)=0.
or

Similarly, all higher order derivatives of Ri(y} can be
calculated.

As the accuracy of R(y) over a certain y range is required to
increase, the order of the interpolating rational polynomial
increases. This increase in the degree of freedom of R(y) can
cause a zero in the numerator and a zero in the denominator
polynomials to occur at almost precisely the same position.
At these pole/zetro combinations L’Hospital’s rule is apglied
for the evaluation of the interpolation function, i.e.

3. ERROR ESTINIATION AND ADAPTIVE
SAMPLING ALGORITHM

Accurate rational interpolation of equation (1) requires that
enough support points are used. In order to calculate the
minimum number and the optimal position of these support
points, a new adaptive sampling algorithm for application to
the rational function approximation, as proposed by
Lehmensiek and Meyer, is used [13]. A short exposition is
repeated here for ease of understanding.
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A natural residual term emerges from the rational
R -R,_

interpolation formulation as Ek(y)z-‘—k—(-}QA(L)I
1+|5Rk(}’ )[

which provides an estimate of the interpolation error. The
residual decreases as k (or the degree of freedom of the
function) increases and is zero at k-1 support points. The
above-mentioned interpolation method is suitable as an
adaptive sampling algorithm, since it produces an error
estimate in a very natural way, and it works for unequally
spaced support points.

The adaptive algorithm is defined to work in the interval
{70, 71)- As a first step, an arbitrary third support point y, is
selected which lies in the interval [y, ¥;]. This point is
required since the residwal E;(y) cannot produce an
appropriate error estimate. The coefficient ¢; for R(y) is
determined from the support points (yo, So) and (¥, Ss),
while ¢, for R,(y) is recursively updated using equation (4)
and the support point (¥, S;). The S,’s are determined from
the characteristic equation (1) at the y,’s. Define I, as the
interval [y, ¥,]. The residual E,(y) is evaluated at a large
number of equi-spaced sample points in the interval I, using
equation (3). At the maximum of the evaluated sample points
- anew support point y; is selected.

For iteration k the characteristic equation is evaluated at y; to
determine S;. Equation (4) calculates ¢, recursively. The
residual Ei(y) is determined recursively at a large number of
equi-spaced sample points on the interval I, by using equation
(3). Assuming the last support point (y,, S;) was selected in
the interval [y, y,], I; is defined as both the intervals [y, 7.]
and [y,, 7,]. The interval [y;, ;] is excluded since it does not
provide a suitable error estimate. This interval will decrease
as the number of support points increase and it varies on
alternate iterations. At the maximum of the evaluated residual
a new support point (¥, Sg+1) 1s chosen. The process is
repeated until the residual becomes arbitrarily small. By
placing new support points at the approximate maximum of
the residual E,(y), this residual is minimized with respect to
y. The adaptive sampling algorithm automatically selects and
minimizes the number of support points, and it does not
require any a priori knowledge of the dynamics of the
function in order to define an interpolation model R(y).

The number of equi-spaced evaluations of the residual is not
crucial, as long as it is of an order larger than the number of
support points. Placing the support points precisely at the
maximum of the residual may sometimes slightly decrease the
number of support points of the final model. However, the
determination of such points through an iterative search
algorithm is computationally expensive. It is important to
note that for a full iteration, only one point is determined via
the evaluation of equation (1). As all the other computation
steps only require the evaluation of the interpolation function,
the computational effort is decreased substantially.

The algorithm in [13] was developed for smoothly varying
functions. When a very accurate interpolation model is
required for an irregular function, such as in the case of
equation (1), the number of support points can become large,
causing the order of the rational polynomial to become large.
This may cause the algorithm to become numerically
unstable, especially with large function values. Therefore, the
number of support points automatically selected by the
adaptive sampling algorithm is limited to Ny4. If the sampling
algorithm has not converged when this limit is reached, the
support points in that interval are sorted in ascending order
and subdivided into two new intervals. Each interval is
initialized with %(Npqt1) support points if Ny is odd, or
Y2Npgt+1 and Y2N,4 support points if Nyg is even. The support
point at the cut is used as the last support point in the first
interval and also as the first support point in the second
interval. Hence all previously determined support points are
reused, and more support points will be placed where needed.
The intervals become smaller where the errors are larger. The
adaptive sampling algorithm is repeatedly applied to each
subdivided interval unmtil every interval has attained
convergence. The result is a set of interpolation models R(y)
each defined on a specific interval of the complete band that
is being modeled. Decreasing Npy produces more accurate
models at the expense of an increased number of R(y)’s, an
increased number of support points and increased
computation time.

4. TWO-DIMENSIONAL METHOD-OF-LINES

The Method-of-Lines (MoL) was introduced to the field of
numerical electromagnetic analysis in the early eighties and
has since been established as a powerful method, especially
for the analysis of planar structures. In essence, the two-
dimensional MoL involves the discretization of the two-
dimensional Helmholz equation in only one direction. This
results in a number of coupled differential equations, which
are de-coupled using matrix techniques. The result is a
number of uncoupled differential equations, each describing a
transformed field or potential along a line instead of at a
single point, hence the name Method-of-Lines. The
elimination of discretization in one dimension is the key
feature of the MoL and results in reduced computer storage
requirements and reduced run-times. The two-dimensional
MoL has been shown by numerous authors to be fast,
accurate and effective.

For the determination of higher order modes on planar
structures, the MoL offers a number of particular advantages:

e multi-layer structures are incorporated very naturally in
the formulation,

e multiple conducting strips at various interfaces are
incorporated with virtually no extra effort,

e  shielded structures are handled with ease, and



e the final matrix to be solved contains only lines ending
on or passing through conducting strips, and can be as
small as 6x6 complex elements for a single microstrip
line. It stands to reason, however, that the higher the
number of modes required, the smaller the discretization
distances should be.

The mathematical derivations of the MoL formulation are
beyond the scope of this paper. The interested reader is
referred to [10], and for explicit closed-form formulations for
two- and three-layer structures, to [21, 22].

5. ROOT FINDING ALGORITHMS

The adaptive sampling algorithm determines, with the
minimum number of evaluations of the characteristic equation
(1), two sets of models, one for the real axis R(y=a) and
one for the imaginary axis R(y=j£). Although it is possible
to determine a model R(y) in the complex y-plane using the
theory of section 3, such a model requires a large number of
support points in order to achieve the required accuracy. As
typical problems exhibit small numbers of zeros in the
complex y-plane, a constrained root finding algorithm is
applied directly to the characteristic equation.

5.1 Real and imaginary axis

The root finding algorithm is repeatedly applied to each
model (an analytic equation) on the real and the imaginary
axes to determine all the propagation constants for both the
propagating and evanescent modes respectively. Finding the
roots is made exceptionally simple and efficient because:

1. The numerator of the rational polynomial can easily be
calculated from equation (3), and is pole-free by nature.

2. The derivative of the numerator can easily be calculated
from equation (5).

3. The evaluation of the numerator and its derivative are not
computationally expensive.

Therefore, an iterative root finding algorithm can be applied
to the models R(y). We used the first order Newton-Raphson
method with a bisection search when the former failed [23],
and the zero suppression technique [24] to prevent the root
finding algorithm to converge to the same root twice. The
maximum Newton-Raphson step size was limited to 10% of
the search interval. The zero suppression technique implies
that the derivative used in the Newton-Raphson method is
changed to:

NG) <= N
oy Sy-¢&°

(6)

where & are the N, previously found roots. The advantage of
this technique, as opposed to deflation where the polynomial
N(y) is divided by y-¢& explicitly so as to give a lower order

polynomial, is that the accuracy of a new root is not sensitive
to the errors incurred in calculating the previous roots.

The root finding algorithm is initialized at the lowest y value
in the interval and forced to search in the positive y direction
until it reaches the highest y value in the search interval. To
ensure that roots on the border of the interval are found, the
root finding algorithm is allowed to search past the highest y
value by 1% of the band.

The accuracy of the models R(y) is required to be high to
ensure that the root positions of R(y) are accurate and that
R(y) does not miss any roots, which are found in the
characteristic equation (1). As was mentioned in section 3,
this demand on accuracy can cause the adaptive sampling
algorithm to produce pole/zero combinations, with the result
that more zeros are determined than are present in the
characteristic equation. We therefore test for the validity of
all zeros found by the root finding algorithm. If the roots are
closer than 107 to a pole, they are eliminated. The poles are
found by doing a first order Newton-Raphson search of D(y)
i the vicinity of the roots.

5.2 Complex plane

The complex conjugate roots, i.e. the complex propagation
constants, in the complex y-plane are found directly from the
characteristic equation (1) by using a secant search method,
which requires two characteristic equation evaluations per
iteration. The search space is divided into a number of areas
in the f direction. In each area the search is constrained
within that area by dividing the characteristic equation by the
following equation

(aXa—-a, XB - BB -8, Q)

and limiting the Newton-Raphson step size to fall within this
area. a, is the upper limit on the real axis, and S, and 5, are
respectively the lower and upper limits on the imaginary axis.
Since the imaginary part of the complex roots is generally
small, the size of the areas is progressively increased further
away from the a-axis. The areas were allowed to slightly
overlap to ensure that roots on the border are found.

The maximum step size was limited to 20% of the diagonal of
the search area. Zero suppression is used as in section 5.1. In
the « direction the algorithm was started at N different
positions to prevent it from getting stuck in local minima and
to allow it to search the whole area. The following starting
positions were used:

2 +10.05(8, ~ )+ Bur i=0.1,-

> I\Ist'1 (8)

st



6. EXAMPLES

The technique was tested on two examples: a shielded
microstrip line structure and a centered slot unilateral fin line
structure. For the adaptive sampling algorithm we chose the
maximum order of the rational polynomial in an interval (Nyg)
equal to 29. The residual E(¥) in an interval was evaluated at
500 points and convergence was assumed when the maximum
value of this residual was smaller than -80 dB. For the root
finding algorithms the maximum number of iterations allowed
until convergence was 30 and convergence was assumed
when the step size was smaller than 10”. For the complex
root finding algorithm the number of divisions in the S
direction was chosen as three and Ny was chosen as 15
(closest to a-axis), 10 and 5 (furthest from «-axis) for the
three areas.

6.1 Shielded microstrip line

The loss-less shielded microstrip line structure is shown in
Fig. 1. The area in which to find the roots was chosen as
[0:32.979} on the imaginary axis and [0; 2] on the real axis.
Only the even order modes are calculated and uniform
discretization 1s used. Table 1 shows the support points
selected by the adaptive sampling algorithm after every
iteration for the microstrip line at 20 GHz. The propagation
constants are normalized with respect to the free space wave
number k,, i.e. ¥k, = ako + jfKk,. On the real axis the
interval was divided into two intervals, «; and «,, when the
number of support points reached 29. The shaded areas show
the 29 support points before interval division. Both the
maximum and the average relative errors after every iteration,
and the roots found in each interval are shown.
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Fig. 1. Cross-section of the shielded microstrip line. All dimensions
are given in millimeters.

Fig. 2 shows the interpolation model response and the support
points for the model determined over interval «». Fig. 3
shows the residual E(y) at convergence of the adaptive
sampling algorithm and the relative error between the
characteristic equation response and the interpolation model
ldet[Y(3)]-R,(»)|
1+det[Y ()]

calculated numerator and denominator of the function of Fig.
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Fig. 2. The interpolation model response using the support points
(diamonds) established by the adaptive sampling algorithm for the
structure of Fig. 1 at 20 GHz. This is the second interval, i.e. a,, on
the a-axis as chosen by interval division. Support points larger than
+/-107" are shown at ~/-10"" respectively.
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Fig. 3. The relative error estimated by the adaptive sampling
algorithm at convergence and the relative error between the
characteristic equation response and the interpolation model
response (Fig. 2) at 20 GHz.
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Fig. 4. The interpolation model response (Fig. 2) split into its
numerator N(¢) and the denominator D(«) components.



TABLE1 Adaptive sampling algorithm iterations for shielded microstrip line (Fig. 1) at 20 GHz. The shaded areas show the support points
used for initialization on the S-axis, and those determined before interval division on the @-axis. Propagation constants are normalized with
respect to the free space wave number k.

B 10;32.979] a, € [0; 1.463] a; € [1.463; 2]
Support Egy) [dB] Support Efy) [dB] Support Efy) [dB]
k points Max Average points Max Average oints Max Average
1 %
2
3 41.1 48
4 11.8 226
5 -344 -47.9
6 j1.098 45 -11.9
7 j2.955 34.7 -5.0
8 j2.782 75.7 272
9 §1.260 30.1 6.3
10 j2.633 392 3.0
11 j0.680 -6.6 -38.6
12 j2.394 37.7 2.7
13 j0.836 352 -42
14 j0.573 20.5 -19.8
15 j0.704 24.7 -13.4 -35.6 -50.2 00 325 -13.9
16 j0.495 68.2 16.7 0.551 25.0 -18.8 1.828 359 -1.3
17 j0.597 5.5 -18.9 0.243 -0.9 -48.4 1.476 432 3.2
18 j0.490 -0.8 -47.8 1.460 -48.7 -67.4 1.610 40.6 -2.9
19 j1.904 27.5 -6.9 0.067 -62.0 -81.9 1.756 -33.0 -64.8
20 j0.304 -47.0 -81.7 1.445 -65.7 -81.5 1.601 -14.3 -54.5
21 j0.806 -9.9 -55.5 0.023 -55.4 -72.4 1.792 -59.5 -84.8
22 j0.472 -40.3 -65.6 0.138 -70.5 -84.7 1.751 2.3 -40.1
23 j0.066 -534 -96.0 0.334 -83.0 -104.0 1.759 -58.6 -101.8
24 j0.424 -67.3 -105.0 1.794 -108.7 -139.2
25 j1.988 -95.9 -130.8
j0.59457 1.4978
Roots j0.72511 1.6102
found j1.1027 0.55192 1.7589
j2.7106 1.8744

TABLE Il Propagation constant y/k, of the first six even order modes for the microstrip line of Fig. 1 at 20 GHz.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
Huang [5] j2.7086 j1.1031 j0.72499  j0.59418 0.55274 0.77162 £j0.15345
This Method j2.7106 j1.1027 j0.72511  j0.59457 0.55192 0.75304 £70.14338

The even order propagation constants y/k, of the. first six
modes at 20 GHz are listed in Table II together with Huang’s
results [5]. Huang used the singular integral equation method
to determine the propagation constants. Fig. 5 shows all the
even order modes versus frequency. Evanescent modes
y/ko = a/K, are plotted in the opposite direction.

The number of characteristic equation evaluations to
determine all the propagation constants versus frequency is
shown in Fig. 6 and Fig. 7 evaluated in increments of 0.1
GHz. The complexity of the function increases as frequency
increases and so the number of characteristic equation

evaluations increase. From 16.4 GHz the number of divisions
on the a-axis increases to two, and at 22.3 GHz and 23.0
GHz and from 23.2 GHz the number of divisions is three. Fig.
8 shows that between 3 and 15 evaluations are required per
determination of an imaginary or a real root over the interval
of interest. The calculation of roots via a previously published
technique [8] required between 100 and 300 evaluations of
the characteristic equation to determine the roots between
adjacent poles. Note that the number of poles over the
interval of interest is between 3 and 8, resulting in a typical
reduction of a factor 100 in computational effort.
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Fig. 5. Even order propagation constants y= a+j normalized with k, versus frequency for the structure shown in Fig. 1.
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6.2 Unilateral fin line

The guide wavelength A is evaluated for the unilateral fin line
with a centered slot as shown in Fig. 9. The wavelength inside
the guide is 27/f, , where f is the dominant mode. The

results are compared with those obtained in [25], where

spectral domain formulas and modal analysis were used. Fig.
10 shows the guide wavelength A normalized with the free
space wavelength A, versus frequency for different values of
the slot width, w. Table III compares the computed results
with those given in [25, Table 4.4].

Fig. 9. Cross-section of the centered slot unilateral fin line.
All dimensions are given in millimeters.
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Fig. 10. Normalized guide wavelength A/ 4, versus frequency for the centered slot unilateral fin line shown in Fig. 9. wis given in
millimeters.
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TABLE Il _Comparison of the guide wavelength A/4, for the unilateral fin line of Fig. 9 with w= 0.5 mm.

Ao
Frequency [GHz] Modal analysis [25] Spectral domain [25] This Method
26.0 1.1096 1.0200 1.0192
30.0 0.9791 0.9794 0.9789
35.0 0.9491 0.9494 0.9490
40.0 0.9302 0.9304 0.9301

7. CONCLUSION

The adaptive sampling algorithm efficiently determines the
selection and the minimum number of propagation constant
support points needed to accurately define a rational function
model of the characteristic equation over the propagation
constant range of interest. A root finding algorithm applied to
the interpolation model is fast and efficient. The adaptive
sampling algorithm added to the Method-of-Lines technique
was applied to the analysis of a shielded microstrip line
structure and a unilateral fin line structure, and required
typically between 3 and 15 evaluations of the characteristic
function to determine an imaginary or a real zero.
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