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ABSTRACT. A method to compute the ray tracing over
complex bodies composed by smooth convex surfaces of
arbitrary shape is presented. The bodies are assumed to
be electrically large and perfectly conducting. Free-
form parametric surfaces are used to describe the
structures. The technique is simple and efficient, so it is
suitable for complex bodies. Some results obtained with
FASANT code, which implements this technique, are
presented to prove the efficiency of the method.

1. INTRODUCTION.

The Uniform Theory of Diffraction (UTD)
approach is widely used in scattering, radiation and
antenna-coupling problems when electrically large
bodies are involved. In such problems, when the
surfaces of the bodies are smooth, the UTD contribution
of the curved surface diffraction (also called creeping
waves phenomenon) [1] must be taken into account.
Examples of such bodies are aircraft, ships, cars, etc.
Usually, their shapes are described in terms of free-form
parametric surfaces as NURBS (Non-Uniform Rational
B-Spline), Bezier patches, Coons patches, etc. [2]. The
main difficulty in the computation of curved surface
diffraction of such shapes is the ray tracing.

In the past, the problem of the creeping waves ray
tracing has been solved in an analytical way for a great
variety of canonical shapes, from cones, cylinders or
spheres [3-5], to other more complicated shapes such as
ellipsoids [6] and spheroids [7], and even such surfaces
as quadric cylinders, ellipsoids, paraboloids, and bodies
formed by combination of these shapes [8].

This work presents a method to compute the
tracing of surface diffracted rays on complex bodies
composed by smooth convex surfaces of arbitrary shape
modeled by free-form parametric surfaces. In this
method the points along the trajectory over the body are
calculated in an iterative way using differential
equations. Something similar was presented in [9] and
[10], but in both papers the method was applied to

canonical shapes, one ellipsoid in [9], and one cylinder
in [10], and in both cases the bodies were modeled by
using one analytical surface.

In our cases the calculations are made over
complex bodies modeled by using free parametric
surfaces. The main contribution of this paper is the
practical treatment derived of applying the method to
these kinds of surfaces. One of the most important
features is that the structures where the antennas are
placed (aircraft, ships, etc.) are very complex, and have
to be modeled with several arbitrary curved surfaces.
Then, sometimes the ray is propagated along two or
more surfaces. Therefore, a very important issue in the
present approach is to evaluate how the ray path crosses
from one surface to another.

Moreover, it is important to consider the case that
both the transmitter and the receiver can not be on the
surface. In this case, it is necessary to calculate the path
from the transmitter up to the surface, the propagation
along it and the path from the surface up to the receiver.
In our approach, the three paths are computed in a
general way, in order to be applicable to the surfaces
described above.

Results applying the method to a missile and an
aircraft are shown. These results have been obtained with
a code called FASANT [11] developed by the authors of
this paper.

2. RAY TRACING

The trajectory of a surface diffracted ray can be
divided in three paths. The first one is a straight path
which goes from the transmitter antenna (Tx) to a point
(P1) on the surface shadow boundary (SSB). Then, the
ray follows a curved trajectory along the surface of the
body. The propagation over the surface stops when the
ray reaches a point (P2) on the shadow boundary of the
receiver antenna (Rx) where the ray follows a straight
path to Rx as can be seen in Figure 1.
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Figure 1. Ray trajectory over a surface.

Moreover, the ray must satisfy the Generalized
Fermat’s Principle [12], that is, the sum of the three path
lengths must be an extreme (maximum or minimum). As
a consequence, the ray arrives at the point Pl under
grazing incidence, travels on the body surface along a
geodesic curve and leaves the surface (at P2)
tangentially and pointing to Rx.

The geometric representation of the bodies is given
as a collection of Bezier patches. These are parametric
surfaces of arbitrary degree whose advantage is that
complex surfaces can be described with a very low
amount of Bezier patches. Nevertheless, the method is
also useful if the surfaces are specified using different
kinds of parametric surfaces such as NURBS (Non-
Uniform Rational B-Spline), Coons patches, etc. The
geometric parameters of the surface (normal vectors,
curvatures, etc.) at P1, P2 and at the points of the
geodesic curve are necessary to compute the UTD
diffracted field. Knowing the parametric coordinates of
the above points in the corresponding surface, such
geometric parameters can be calculated using closed-
form expressions of differential geometry [2].
Therefore, the objective is to compute the parametric
coordinates of such points.

The proposed method starts by calculating a set of
sampling points on the SSB. The SSB points must satisfy
the following condition:

(F(u,v)=S)-A(u,v) =0 )

where u and v are the parametric coordinates of the point,
r is the position vector of the point, S is the position
vector of the source (Tx) and N is the unit surface normal
vector in the point (see Figure 2).
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Figure 2. Geometrical parameters involved in the
computation of the SSB.

Obviously, only points on partially illuminated
surfaces fulfill equation (1). Then, the first step is to
determine the surfaces of the body which are partially
illuminated. For that, the normal vector is evaluated at a
set of points of each surface. If all the points evaluated

satisfy the condition (F(u,v)—S)-f(u,v)>0 then the
surface is totally hidden. On the other hand, if
(f(u,v)-S)-n(u,v) <0 for all of them, it is totally
illuminated. The partially illuminated surfaces are those

where the first condition is satisfied at some of the
evaluated points and the second one at the others.

Once these surfaces have been obtained, there are
infinitely many points which form part of the SSB on
each surface, but only a set of points of the SSB are
computed. These ones will be the intersection points
between a set of parametric curves and the SSB curve. To
compute them, the value of one parametric coordinate is
fixed and equation (1) is solved. Repeating this procedure
for both coordinates, varying the fixed coordinate from
u=0 to u=1 and then from v=0 to v=1, the sample points
of the SSB are obtained.

For each of those points, the corresponding geodesic
curve is calculated, which starts at the point and satisfies
the following equations [13]:
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where [ jk are the Christoffel parameters [12] and o is the

arc length along the curve. The Christoffel parameters are
functions of the parametric derivatives of the surfaces, so
at each point (u,v) they can be calculated easily from the
surface description.

Therefore, assuming we are dealing with smooth
convex surfaces with continuity in the surface points and
their derivatives, we can solve the equations (2) and (3)
by invoking the Milne method: Doing this, the next
equations are found which allow one to obtain in an
iterative way the parametric coordinates of a set of sample
points of the geodesic curve, each point being separated
by a distance Ac from the previous point over the
trajectory.
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As can be seen, to calculate one point in the
trajectory, two previous points are needed, therefore two
starting points are needed to apply the algorithm. The first
starting point (with position vector 1, ) will be, obviously,
the outline point for which the propagated ray is being
calculated and the second starting point (with position
vector T, ) will be calculated (bearing in mind that the
incidence to the surface has to be tangential to the
propagation trajectory and, therefore, if the step Ac is
small enough) using the following equation:
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where S is the source position.

Once the first two points of the path have been
found, the parametric coordinates of the third one can be
computed by applying equations (2) and (3), obtaining the
following points on the ray trajectory in an iterative way.

Because of the complexity of the bodies, they will be
modeled by the union of several surfaces. It is important
to calculate the path followed by the ray when it crosses
from one surface to another in an efficient way. This case
happens when the point obtained for the method is out of
the limits of a surface (surface 1) and this surface is
joined with another different one (surface 2).
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First of all, the ray propagation path will continue
when the two surfaces present continuity in the normal
vector. In other cases the surfaces form an edge and a
diffraction of the creeping wave appears. This
contribution has not been considered in this work. To
evaluate this condition the next criterion must be satisfied
if the surface normal is continuous:

o0,y =1 (N

where n,and n, are the normal vectors to each surface
evaluated in the border between them.

In case the criterion is satisfied, the Cartesian
coordinates of the point obtained outside the limits of
surface 1 are computed as if this point was within the
limits of the surface. From these Cartesian coordinates the
parametric coordinates over surface 2 can be computed.
Once they have been obtained the algorithm can be
applied again over surface 2.

Two starting points are again needed on the second
surface. To obtain the other one, the last point of the
trajectory which was on the first surface is used and its
parametric coordinates over the second surface are
calculated as if the point would be in it, following the
steps seen before.

The emission of the ray propagated along the surface
is produced when this ray reaches the shadow boundary
seen from the observation point. To calculate when a
point of the shadow boundary is reached, two conditions
have to be evaluated:

1) The receiver is visible from the point, that is to
say:

n-v,20 ®)

where 0, is the normal vector to the surface at this point

and \7i is the output vector which joins the point with the
observation point.

2) The output ray is emergent, that is to say, the

output vector has the same direction as the geodesic
curve, therefore:

(f-1) v, 20 ©

All the process described above is made for each
point on SSB for Tx calculated before. Then, there will be
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as many trajectories as outline points. However, not all of
them will produce field due to creeping waves. This field
will only exist if the output ray is tangential to the
geodesic curve or, equivalently, if the output vector at the
last point of the curve is tangential to this curve.
Therefore, only the trajectory which carries out the
tangential condition for the output ray will be valid.

3.- RESULTS.

Two examples are presented. These results have
been obtained with the FASANT code which
incorporates the creeping wave effect by using the
process previously described.

Figure 3 shows the result of applying the method to
a missile, modeled with 24 Bezier patches. Although in
this Figure, the missile seems to be modeled by using
plane facets because of the graphical representation, it is
modeled by using curved surfaces. The paths were
obtained from one sender to several receivers placed at
different heights with respect to the missile. The most
interesting thing in this case is to see how for some
receivers the ray is propagated only along the top of the
missile, while for others the ray propagates only on the
body, and for others the ray follows a path which
crosses from the missile top to the body. This Figure
proves that the method obtains the ray trajectory
independently of the shape of the surface where the ray
is propagated, even if the ray is propagated along
several surfaces and, therefore, the body shape changes
along the ray path. The computation time, on a Pentium
II 333 MHz with 128 MB of RAM., is 33 seconds to
obtain the shadow boundary seen from the receiver and
24 seconds to compute, on average, the trajectory of the
ray for each observation point.

In Figures 4 to 7 the method is applied to an
aircraft, modeled with 72 Bezier patches. Here also the
results have been obtained for one sender to several
receivers Only four paths, from different points of view,
are depicted to show them in a clear way. These paths
are representative of several trajectories that the ray can
follow on the aircraft, to prove the validity of the
method with independence of the surface along the ray
is propagated. There is one path along the top of the
fuselage, another along the bottom, another more along
the engine, and a fourth one along the tail. The
computation time in this case is 3 minutes 02 seconds
for obtain the SSB and 2 minutes 43 seconds, on
average, to compute geodesic path for each point. The
computer used is the same as for the previous example.
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Figure 3. Ray tracing over a missile.
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Figure 4. Top plant view of the ray tracing over an aircraft.

Figure 5. Bottom plant view of the ray tracing over an aircraft.
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Figure 7. Bottom isometric view of the ray tracing over an aircraft.
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4.- CONCLUSIONS.

A general method to compute the creeping wave
path along free-form parametric surfaces has been
presented. Both the computation of the shadow
boundary seen from the transmitter and the path
followed by the ray along the surface are computed in a
numerical way, which made them applicable to any kind
of surface. Also the method is valid for bodies modeled
by several surfaces. Some ray tracing results have been
shown for realistic models of a missile and an aircraft.
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