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Abstract- To analyze an electrically large object 
with local fine structures, the conventional mixed 
form fast multipole algorithm requires that the 
boxes of the finest level are all with the same size, 
which belongs to the low-frequency region. This 
scheme is deficient since the mesh size is limited 
by the box size of the finest level, which is related 
to the finest parts of the object. In this paper, an 
efficient adaptive grouping scheme is introduced 
into a mixed-form fast multipole algorithm. In an 
adaptive mixed-form fast multipole algorithm, the 
number of unknowns in each non-empty box of 
the finest level is almost the same which results in 
the box of the finest level may be in a different 
frequency regime with a different size. Hence 
multipole expansions are employed, if the boxes 
located in the low frequency regime while the 
plane wave expansions are employed if the boxes 
located in the mid-frequency regime. Numerical 
results are given to show that the proposed 
approach is efficient to analyze the objects with 
many fine structures. 

 

Index Terms- Adaptive grouping scheme, 
electromagnetic scattering, mixed-form fast 
multipole algorithm, multilevel fast multipole 
algorithm (MLFMA).                                                                              
 

I. INTRODUCTION 
The integral equation formulation is one of the 

most commonly used methods for solving the 
Maxwell’s equations in electromagnetic scattering 
problems. Due to the fast increasing capability of 
computers, computational electromagnetics has 
developed to be more and more powerful. As a 
result, a number of algorithms have been 
presented for the fast computation of the large 
linear matrix equation systems resulting from the 

discretization of integral equations for 
electromagnetic scattering, such as conjugate 
gradient fast Fourier transform (CG-FFT) [1], 
adaptive integral method (AIM) [2], multilevel 
fast multipole algorithm (MLFMA) [3], etc. 

Although many methods can simulate EM field 
accurately of electrically large objects, it remains 
to be difficult to simulate the EM field accurately 
where the size of the subscatterers is a small 
fraction of a wavelength. Many traditional 
methods suffer from a so-called “low frequency 
breakdown”, such as method of moments (MoM), 
finite element method (FEM) and so on [3]. In 
order to capture the fine details of the structure 
accurately, e.g., in circuit components such as 
inductors and capacitors, this problem becomes 
more and more important and poses a pressing to 
simulate EM phenomena in circuits and antennas. 
Therefore, it becomes a popular topic for 
researchers in this field to overcome the 
low-frequency breakdown problem. Some fast 
methods have been proposed to cover the regime 
from low frequency to mid frequency, such as 
loop and tree basis decomposition introduced for 
EFIE [15, 16], the plane wave methods based on 
the generalized Gaussian quadrature rules 
proposed by Greengard [4], and the low-frequency 
fast inhomogeneous plane wave algorithm 
(LF-FIPWA) for wide-band fast computations [5, 
6]. However, much memory is required for 
LF-FIPWA, since evanescent waves are highly 
direction dependent.  

The fast multipole algorithm is numerically 
unstable due to the oscillatory characteristic of the 
spherical Hankel function for small arguments. As 
an attempt for a possible remedy, the mixed-form 
fast multipole algorithm (MF-FMA) [3, 7] is 
proposed to cover a wide band from the 
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low-frequency to mid-frequency. However, it is 
noticed that the MF-FMA need to construct 
multipole expansions for each nonempty boxes at 
the low frequency regime [3, 7]. As a result, the 
finest level boxes’ size will all be less than 0.2λ 
(“λ” stands for wavelength). This results in a 
source distribution of high-density for the whole 
object. However, AMF-FMA just applies 
MF-FMA for some part of the object which 
belongs to the low frequency regime and the rest 
of the object which belongs to the mid frequency 
regime is still analyzed by MLFMA. Hence for an 
object containing fine structure, AMF-FMA takes 
advantage of adaptive grouping scheme [8, 13] to 
set the finest level box size smaller than 0.2λ for 
fine structure while for the rest of the object, the 
finest level box size is larger than 0.2λ. This frees 
MLFMA from low-frequency breakdown. As a 
result, the characteristics of both long-wavelength 
and short-wavelength are considered 
simultaneously for the object. In this way, the 
proposed algorithm is memory efficient since the 
adaptive grouping scheme is used. 

This paper is organized as follows. Section II 
gives a brief introduction to the processing of near 
interaction of MF-FMA and the EFIE formulation 
in electromagnetic wave scattering. Section III 
describes the theory and implementation of the 
adaptive MF-FMA in more details. Numerical 
experiments with a few electromagnetic wave 
scattering problems are presented to demonstrate 
the efficiency of the AMF-FMA in Section IV. 
Section V gives some conclusions and comments. 

II. EFIE FORMULATION 
The EFIE formulation of electromagnetic wave 

scattering problems using planar 
Rao-Wilton-Glisson (RWG) basis functions for 
surface modeling is presented in [13]. The 
resulting linear systems from EFIE formulation 
after Galerkin’s testing are briefly outlined as 
follows: 
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Here, ( , ')G r r  refers to the Green’s function in 
free space and { }na  is the column vector 
containing the unknown coefficients of the surface 
current expansion with RWG basis functions. Also, 
as usual, r  and 'r  denote the observation and 
source point locations. ( )iE r  is the incident 
excitation plane wave, and   and k  denote the  

          

Fig. 1. The general translation used for LF-FMA. 

free space impendence and wave number, 
respectively. Once the matrix equation (1) is 
solved by numerical matrix equation solvers, the 
expansion coefficients an can be used to 
calculate the scattered field and RCS. In the 
following, we use A  to denote the coefficient 

matrix in equation (1), { }nax , and  mVb  
for simplicity. Then, the EFIE matrix equation (1) 
can be symbolically rewritten as: 

  .Ax b             (2) 
To solve the above matrix equation by an 

iterative method, the matrix-vector products are 

jJr

jJr  

jJr

JIr  
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needed at each iteration. Physically, a 
matrix-vector product corresponds to one cycle of 
interactions between the basis functions. The basic 
idea of the mixed-form FMA (MF-FMA) is to 
combine the LF-FMA with the MLFMA into one 
uniform expression and convert the interaction of 
element-to-element to the interaction of 
group-to-group. Here, a group includes the 
elements residing in a spatial box. The 
mathematical foundation of the mixed-form FMA 
is, also, the addition theorem for the scalar 
Green’s function in free space. Using the 
MF-FMA, the matrix-vector product Ax  can be 
written as: 

  .N F Ax A x A x  

Here, NA  is the near part of A  and FA  is 
the far part of A .  
  In the MF-FMA, the calculation of matrix 
elements in NA  remains the same as in the 
MoM procedure. However, those elements in 

FA  are not explicitly computed and stored. 
Hence, they are not numerically available in the 
MF-FMA. 
 

III. ADAPTIVE MIXED-FORM 
FAST MULTIPOLE 
ALGORITHM 

It is well known that the diagonalized 
translation matrix of the 3-D MLFMA can greatly 
decrease the memory requirements and expedite 
the matrix-vector multiplication. However, it can 
not avoid low-frequency breakdown [3, 4]. In 
order to overcome the low-frequency breakdown, 
the low-frequency fast multipole algorithm 
(LF-FMA) is developed [12] and it bridges the 
gap from static to electrodynamic.   

  
A. Low-frequency fast multipole algorithm     

As shown in Fig. 1, rji = rjJ + rJI + rIi and the 
addition theorem [3, 9, 10] is utilized for LF-FMA. 
The general translation equation is obtained as 
follows: 
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The above equation is a recursive equation and
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number of multipoles. Here, 1L , 2L  and L  
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  and 'LL
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, ,L L LA   is the Gaunt coefficient,    2
lh x is the 

spherical Hankel function of the second kind, 
 ,m

lY   is the spherical harmonic function [10, 
11]. 
  G (rj, ri) is free space green’s function and 
corresponds to α00(rji) 

   00, .j i jiG jk r r r         (7) 

    
B. Adaptive mixed-form fast multipole 
algorithm 
  LF-MLFMA is developed for very 
low-frequency problems based on the 
non-diagonalized form of the fast multipole 
translator and the multipoles are efficient in 
grouping and translating waves among much 
smaller objects or boxes [3, 7]. However, 
LF-MLFMA will lose its accuracy and efficiency 
when the box size is above 0.2λ. Multipoles and 
plane waves are combined into one octree 
browsing process to form the MF-FMA for the 
efficient analysis in both low frequency and 
mid-frequency bands. When the frequency is low, 
or the MLFMA box sizes are small compared to 
wavelength, the non-diagonalized form of the fast 
multipole translator is used. When the box sizes 
are comparable to wavelength, the diagonalized 
form of the fast multipole (plane wave) translator 
is used for translation. In this manner, the 
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multilevel algorithm can efficiently work for box 
sizes to be a small fraction of a wavelength and 
the whole simulation objects can be electrically 
large enough when compared to wavelength. 

The fast multipole translator 'LL
 is always in 

the form of dense matrix and can be diagonalized 
into the plane wave integrations (8) and (9).  

Inserting (9) into (3), the Mixed-form 
translation containing two-level multipoles 
translation and two-level diagonal translation in 

the form of matrix is obtained in (10) below, 
where iS  is a sample number of propagating 
waves over a unit sphere at a level for diagonal 
translations, [I] is the interpolation matrix and [I]T 
denotes the transpose of matrix [I]. iJ  and iI  
denote the different boxes in “i” level. “Diag” is 
short for the diagonal translation matrix. [D]S×L is 
transformer from multipoles to plane waves, and 
 †S L
D  is transformer from plane waves to 

multipoles [7].  
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The free space Green’s function is expanded by 
mixed-form translation through equation (10) as 
(11) above, and the free space Green’s function is 
expanded by plane wave translation for MLFMA 
as (10) above.                         

It can be found from the above equations that 
both the LF-MLFMA and the MF-FMA uses the 
same grouping structure as MLFMA. Therefore, 
the simulated object is first enclosed by the 
smallest possible box, called root boxes. Then the 

root box is divided into eight equal boxes and 
each of the child boxes is recursively subdivided 
into eight smaller boxes until we reach the finest 
level. For MF-FMA, when the multipole 
expansion is applied for each nonempty box in the 
finest level, it is inevitable to produce a large 
number of unknowns because of the source 
distribution for the whole object is high-density at 
the low-frequency regime and the number of the 
finest level box is consequentially larger than  

 

Fig. 2. Point positions. 

MLFMA. Therefore, the MF-FMA is not 
necessary for the whole object but only used for 
the fine structures connected with the electrically 
large object.     

In the conventional grouping scheme described 
above, the parent boxes are divided regardless of 
the number of sources inside them [9]. However, 
for some fraction of the object, the source 
distribution is high-density and it is in fact a 
low-frequency problem. As a result, the uniform 
partitioning often leads to the whole object 
divided with the same resolution and the 
simulation result is not accurate. When MF-FMA 
is used for the object, the box size of finest level 
can be smaller than 0.2λ, but source distribution is 
high-density for the whole object. To improve the 

efficiency of the method, the MF-FMA is applied 
for fine structures of the object which is 
considered at the low-frequency regime and the 
conventional MLFMA is used for the rest of the 
object which is considered in the mid-frequency 
regime. As MF-FMA and MLFMA is used at the 
same time, the size of leafy groups is not always 
the same. Therefore, a new grouping scheme has 
to be developed. 

Different from the method described in [12], if 
a box doesn’t contain sources in the 
low-frequency regime, it will be considered as a 
leaf box and the subdivision is terminated for that 
box, otherwise it will continue to be divided until 
satisfying the low-frequency grouping 
requirement. The following text gives a tree 
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structure where the leaf boxes can be in any of the 
refinement levels. The pseudocode of the adaptive 
tree construction is given as follows: 

Algorithm I: Adaptive tree structure 
Step 1: Enclose the sources in the smallest 

possible box (computational domain) 
Step 2: Decompose the computational domain 

to eight equal child boxes 
Step 3: For each child box k, do k = 1 to 8  
Step 4: If it contains no source, then eliminate 

it, 
Step 5: If it contains sources that belong to the 

mid-frequency regime and the box size is 0.2λ, 
then  

Step 6: The box is considered a mid-frequency 
leaf box and is not further divided 

Step 7: end if 
Step 8: else  
Step 9: Divide it into its 8 child boxes  
Step 10: end if 
Step 11: end do 
Step 12: Repeat until the boxes at the finest 

level agree with the low-frequency requirement. 

 

Fig. 3. Adaptive grouping. 

In the adaptive scheme, the interaction sublists 
for the boxes are formed similar to the traditional 
fast multipole algorithm. As the leaf boxes can be 
in any of the refinement levels, the construction of 
the near list is more involved. To define the near 
list, we consider a box i at level l. The descents of 
box i are boxes in levels ld, ld＜ l, that are 
contained in box i. These include the children, 
grandchildren etc. of box i. The ancestors of box i 
are boxes in levels la, la>l, that contain box i. 

For each leaf box b, we define the following 
sets of boxes: 

1. The leaf boxes which are descents of 

box b’s near neighbors, which is 
denoted by the set Nd. 

2. The leaf boxes which are near 
neighbors of box b’s ancestors, which is 
denoted by the set Na. 

3. The leaf boxes which are near 
neighbors of box b, denoted by the set 
Nn . The near list of a leaf box b consists 
of boxes bn, where bn belongs to 
{ Nn∪Na∪Nd }.  

As is shown in Fig. 3, the adaptive partitioning 
of the computational domain for a nonuniform 
distribution of sources is shown in two 

b 
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dimensions. Consider a leaf box b, the boxes in 
the near list are lightly shaded, and the boxes in 
deep color are b’s far groups. 

Usually, the mesh density for the small cylinder 
is higher than the cubic for the object shown in 
Fig. 5. As a result, if the box size is set 0.2λ for 
the finest level, it will contain many elements in a 
box which results in large memory consumption 
for the near interaction matrix. To alleviate the 

press of near interaction, according to the adaptive 
grouping scheme in [8, 12] and making some 
modification as the above description, MF-FMA 
is applied for in the purple small cylinder and 
MLFMA is applied for in the cubic at the bottom. 
Thus, the finest level box size for the MF-FMA 
can be set smaller than 0.2λ while the finest level 
box size is at least 0.2λ for MLFMA.     

 

 

Fig. 4.  Bistatic RCS of a PEC sphere working at 0.18 GHz simulated by Mie series and adaptive 

mixed-form FMA.  

 
IV. NUMERICAL RESULTS 

In this section, several numerical examples are 
presented to demonstrate the efficiency of 
adaptive MF-FMA (AMF-FMA) for fast analysis 
of electromagnetic scattering. All experiments are 
performed on a Core-2 6300 with 1.86 GHz CPU 
and 1.96GB RAM in single precision. The 
iteration process is terminated when the 
normalized backward error is reduced by 10-3 for 
all examples. 

In the implementation of the MF-FMA, the 
adaptive grouping method is used to reduce the 
memory consumption and captures the fine details 
of the structure. The incident wave is considered 
to be a plane wave at θ = 0.0, φ = 0.0. All 
geometries are modeled by plane triangles panels. 
As shown in Fig. 4, the numerical results of 
bistatic RCS for vertical polarization are given to  

 
illustrate the performance of our AMF-FMA. It  
consists of a sphere with radius 1m at 180MHz, 
and the average element size is 0.048 for the top 
half sphere with 3042 unknowns while the 
average element size is 0.06 for the bottom half 
sphere with 843 unknowns. The MF-FMA and 
MLFMA are applied to the top half sphere and the 
bottom, respectively. The numerical result of 
AMF-FMA is compared with the Mie series and 
we can see the result agrees with the Mie series 
vigorously.  
 In Fig. 6, the geometry is a cube connected 
with a small cylinder with 11862 unknowns. The 
size of the cube is 1m × 1m× 1m with a small 
cylinder whose radius is 0.03m and the height is 
1m. The average element size is 0.03 for the small 
cylinder with 826 unknowns and the cubic is 
0.043 at 300MHz. The numerical results of the
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Fig. 5. A cubic with a small cylinder. 
 

 
Fig. 6.  Monostatic RCS of the cube-cylinder simulated by MoM and adaptive mixed-form FMA. 

 
Fig.7. Bistatic RCS of the cube-cylinder working at 60MHz simulated by MoM and adaptive mixed-form 
FMA. 
 

 

-15

-10

-5

0

5

10

15

60 120 180 240 300

M
on

os
ta

ti
c 

R
C

S
(d

B
sm

)

Frequency(MHz)

AMF_FMA

MoM

-12

-8

-4

0

4

8

0 30 60 90 120 150 180

R
C

S
(d

B
sm

)

Theta(degree)

MoM

AMF-FMA

969CHEN, FAN, CHEN, JIANG, LI: ADAPTIVE MIXED-FORM FAST MULTIPOLE METHOD FOR THE ANALYSIS OF EM SCATTERING



monostatic RCS for vertical polarization are given 
to illustrate the performance of our AMF-FMA at 
60 MHz, 120 MHz, 180 MHz, 240 MHz, and 
300MHz. The finest level box size corresponding 
to the frequencies is 0.05λ, 0.05λ, 0.15λ, 0.1λ, and 
0.125λ. 
 Two levels LF-FMA is applied for the whole 
object at 60 MHz. Mixed-form translation 
containing two levels multipoles translation and 
one level diagonal translation is utilized for the 
small cylinder and the cubic is analyzed by one 
level MLFMA at 120 MHz. For 180 MHz and 240 
MHz, mixed-form translation containing one level 
multipoles translation and one level diagonal 
translation is used for the small cylinder and the 
cubic is analyzed by one level MLFMA. At 
300MHz, mixed-form translation containing one  
 

 

Fig. 8. A cuboid with many fine structures. 

level multipoles translation and two levels 
diagonal translation is used for the small cylinder 
while the cubic is analyzed by two levels 
MLFMA. 

At 60 MHz, the electrical size of the 
cube-cylinder is 0.4λ and the average element size 
is 0.006 for the small cylinder and 0.0086 for the 
cubic. AMF-FMA degenerates to two levels 
LF-FMA with the finest level box size is 0.05λ. It 
is shown in Fig. 7 that the result has a good 
agreement with MoM.  
 When the proportion of fine structures in an 
object goes up as shown in Fig. 8, the total 
memory consumption for MLFMA and 
AMF-FMA is described in Fig. 9. The cuboid of 
the object in Fig. 8 is of the size 3m×3m×0.5m 
and the small cylinders are all in the same size 
with radius 0.05m and the height 2m. The average 
element size for the cuboid is around 0.093 and 
set the average element size for all cylinders 
varies from 0.033 to 0.01, corresponding with the 
unknowns from 8490 to 49011.The box size at the 
finest level for MLFMA is set 0.25λ. The finest 
level box sizes of AMF-FMA are 0.05λ for fine 
structures and 0.2λ for the rest of the object at 200 
MHz. Using AMF-FMA for the object, MF-FMA 
is applied for the cylinders and MLFMA is for the 
cuboid. With the total number of unknowns 
increasing, it can be seen from Fig. 9(a) that the 
memory consumption of storage near part matrix
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 (b)  

 

(c) 

Fig. 9. (a) The memory consumption of the object shown in Fig. 8 between AMF-FMA and MLFMA, (b) 
CPU times for one matrix-vector operation versus the number of unknowns for the object shown in Fig. 8, 
and (c) bistatic RCS of the object shown in Fig. 8 simulated by MLFMA and AMF-FMA at 200MHz. 
 
elements of NA  is large for MLFMA when leaf 
box size is 0.25λ. In other words, the more 
unknowns for the fine structures, the less memory 
requirement for AMF-FMA compared with 
MLFMA.  In Fig. 9(b), it can be seen that the 
CPU time of AMF-FMA for one matrix-vector 
operation is more than MLFMA, but the CPU 

time consumption of AMF-FMA is close to 
MLFMA with the increasing of the unknowns for 
the fine structures. In Fig. 9(c), the bistatic RCS of 
the object in Fig. 8 for vertical polarization is 
given at 200 MHz with the unknowns 8490. 
It can be seen from the figure that the result of 
AMF-FMA agrees with MLFMA vigorously. 
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Table 1: Test the LF-FMA translator 

Source point Field point Green’s function Multipoles expansion 

(0, 0, 0.) (1.0, 0, 0.) (0.9980267,-6.2790520E-02) (0.9917871,-6.2790506E-02) 

(0, 0, 0.) (1.0,0.5,0.) (0.8922212,-6.2780187E-02) (0.8950982,-6.2780164E-02) 

(0, 0, 0.) (1.0,0.5,0.5) (0.8140802,-6.2769860E-02) (0.8088611,-6.2769853E-02) 

(0, 0, 0.) (1.0,0.,0.5)  (0.8922212,-6.2780187E-02) (0.8950983,-6.2780179E-02) 

 

Table 2: Test the MF-FMA translator 

Source point Field point Green’s function Multipole expansion 

(0.25,0,0) (1,0.1,0) (-0.4293182,-1.249964) (-0.4293646,-1.249869) 

(0.25,0,0) (1,0.24,0.24) (-0.5804493,-1.067079) (-0.5811364,-1.066991) 

(0.25,0,0) (1.24,0.24,0.24) (-0.8333122,-0.4675281) (-0.8338917,-0.4674568) 

(0.25,0,0) (1.24,0,0.25) (-0.8216858,-0.5328912) (-0.8221112,-0.5328190) 

 
In Tables 1 and 2, we test the accuracy of 

equation (6) and equation (10). In Table 1, we 
choose the leafy box size is 0.5m and the source 
point is located at (0, 0, 0.). We take field point at 
1, 2, 3, 4, as shown in Fig. 2, the frequency is 
0.003GHz. In Table 2, we choose the leafy box is 
0.25m and the frequency is 0.12GHz. The source 
point is fixed at (0.25, 0, 0.) and the field points 
are selected at random. From the two tables, we 
can conclude that the error of the results is no 
more than 1%.  
 

V. CONCLUSIONS 
In this paper, we have described an adaptive 

grouping scheme combined with MF-FMA 
(AMF-FMA) for solving electromagnetic wave 
scattering problems. One advantage of our 
presented AMF-FMA is that it can cover a wide 
band from low frequency to mid-frequency 
without low-frequency breakdown. Another 
improvement is that for the object with fine 
structures, combined with adaptive grouping 
method, MF-FMA and MLFMA can be used 
flexibly for different parts of the object 
simultaneously. MF-FMA is applied for capturing 
the fine details of the structure accurately, and 

MLFMA is implemented for the rest of the object. 
As a result, the memory consumption is greatly 
reduced compared with MLFMA. Numerical 
results are performed and compared to verify the 
AMF-FMA is flexible and efficient. 

 
ACKNOWLEDGMENT 

We would like to thank the support of Major 
State Basic Research Development Program of 
China (973 Program: 2009CB320201); Natural 
Science Foundation of 60871013, 60701004, 
60928002; Jiangsu Natural Science Foundation of 
BK2008048. 

 
REFERENCES 

[1]  S. M. Rao, D. R. Wilton, and A. W. Glisson, 
“ELectromagnetic scattering by surfaces of 
arbitrary shape,” IEEE Transactions on 
Antennas and Propagation., vol. 30, no. 3, 
pp. 409-418, May 1982. 

[2]  J. M. Jin, The Finite Element Method in 
Electromagnetics, 2nd ed., John Wiley & 
Sons, Inc., 2002. 

[3]  W. C. Chew, J. M. Jin, Eric Michielssen, 
and J. M. Song, Fast and Efficient 
Algorithms in Computational 

972 ACES JOURNAL, VOL. 25, NO. 11, NOVEMBER 2010



Electromagnetics, Artech House Publishers, 
2001. 

[4]  L. Greengard, J. F. Huang, V. Rokhlin, and 
S. Wandzura, “Accelerating fast multipole 
methods for the Helmholtz equation at low 
frequencies,” IEEE Comput. Sci. Eng., vol. 5, 
no. 3, pp. 32-38, Jul.-Sep. 1998. 

[5]  L. J. Jiang and W. C. Chew, “Broad-band 
fast computational electromagnetics 
algorithm- MFIPWA,” Proc. 19th Annual 
Review of Progress in Applied 
Computational Electromagetics, pp. 36-41, 
Mar. 2003.  

[6]  L. J. Jiang and W. C. Chew, 
“Low-frequency fast inhomogeneous 
plane-wave algorithm (LF-FIPWA),” Microw. 
Opt. Technol. Lett., vol. 40, no. 2, pp. 
117-122, Jan. 20, 2004. 

[7]  L. J. Jiang and W. C. Chew, “A Mixed-Form 
Fast Multipole Algorithm,” IEEE 
Transactions on Antennas and Propagation, 
vol. 53, no. 12, pp. 4145- 4156, Dec.2005.  

[8]  H. Cheng, L. Greengard, and V. Rokhlin, “A 
fast Adaptive multipole algorithm in three 
dimensions,” J. Comput. Phys., vol. 155, pp. 
468-498, 1999. 

[9]  L. Greengard and V. Rokhlin, “A fast 
algorithm for particle simulation,” J. Comput. 
Phys., vol. 73, pp. 325-348, 1987. 

[10]  J. S. Zhao and W. C. Chew, “Three 
dimensional multilevel fast multipole 
algorithm from static to electrodynamic,” 
Micro. Opt. Technol. Lett., vol. 26, no. 1, pp. 
43-48, 2000. 

[11]  J. S. Zhao and W. C. Chew, “A succinct way 
to diagonalize the translation matrix in three 
dimensions,” Micro. Opt. Technol. Lett., vol. 
15, no. 3, pp. 144-147, 1997. 

[12] S. Ayatollahi and M. Safayi Naeini, 
“Adaptive plane-wave expansion algorithm 
for efficient computation of electromagnetic 
fields in low-frequency problems,” 
Microwaves, Antennas and Propagation, 
IEE Proceedings, no. 3, pp.182-190, 2006. 

[13]  L. J. Jiang, Studies on low frequency fast 
multipole algorithms, Ph.D. Dissertation, 
University of Illinois, Urbana, 2004. 

[14]  D. R. Wilton and A. W. Glisson, “On 
improving the electric field integral equation 

at low frequencies,” 1981 Spring URSI 
Radio Science Meeting Digest, pp. 24, June 
1981. 

[15]  J. R. Mautz and R. F. Harrington, “An 
E-field solution for a conducting surface 
small or comparable to the wavelength,” 
IEEE Transactions on Antennas and 
Propagation., vol. 32, no. 4, pp. 330-339, 
April 1984.  

 
Hua Chen was born in Anhui 
Province, China. She received 
the B.S. degree in Electronic 
Information Engineering from 
Anhui University, China, in 
2005, and is currently working 
toward the Ph.D. degree at 
Nanjing University of Science 

and Technology (NJUST), Nanjing, China. Her 
current research interests include computational 
electromagnetics, antennas and electromagnetic 
scattering and propagation, electromagnetic 
modeling of microwave integrated circuits. 
 

Zhen-Hong Fan was born in 
Jiangsu, the People’s Republic 
of China in 1978. He received 
the M.Sc. and Ph.D. degrees in 
Electromagnetic Field and 
Microwave Technique from 
Nanjing University of Science 
and Technology (NJUST), 

Nanjing, China, in 2003 and 2007, respectively. 
During 2006, he was with the Center of Wireless 
Communication in the City University of Hong 
Kong, Kowloon, as a Research Assistant. He is 
currently an Associated Professor with the 
Electronic Engineering of NJUST. He is the 
author or coauthor of over 20 technical papers. 
His current research interests include 
computational electromagnetics, electromagnetic 
scattering, and radiation. 
 

Ru-Shan Chen (M’01) was 
born in Jiangsu, P. R. China. He 
received his B.Sc. and M.Sc. 
degrees from the Dept. of Radio 
Engineering, Southeast 
University, in 1987 and in 1990, 

973CHEN, FAN, CHEN, JIANG, LI: ADAPTIVE MIXED-FORM FAST MULTIPOLE METHOD FOR THE ANALYSIS OF EM SCATTERING



respectively, and his Ph.D. from the Dept. of 
Electronic Engineering, City University of Hong 
Kong in 2001. He joined the Dept. of Electrical 
Engineering, Nanjing University of Science & 
Technology (NJUST), where he became a 
Teaching Assistant in 1990 and a Lecturer in 1992. 
Since September 1996, he has been a Visiting 
Scholar with the Department of Electronic 
Engineering, City University of Hong Kong, first 
as Research Associate, then as a Senior Research 
Associate in July 1997, a Research Fellow in 
April 1998, and a Senior Research Fellow in 1999. 
From June to September 1999, he was also a 
Visiting Scholar at Montreal University, Canada. 
In September 1999, he was promoted to Full 
Professor and Associate Director of the 
Microwave & Communication Research Center in 
NJUST and in 2007, he was appointed Head of 
the Dept of Communication Engineering, Nanjing 
University of Science & Technology. His research 
interests mainly include 
microwave/millimeter-wave systems, 
measurements, antenna, RF-integrated circuits, 
and computational electromagnetics. He is a 
Senior Member of the Chinese Institute of 
Electronics (CIE).  
 
Zhao-Neng Jiang was born in Jiangsu Province, 
the People’s Republic of China in 1985. He 
received the B.S. degree in Physics from Huaiyin 
Normal College in 2007, and is currently working 
toward the Ph.D. degree at Nanjing University of 
Science and Technology. His research interests 
focus on fast solution of integral equations, 
electromagnetic scattering, and propagation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Meng-Meng Li was born in 
Jiangsu Province, the People’s 
Republic of China in 1984. He 
received the B.S. degree in 
Physics from Huaiyin Normal 
College in 2007, and is 
currently working toward the 

Ph.D. degree at Nanjing University of Science and 
Technology. His research interests focus on fast 
solution of integral equations, modeling of 
microwave integrated circuits, and UWB 
antennas.  

974 ACES JOURNAL, VOL. 25, NO. 11, NOVEMBER 2010




