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Abstract─ Fast multipole methods (FMM) and 
their immediate predecessors, tree codes, were 
developed in response to the need for solving N-
body problems that occur in applications as varied 
as biophysics, computational chemistry, 
astrophysics and electromagnetics. In all these 
areas, it is necessary to compute long range 
potentials of the form 1/R between a dense 
distribution of point charges, where R is the 
distance between any two charges. Often, repeated 
evaluation of these potentials is necessary. It is 
apparent that the cost of direct evaluation, which 
scales as O(N2) for N degrees of freedom, forms a 
fundamental bottleneck. FMM and tree methods 
ameliorate the cost associated with these 
computation; CPU times of these method scale as 
O(N). It stands to reason that FMM has had a 
seminal impact on a multitude of fields, so much 
so, that it was recognized as one of the top ten 
algorithms of the past century. A method to 
rapidly compute potentials of the form e-jκR/R soon 
followed. As the reader is aware, these potentials 
are the crux of integral equation based analysis 
tools in electromagnetics and the advent of these 
methods have transformed the face of 
computational electromagnetics. Consequently, 
the state of art of integral equation solvers has 
grown by leaps and bounds over the past decade. 
This paper attempts to present a detailed review of 
the state of art of FMM based methods that are 
used in computational electromagnetics, from the 
static to the high frequency regime. 
 
Index Terms─ Fast Multipole Method (FMM), 
FMM review, Multiscale, Wideband FMM, 
Multipole methods, Cartesian expansions, ACE. 
 

I. INTRODUCTION 
     The numerical solution of Maxwell’s equations 
has typically proceeded along two different paths. 

The first, and perhaps the more popular, is the 
direct discretization of Maxwell’s equations [1, 2]. 
Finite difference and finite element methods 
belong to this class of solvers. Their popularity 
stems from two salient features; (i) they are 
typically simpler to program and (ii) their memory 
and CPU cost scales as O(N), where N denotes the 
number of degrees of freedom. The second 
methodology for solving Maxwell’s equations are 
based on developing integral equations (IE) 
derived by evoking the Green’s 
identity/equivalence theorems. While the latter 
was introduced in electromagnetics more than four 
decades ago [3], they were not a popular option for 
electromagnetic analysis. The bottlenecks to their 
adoption was due to both the memory and CPU 
complexity, both of which scale as O(N2). This is 
despite some of the inherent advantages of integral 
equations for analyzing open region problems, 
viz., better condition numbers, possibility of using 
surface integral equations and incorporation of the 
radiation boundary condition in the Green’s 
function. 
     The introduction of the fast multipole methods 
(and tree codes) significantly altered the 
landscape. Both these methods were developed in 
response to accelerating pairwise potential 
evaluations in N-body problems in fields ranging 
from biophysics to computational chemistry to 
astrophysics, etc. Here, it is necessary to compute 
long-range Coulombic potentials repeatedly 
between N randomly distributed particles. The tree 
methods [4, 5] and the fast multipole method 
(FMM) [6–9] reduced the computational 
complexity of computing these pairwise potentials 
from O(N2) to O(N). FMM and tree codes are 
based on a hierarchical decomposition of the 
computational domain, and using multipole/local 
expansions to compute the influence between sub-
domains that are sufficiently separated. The FMM, 
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as introduced in [7], exploits the representation of 
the potential in terms of spherical harmonics. As 
we shall see, this is a consequence of using 
addition theorems to represent the potential as a 
series wherein each term is a product of two 
functions. These functions depend either on the 
coordinates of the source or the observer only. The 
separation between source and observer is crucial 
to creating a fast scheme. At about the same time, 
an algorithm that achieves the same reduction on 
complexity, albeit using Cartesian tensors was 
introduced [10]. This derivation relies on using 
Taylor expansion of the potential function to 
provide the necessary addition theorems [11]. 
Cartesian expansions have been used extensively 
in tree codes. More recently, FMM codes based on 
Cartesian expansions have used recurrence 
relations to avoid derivatives [12]. Typically, 
FMMs derived using the Cartesian expansion are 
more expensive as spherical harmonics are optimal 
in representing Coulombic potentials. However, it 
was recently shown that it is possible to develop a 
FMM using Maxwell-Cartesian harmonics that are 
as optimal as using spherical harmonics with one 
singular advantage; it avoids the need for special 
functions [13]. Both FMM and tree codes have 
revolutionized analysis in various application 
domains ranging from molecular dynamics [14], 
elastostatics [15, 16], elastic wave equations [17], 
flow problems [18], capacitance [19] and 
impedance [20] extraction in micro-electronic 
circuits, evaluation of splines [21] and spherical 
harmonics [22, 23]. The FMM framework has also 
been extended to the solution of potentials 
resulting from parabolic equations [24–26]. 
     However, direct extension of FMM to the 
solution of potentials arising from hyperbolic 
equations is not as straightforward. The first 
solution to this problem was presented in two 
dimensions [27, 28], and soon extended to three 
dimensions [29, 30]. The crux to developing these 
algorithms was the derivation of a diagonalized 
form of the translation operator [30–32]. Since 
then, there has been a virtual explosion in research 
in application of these methods to various 
problems in electromagnetics; see [33–35] and 
references therein. The state of art is such that 
problems of the order of tens million spatial 
degrees of freedom have been solved [36– 41]. 
However, the development of FMM based method 
continues on many fronts [42–50]. This paper 

reviews progress in FMM technology since its 
inception and details current trends in FMM 
research. 
     With this introduction, the rest of the paper is 
organized as follows; in Section II, we will outline 
the overall problem, introduce notation that is 
common to the article. Next, static FMM is 
presented in Section III. Methods based on both 
Spherical harmonics and Accelerated Cartesian 
expansions (ACE) will be presented. In Section 
IV, we will detail the development of FMMs and 
their variants for the Helmholtz equation. Finally, 
in Section IV-B we will elaborate on the methods 
used for wideband analysis. In all cases, we will 
first present theorems to implement a single level 
algorithm followed by the steps necessary to 
implement a multilevel version. The CPU time of 
all steps will be elucidated as well as “some” 
algorithmic improvements to these methods since 
they were first introduced. Finally, Section VI will 
summarize the state of art of FMM. In what 
follows, a time dependence of ejωt is tacitly 
assumed. As an aside, while we have tried to be as 
complete as possible in our citations, it is almost 
certain that we have unknowingly missed some. 
 

II. HIERARCHICAL COMPUTATION 
SCHEME 

     The purpose of this section is to outline the 
structure of fast multipole methods and introduce 
notation that will be used in the rest of the paper. 
 
A. Preliminaries 
     Consider a source distribution q(r) such that 
supp {q(r)} = Ω ⊂ 3\ . Likewise, it is assumed 
that the observers are also distributed in Ω. With 
no loss of generality, it is assumed that 

( )1
( ) N

i ii
q r q r rδ

=
= −∑ , where N is the number 

of degrees of freedom. The field due to this source 
constellation at any point 3r∈\ is given by 

      ( ) ( )
1

( ) * ( )
k

i i
i

r g r q r g r r qφ
=

= = −∑ ,           (1) 

where ( )g r is the appropriate Green’s function, 
and * denotes a spatial convolution. It is apparent 
from this expression that the field evaluation 
scales as O(N2) for N observation points. Ideas 
introduced by [4] to ameliorate this cost for static 
problems relies on exploiting the fact that the field 
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at a point due to a cluster of sources is rank 
deficient, where the rank depends on the distance 
between the point and the center of the cluster. In 
other words, for a given accuracy, potential at an 
observation point sufficiently separated from a 
cluster of sources can be computed with few 
multipole expansions. Similarly, for given 
accuracy, few local expansions can be used to 
compute potential at a cluster of observation point 
due to a well-separated source. These ideas were 
cast in a more formal framework as tree-codes [5] 
and FMM [6]. At this point, we note that there is 
rampant confusion in terminology; both FMM and 
tree codes are used interchangeably. While the two 
methods are closely related, there are subtle but 
significant differences between the two [51]. Tree 
codes compute interactions between source pairs 
using one of three methods: (i) directly, (ii) 
evaluating fields at each observation point using 
multipole expansion due to a cluster of sources, or 
(iii) using local expansion at observation clusters 
to find fields. The decision on the operation used 
depends on which one is computationally efficient. 
On the other hand, the algorithmic structure of 
FMM enables the computation of potentials in an 
optimal manner [51]. Two additional operations 
that permit this are aggregation and disaggregation 
functions. These permit the computation of 
information at coarser (or finer) levels using 
information at finer (or coarser) levels. Thus, 
FMM relies on a hierarchical decomposition of the 
computational domain. This is achieved using the 
following strategy [8]; the computational domain 
Ω is embedded in a fictitious cube that is then 
divided into eight sub-cubes, and so on. This 
process continues recursively until the desired 
level of refinement is reached; an Nl-level scheme 
implies Nl -1 recursive divisions of the domain, 
see Fig. 1. At any level, the (sub) domain that is 
being partitioned is called the parent of all the 
eight children that it is being partitioned into. At 
the lowest level, all source/observers are mapped 
onto the smallest boxes. This hierarchical 
partitioning of the domain is referred to as a 
regular octtree data structure. Regular oct-tree 
representations are optimal only for geometries 
with uniform distribution [52]; non-uniform 
distributions can be represented using compressed 
oct-trees [39, 51]. In compressed oct-trees, sub-
division of a domain is stopped when number of 
source/observer in that domain becomes less than 

a pre-fixed limit. While many algorithm exist for 
constructing a tree, the one that we have found to 
be efficient is the use of key data-structure to 
represent the nodes of a tree. In this approach the 
root box enclosing the entire geometry is 
represented with integer value 1; each of the eight 
(four) children of a parent is identified with a three 
(two) bit code which is appended to the parent box 
key to obtain their global unique key. Figure 2 
shows an example compressed oct-tree where each 
box is represented using key-codes. This 
representation has several advantages: the nodes of 
tree at each level automatically follow Morton 
ordering and it plays an important role when 
partitioning the boxes among processors in parallel 
algorithm, all antecedents of a box and essential 
information like size of box, center position, level 
etc. can be readily recovered from its key-code 
using bit manipulations [38, 53, 54]. Mapping the 
computational domain onto a tree facilitates 
partition/classification of interactions as being 
either in the near or farfield. This is done using the 
following rule: at any level in the tree, all 
boxes/sub-domains are classified as being either in 
the near or far field of each other using the 
following dictum: two sub-domains are classified 
as being in the farfield of each other if the distance 
between the centers is at least twice the side length 
of the domain, and their parents are in the near 
field of each other; see Fig. 3 for an illustration of 
these classification. Once, the interaction list have 
been built for all levels, the computation proceeds 
as follows; at the lowest level, interaction between 
the elements of boxes that are in the near-field of 
each other is computed directly, i.e., using (1). All 
other interactions are computed using a three stage 
algorithm: (i) compute multipoles of sources that 
reside in each box; (ii) convert these to local 
expansion at all boxes that are in its far field; (iii) 
from the local expansion, compute the field at 
each observer. This simple three stage scheme is 
called a one-level scheme, and necessitates the 
development of theorems for (i) computation of 
multipoles at leaf (or smallest boxes), (ii) translate 
multipole expansion to local expansion and (iii) 
finally, aggregate the local expansions in a box to 
compute the field at all the observers. It is 
apparent that one can derive a more efficient 
computational scheme by embedding this scheme 
within itself as shown in Fig. 4. That is, if two sets 
of sub-domains that interact with each other are 
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sufficiently far away, then these clusters may be 
combined to form large clusters that then interact 
with each other at a higher level and so on; this is 
referred to here as a multilevel scheme. This 
implies that it is necessary to develop additional 
theorems that enable (i) shifting the origins of 
multipole so that effects of small clusters can be 
grouped together to form larger clusters and (ii) 
move the origin of local expansion so that 
expansions at the origin of the parent may be 
disaggregated to those of its children. In concert, 
these theorems enable one to traverse up and down 
the tree, and are presented next. This said the 
various steps involved in the hierarchical 
computing are shown in Algorithm 1. 
 
 

 
 
Fig. 1. Hierarchical decomposition of a 2D 
computational geometry. 
 
     Note that in single level algorithm the upward 
and downward tree traversal (steps 5 and 7) are 
absent. Next, we will detail these operations for 
different FMMs. Starting with well known static 
FMM to those for Helmholtz and finally to those 
for wideband FMM. Details are presented for the 
first two despite the fact that they are well known. 
The rationale for doing so is two fold (i) it is 
important to understand when FMM for Helmholtz 
fails and (ii) techniques developed for static FMM 
and some of the new FMM approaches find their 
way into the development of wideband FMM. 
 
 

 
 

Fig. 2. Representation of 2D computational geometry 
using quad-trees. Boxes at different levels and 
corresponding nodes in tree are represented using 
binary keys. 
 

 
 

Fig. 3. Illustration of interaction list; dark boxes are 
contained in the interaction list of source box. 
 

III. STATIC FAST MULTIPOLE 
METHOD 

     This section provides the appropriate theorems 
for fast evaluation of potential defined in terms 
of ( ) 1/g r r= . Such potentials are commonly 
used in study of plasma dynamics, magnetostatic 
problems, eddy currents etc. While on first glance, 
one might be inclined to exclude methods 
developed for rapid evaluation of the Coulomb 
potential but these play an important role in 
developing fast methods for wideband problems. 
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Fig. 4. Illustration of computational load in singleand 
multi-level FMMs. Dark nodes correspond to actual 
sources while light shaded nodes represent centers of 
multipole and local expansions. 
 
 
 
 
Algorithm 1 Hierarchical computing 
1: Construct the tree representation for the given 

geometry (distribution of discrete points). 
2: Build interaction list using the above definition, 

for all boxes in the tree and the near-field list 
for leafless boxes. 

3: NF: Use direct method for computation of 
nearfield potential at observation points in each 
leafless box from sources contained in its near-
field boxes. 

4: S2M: compute multipole expansions for each 
leafless boxes from sources contained within it. 

5: M2M (upward traversal): for all parent boxes 
compute the multipole expansion by combining 
the multipole expansions at their children 
boxes. 

6: M2L (translation): for all boxes in the tree 
convert the multipole expansions to local 
expansions about centers of boxes in their 
interaction list. 

7: L2L (downward traversal): update the local 
expansion information at a child box using the 
local expansion of their parent box. 

8: L2O: use the local expansions about each 
leafless box to compute the farfield potential at 
its observation points 

 
 
 
 
 
 
 

A. Single Level Scheme 
     Consider two domains Ωs ⊂ 3\ . and Ωo ⊂ 3\  
that comprises of randomly located source and 
observer points, respectively. With no loss of 
generality, it is assumed that the number of 
sources and observers are k, these domains can be 
embedded in spheres of radius a. The centers of Ωs 
and Ωo are denoted by rs and ro, respectively. It is 
assumed that s sΩ ⊂Ω , and o oΩ ⊂Ω , and 

s oΩ Ω =∅∩ , and the domains of Ωs and Ωo are 
sufficiently separated. In what follows, the 
domains sΩ  and oΩ  will be called parents of Ωs 
and Ωo, respectively. The parent domains can be 
embedded in a sphere of radius 2a, and their center 
are denoted by p

sr and p
or , respectively. Next, we 

will present a single level FMM constructed using 
two methods; (i) spherical harmonics and (ii) 
Cartesian tensors. 
 
1) Spherical harmonics: The theorems for a 
single and multilevel FMMs using spherical 
coordinates were introduced in a series of papers 
[7, 8], and have found extensive application in 
various disciplines; a sampling of these can be 
found in [6, 8, 19, 20, 55–57]. The genesis of the 
method is the well known generating function for 
Legendre polynomials [58], 

( )

2

1
0

1 1

1 2 cos

cos
n

nn
n

R r rr
r r

r P
r

γ

γ
∞

+
=

=
′ ′⎛ ⎞− + ⎜ ⎟

⎝ ⎠

′
=∑

                 (2) 

with 
( )cos cos cos sin sin cosγ θ θ θ θ φ φ′ ′ ′= + − ,       (3) 

where Pn(u) represents Legendre polynomial of 
degree n, ( ), ,r r θ φ′ ′ ′ ′= and ( ), ,r r θ φ= . Legendre 
polynomials in (2) can be represented in terms of 
spherical harmonics Ynm(θ, φ) using the addition 
theorem [59], 

        ( ) ( ) ( )*cos , ,
n

n nm nm
m n

P Y Yγ θ φ θ φ
=−

′ ′= ∑ ,         (4) 

where the superscript * represents complex 
conjugate. Using (4) in (2) results in complete 
separation of source and observation quantities, 
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( ) ( )*
1

0

,1 ,
n

nmn
nm n

n m n

Y
r Y

R r

θ φ
θ φ

∞

+
= =−

′ ′ ′=∑ ∑ .        (5) 

These expressions enable the derivation of the 
following theorems necessary for steps 4, 6 and 8 
in Algorithm 1. 
 
     Theorem 3.1: Multipole Expansion (S2M), 
spherical: Let k charges of strengths 
{ }, 1,...,iq i k= be located at i sr ∈Ω with 

i sr r a− < . Then for any or∈Ω , the potential φ is 
given by, 

 ( ) ( )
1

0

,n
nmm

n n
n m n i

Y
r M

r r

θ φ
φ

∞

+
= =−

=
−

∑ ∑ ,               (6) 

where 

( )*

1

,
k

nm
n i i s nm

i

M q r r Y θ φ
=

′ ′= −∑ ,             (7) 

where the parameters {θi, φi} and {θ, φ} are 
spherical coordinates of ri and r w.r.t the origin at 
rs. In Theorem 3.1, m

nM is the multipole expansion 
at rs constructed from the source quantities qi(ri). 
Proofs for the error bounds in the above 
expressions can be obtained from [8, 9]. Next, 
these multipoles are translated from rs to ro. 
 
Theorem 3.2: Multipole to Local Translation 
operator (M2L), spherical: Given a multipole 
expansion m

nO about rs, it can be mapped to local 

expansion m
nL at ro using 

    
( ) ( )
( )

0

1

,

1

n
k
i

n m n

k m m km m m k
n n i n

i nn m k
i n s o

L

O j A Y

A r r

θ φ

∞

= =−

− − − −
+
+ +−

+

=

−
×

− −

∑ ∑
 ,          (8) 

where {θ, φ} are the spherical coordinates of the rs 

w.r.t ro, and 
( )

( ) ( )
1

! !

n
m
nA

n m n m

−
=

− +
. 

Finally, the local expansions at any leaf node may 
be mapped onto the observers using the theorem 
presented next. 
 
Theorem 3.3: Local Expansions to Observer 
(L20), spherical: The potential at a point or∈Ω  
due to local expansion m

nL about origin is given by, 

      ( ) ( )
0

,
n

nm
n o nm

n m n

r L r r Yφ θ φ
∞

= =−

= −∑ ∑ .             (9) 

As before, the parameters {θ, φ} are the spherical 
coordinates of r with respect to the origin at ro. 
The above theorems, in a one level setting, permit 
the rapid computation of potentials at all points in 
Ωo due to sources in Ωs. It is evident that this 
scheme can be embedded within itself to create a 
multilevel scheme. But prior to doing so, it is 
instructive to re-examine the fundamentals of 
FMM from a Cartesian perspective. 
 
2) Cartesian Tensors: While FMMs that were 
based on spherical harmonics and Cartesian 
tensors were introduced approximately at the same 
time [10], the latter did not receive much 
recognition as it was perceived to be more 
expensive and cumbersome. But, these expansions 
were used extensively in developing tree-codes 
[60], as well as FMM type algorithms for 
magnetostatics [12] and potentials of the form R-ν 
[61, 62]. Our rationale for including this approach 
here is that there is an intimate relationship 
between spherical harmonics and the Cartesian 
tensors, and these connections are well known and 
have been explored extensively (as early as 
Maxwell!); see [63–65] and references therein. 
The following statements hold true: (i) 
components of a traceless tensor of rank n serve as 
constant coefficients in a spherical harmonic of 
degree n, and (ii) there is a class of traceless 
tensors of rank n whose components are n-degree 
spherical harmonics functions of x, y, z. Indeed, 
recurrence relationship that were conjectured for 
translating multipole expansions [12] can be 
rigorously derived using traceless tensors. 
Therefore, it stands to reason that the two 
seemingly disparate methods should have identical 
cost structure. In what follows, we shall briefly 
present theorems that permit an FMM algorithm 
using Cartesian tensors. Proofs for theorems 
presented here, and the myriad advantages of this 
method are detailed in [13]. 
     In what follows, we will denote an nth rank 
tensor using the notation A(n), and as is well 
known, it comprises of 3n components and may be 
expressed in component form as 

1,..., n
Aα α . If the 

tensor is totally symmetric, i.e., its value is not 
altered with permutation of indices, then it 
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contains only (n + 1)(n + 2)/2 independent 
components. A n-fold contraction between an (n + 
m)th rank tensor and (n)th results in an (m)th rank 
tensor and is denoted using C(m) = A(n) 

•  n • r(n). 
Any homogeneous polynomial in r can be written 
in terms of tensors as f(r) = A(n+m) 

•  n • B(n), and if 
A(n) is totally traceless, then fn(r) is a solid 
spherical harmonic of degree n. Here, rn is a 
polyadic. These concepts are illustrated using 
Taylor’s expansion of the Green’s function as 

( )

( )

1

0

1
0

1
0

11
!

1 ˆ ˆ
!

ˆ ˆ

n
n n

n
n

n n
nn

n
n

nn
n

r n r
R n

r r n D r
n r

r P r r
r

∞
−

=
∞

+
=
∞

+
=

−
′= ∇

′
′=

′
′= −

∑

∑

∑

i i

i i ,                 (10) 

where Dn is called the detracer which extracts the 
traceless component of any tensor A(n). The 
equivalence between (2) and (10) is readily 
apparent as 

  ( ) 1ˆ ˆ ˆ ˆ
!

n n
n nP r r r n D r

n
′ ′− = i i .               (11) 

It should be noted that a traceless tensor contains 
only (2n + 1) components. This mathematical 
apparatus is critical to theorems necessary to 
traverse the tree, and these are enumerated next. 
 
Theorem 3.4: Multipole Expansion (S2M), 
Cartesian: The total potential at any point or∈Ω  
due to k sources qi, i = 1,…, k located at points 

i sr ∈Ω is given by 

( ) ( )

( )
( )

( ) ( )

0

0

1

1
2 1 !!

1 ,
!

n n
t

sn

n
n

n ni
s

n

r M n
r r

D M
n

q r r
n

φ
∞

=

∞

=

= ∇
−

=
−

= − −

∑

∑

i i

            (12) 

where (2n - 1)!! denotes a double factorial. This 
theorem is derived using a Taylor expansion of the 
potential function. It follows that a similar 
expansion can be used again to map these 
multipoles that exist at rs to local expansions at ro.  
 
Theorem 3.5: Multipole to Local (M2L), 
Cartesian: Assume that the domains sΩ  and 

oΩ are sufficiently separated, and the distance 
between their centers, os os o sr r r r= = − , is 
greater than diam{Ωs} and diam{Ωo}. If a 
traceless multipole expansion ( )n

tM for all n is 

located at rs, then another expansion ( )n
tL that 

produces the same field or∀ ∈Ω is given as 

        ( ) ( ) ( )1 1
!

n m nn
t t

osm n

L m n M
n r

∞
−

=

= ∇ −∑ i i ,       (13) 

where ( )1 2 11 .nn n n
nr r D r− − −∇ = −  This expression 

permits simple computation of derivatives and is a 
generalization of the formulae provided in [12]. 
Finally, as in the spherical case, the final step is 
mapping this local expansion onto the observers. 
This can be accomplished by exploiting Taylor 
expansion, and results in the following theorem. 
 
Theorem 3.6: Local to Observer (L2O), 
Cartesian: Given a local expansion ( )n

tL that exist 
in the domain Ωo centered around ro, it can be 
shifted to any point or∈Ω using 

( ) ( )
0

0

( ) mc m
t t

m

r r r m Lφ
∞

=

= −∑ i i .            (14) 

These theorems indicate that the classical FMM 
can be expressed as a cascaded series of Taylor’s 
expansion. And when properly formulated/ 
structured, it has identical computational 
complexity as the original FMM [13]; a 
consequence of the fact that traceless rank n 
tensors in the above expressions contain only (2n 
+ 1) independent components. It is also apparent 
that FMM-type algorithm can be developed 
without resorting to traceless tensors. The 
advantage of such representation is elaborated in 
[13] and will be detailed in the next section 
together with methods necessary for creating a 
multilevel algorithm. Finally, cost of the single 
level algorithm is computed in the following 
manner. Let s be the average number of 
source/observation points in each leafless box and 
P be the maximum order of harmonics used is 
above expansions. Then the cost of creating P2 
multipole coefficients from sources (in S2M) and 
computing potential from local expansions (in 
L2O) scales O(P2N); cost of translating multipole 
to local expansions (in M2L) scales as O(N2/s2P4) 
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and O(Ns) is the cost for direct evaluation for 
nearfield. It can be shown that for optimal s, the 
overall cost scales as O(N4/3P4/3). 
 
B. Multilevel FMM algorithm 
     It is apparent that the O(N4/3) cost of single 
level algorithm can be further reduced by 
embedding this scheme within itself, as is evident 
from Fig. 4. To implement such a scheme it is 
necessary to develop methods that enable one to 
construct multipole expansions at a parent level 
from those at their children. These are effected 
using the following theorems. 
 
Theorem 3.7: Multipole to Multipole (M2M), 
spherical: A multipole expansion m

nO about rs can 

be mapped onto one that exists around p
sr  using 

( )

( ) ( )
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* ,
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×
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where cp cp p
s s s sr r r r= = − , and {θ, φ} are the polar 

coordinates of rs w.r.t. p
sr . 

 
Theorem 3.8: Local to Local (L2L), spherical: 
Given a local expansion m

nO about p
or , it can be 

mapped to one around ro using 

( )
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where cp cp p
o o o or r r r= = − , and {θ, φ} are the polar 

coordinates of ro w.r.t. p
or . The equivalent 

theorems for Cartesian expansion likewise follow. 
 
 
Theorem 3.9: Multipole to Multipole (M2M), 
Cartesian: A traceless multipole tensor ( )m

tO at rs 

is related to ( )m
tM that is centered at p

sr via 

( ) ( ) ( )
( )

( )
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! 2 1 !!

npcnm
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t t
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M O

n n
−

=

−
=
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where cp p
s s sr r r= − .  

 
Theorem 3.10: Local to Local (L2L), Cartesian: 
Given a local expansion ( )n

tO that exist in the 
domain oΩ centered around p

or , it can be shifted to 
the domain Ωo centered around ro using 

       ( ) ( )
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( )m m n cp n
t t o t
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m n
L O m r

m

∞
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=
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where cp p
o o cr r r= − . 

  
     These theorems, in concert, permit traversing 
up and down the oct-tree, see figure 5. While these 
theorems are the bare-bones presentation of the 
steps required, there have been several attempts to 
make these more efficient [7, 8, 14, 66]. As both 
methods are based on Taylor expansions the 
upperbounds in using these approaches can be 
readily derived. Such a derivation is presented in 
[8, 13]. Alternatively, another interesting 
algorithm was introduced in [13] that permits 
exact evaluation of the multipole expansion at the 
parent given the multipole expansion at the 
children–this has been shown both analytically and 
numerically for different potential functions. 
However, in order to get this exact expression, one 
has to abandon the use of traceless tensors. It 
follows that the cost of using exact multipole to 
multipole translations is higher. But in our 
experience, we have found that we need a smaller 
number of multipoles for the same precision, and 
this can significantly affect the total cost, 
especially for large data sets [13]. Abandoning the 
use of traceless operators has three salient 
benefits; (i) the algorithms can be used for any 
potential function whose Taylor’s series converges 
rapidly, (ii) it does not depend on special functions 
and (iii) only the translation operator depends on 
the potential function which implies that multiple 
potentials may be easily combined [67]. 
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Fig. 5. Various operators involved in a multilevel 
FMM. 
 
     In all the above expressions, it was assumed 
that the number of multipoles used was infinite. 
The analytical estimates regarding truncation of 
this sum for both the spherical and Cartesian form 
can be found in [8, 13]. The cost analysis for 
multilevel approach is as follows: the total number 
of boxes in the tree is O(N/s) and the cost for S2M 
and L2O operations remains the same; the cost of 
applying M2L translation operation across levels 
scales as O(P4N/s). In addition the cost of applying 
M2M and L2L operations for all boxes scales as 
O(N/sP4). Thus, the overall computational cost 
associated with both schemes scales as O(P4N). 
This cost is largely dominated by the time for 
multipole to local translation (M2L) and 
considerable research effort has been expended on 
reducing this cost. A closer examination of the 
M2L operation reveals that (i) the number of 
translations per box is 189 and (ii) the cost per 
translation scales as O(P4). The latter is due to the 
fact that this operation is not diagonal. Greengard 
et. al. [9] remedied this deficiency by introducing 
a novel algorithm that diagonalizes the translation 
operator. Additional modifications to the overall 
algorithm introduced there [42, 68] further reduces 
the number of translations, making the 
“revamped” FMM extremely efficient. Ideas 
behind this diagonalization can be exploited by 
either both varieties of FMM; spherical and 
Cartesian. It also plays a key role in FMMs for 
lowfrequency, and consequently, will be presented 
in some detail next. An FFT based implementation 
of above un-diagonalized form results in a overall 
cost that scale as O(NP2 log P) [66], but will not 
be dwelt here. 
 
C. Diagonalized Translation Operators 
     A diagonal translation operator may be derived 
using a spectral representation of the Green’s 
function [9], viz., 
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for z > 0. It is apparent that the inner integral is in 
fact a zeroth order Bessel function. The 
computation of potentials using the above 
expressions hinge on the existence of an 
integration rule that is efficient to a given 
precision and scale invariant if this formula is to 
be used at different levels in the FMM tree. Given 
the existence of such a rule [69], the potential at 
any point can be written as [9] 
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where the coefficients W(k, i) are a combination of 
the charges qi and integration weights ωk, s(ε) and 
M(k) denotes the number of integration points for ε 
accuracy. Evidently, in above discrete 
representation, the number of integration points 
M(k) for evaluating α integral depends on k to 
account for the varying bandwidth, λk, of its 
integrand. The advantages of above scheme are 
immediately apparent in that it readily permits 
translation of the origin; translation of the origin is 
quite simply a shift in the exponentials. The 
similarity between (20) and those in Theorems 
(3.1), and (3.4) are readily apparent. The mapping 
from spherical harmonic multipole coefficients 

m
nM onto exponential expansions W(k, j) is given 

as [9], 
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and given W(k, i) coefficients the spherical 
harmonic local expansion m

nL can be computed 
with, 
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Fig. 6. Re-grouped boxes in original interaction list, in 
figure 3, for application of diagonal translation operator 
(20). 
 
     The multipole to local translation operation, 
with diagonalized translation forms, can be 
computed as a three stage process: multipole 
coefficients are mapped to W(k, i), translate W(k, 
i), and then map the translated coefficients back to 
local expansions, and then proceed as usual. It is 
evident that cost of all operators involving 
exponential expansions scale as O(P2). Various 
symmetry considerations in implementation 
reduces the number of total translation count from 
189 to 40. Additionally, one can exploit symmetry 
in the expressions involved to further reduce the 
overall cost, if not the asymptotic complexity [56]. 
Thus, properly modifying and augmenting either 
spherical or Cartesian multipole based algorithms 
with plane wave translation operators can 
considerably ameliorate the cost. However, a 
couple of issues must be noted; (i) the plane wave 
expression is valid for z > 0, this implies that the 
interaction list must be modified [9]; (ii) additional 
operators must be introduced to rotate the 
multipole operators along the required axis; (iii) 
the operator developed should be scale invariant 
for the scheme to be efficient. In implementation 
the spherical harmonic multipole coefficient is 
converted into six plane wave expansions 
corresponding to each face of the cube and the 
interaction list definition is changed accordingly. 
For example, exponential expansions 
corresponding to +z cube face is valid only for 
boxes present above x-y plane, as illustrated in  

Fig. 6. Boxes in original interaction list are divided 
into six new sets termed as up-list, down-list, 
north-list, south-list, east-list and west-list 
corresponding to +z, -z, +y, -y, +x and -x cube 
faces respectively [9]. Overall, the diagonalized 
version of the translation operator reduces both the 
total number of translation operation and per 
translation cost leading to a much faster algorithm. 
This approach is very similar to spectral 
approaches developed for alternative derivation of 
Helmholtz FMM [42, 70] and is the crux of many 
methods developed for wideband FMM. 
 
 

IV. FMM FOR HELMHOLTZ 
EQUATIONS 

     Thus far, we have seen that cascaded Taylor 
expansions can be used to develop static FMM. 
While these ideas are readily extended to the 
solution of parabolic equations as well [24], they 
are not readily extendable to Helmholtz equation 
kernels, especially at high frequencies. 
Furthermore, as was evident from last section, the 
scheme developed should be diagonal. Consider a 
problem setting that is identical to what was 
described in Section II. We shall seek 
development of methods to accelerate the 
evaluation of the potential integral in (1) 
with ( ) expg r j r rκ⎡ ⎤= −⎣ ⎦ . One expression that 
readily suggests itself is the Gegenbauer addition 
theorem [31, 59, 71], 
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                                                                           (23) 
 
where X and d are position vectors such that          
r = X+d and X d= ,  jl and ( )2

lh are lth order 
spherical Bessel and Hankel function of second 
kind, XX =  and dd = . Augmenting this 
theorem with another addition theorem for 
Legendre polynomials in (4) completes the 
separation between the source and observer 
coordinates. 
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where L is the number of terms used in the 
summation, {θX, φX} and {θd, φd} are the polar 
coordinates of X̂ and d̂ respectively. It is evident 
that one may use a sequence of addition theorems 
to create hierarchical computational methodology. 
However, the principal bottleneck to such a 
scheme is the fact that the operators involved are 
not diagonal. However, diagonal operators are 
easily developed by recognizing that 

( ) ( ) ( ) ( )2 .ˆ ˆ ˆˆ ˆ4 l j d
l lj jl d P d X d e P Xκπ κ κ κ−− ⋅ = ⋅∫ ,                                                                              

                                                                           (25) 
where 2 ˆ sind d dκ θ θ φ=  and ˆ.κ κκ= . The relation 
(25) can be derived from well known 
orthogonality relation among spherical harmonics 
and expansion for plane waves given as. 
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Substituting (25) in (23), interchanging the 
summation and the integral, and truncating the 
summation over l yields the final diagonalized 
form, 
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                                                                           (28) 
     Several derivation that result in above 
diagonalized form exist and are based on different 
set of starting formulas [30–32, 72, 73]. First 
scheme for diagonalizing (23) was presented in 
[30] with the use of forward and inverse far field 
transform defined as, 

        ( ) ( ) ( )l
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l
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f j Y fθ φ θ φ
∞

= =−
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        ( ) ( ) ( )2 ˆ ˆ , .lm lmf d j Y fκ κ θ φ= −∫ �                (30) 

Above definition is a simple spherical harmonic 
transform from κ̂  to {l, m} basis with direct 
analogy to Fourier transform. A simpler version of 
derivation in [30] is presented in [35, 73]. In [31], 
the expansion in (23) is represented as matrix 
vector multiplication which reveals a convolution 
relation in indices {l, m}. Such convolutions in 
{l, m} can be computed as one-to-one 
multiplication in κ̂  domain using the far field 
transform [31]. A detailed discussion on deriving 
the above diagonalized forms from the 
convolution representation of original multipole 
expansion for both Laplace and Helmholtz 
equation is presented in [31]. An alternate 
derivation based on similarity transform and their 
relation to group theory is presented in [32] to 
yield the same expansion in (28). 
 
1) Single Level FMM: As before, assume that Ωs 
and Ωo denote the source and observation domain, 
and it is necessary to find the fields or∀ ∈Ω . It is 
further assumed that the domains are cubes, in 
keeping with the data structure of oct-tree and that 
each domain can be embedded in a sphere of 
radius a. Furthermore, the clusters are assumed to 
be well separated. The separation distance is 
closely related to error bounds [30, 71], and will 
be dealt with in later part of the paper. Given these 
conditions, traversal up and down the tree is 
effected using the following set of theorems: 
 
Theorem 4.1: Farfield signature: The far field 
signature due a set of source qi for i = 1, … , k 
located at i sr ∈Ω is given by 
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Theorem 4.2: Translation operator: If a farfield 
signature exists at a point rs such that it is valid for 
all points outside the domain Ωs, then the 
translation operator that maps this farfield to the 
local expansion that is centered around ro and 
valid in the domain Ωo is given by 
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where ros = ro - rs. Finally, the potential at any 
point or∈Ω can be constructed using 
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While these equations are readily derived from 
(28). More insight into the derivation of these 
equations can be obtained by realizing that the 
farfield (and local expansions) can be represented 
in terms of spherical harmonics. In turn, this 
interpretation leads to expressions that reveal 
convergence rates of these and error bounds as a 
function radius a and the separation distance. More 
importantly, this insight leads to the type of 
quadrature rules that must be used to implement 
these schemes numerically. In other words, the 
continuous integral is evaluated using 
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where L is the order of the Gauss Legendre rule, 
ωpq are the integration weights, p and q are the 
integration points in θ and φ axis, 
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     As is apparent form the above equations, 
uniform sampling is used to evaluate the integral 
along φ. Other applicable rules may be found in 
[74]. We have yet to elaborate the underlying 
factors that decide the order of Gauss-Legendre 
rule that is used along θ. A number of formulae 
exist for choosing the number of Gauss-Legendre 
quadrature point [30, 71, 75]. However, 
examination of (28) yields interesting insight. If 
only the exponential terms are considered in this 

integral, it is apparent that these expressions can 
be represented using L = O(κd) = O(2κa) 
harmonics. This, in turn, implies that the 
summation is also truncated using L terms. 
Though the reasoning here is based on economical 
means to discretize the integral a deeper reason, 
arriving at same conclusion, exists for choice of L 
based on original multipole expansion [71]. 
Choice of L should be large enough for the series 
(24) to converge, but not too large to cause 
numerical instability due to the asymptotic 
behavior of spherical Bessel and Hankel functions. 
Given that only a finite number of terms are being 
used, one can explicitly derive error bounds that, 
in turn, depend on the translation distance also 
[30]. Deriving rigorous error bounds has been a 
focus of considerable work [43, 75–78], and the 
behavior of error is well understood [79, 80] as are 
the means to overcome these. A simple choice for 
truncation limit L applicable to most practical 
problems is, 

( )logL d C dκ κ π= + + ,                     (36) 
where C is a number that depends on the desired 
accuracy ε; typically for ε = {10-3, 10-6, 10-14} the 
choice for C = {3, 5, 10}, respectively [71, 81]. 
This estimate is semi-empirical and assumes that 
the two boxes are well separated if they are one 
box apart. Other estimates [75, 79, 82] based on 
approximation of Bessel and Hankel function 
exists both in two- and three-dimensions and can 
account for multiple box separation between 
interacting boxes [78, 80]. Cost of this scheme can 
be computed in the same manner as in the static 
with P = L and the diagonalized form of 
translation operator implies O(P2) cost per 
operation. However choice of L depends on size of 
box kd, which in turn dictates the number of 
unknowns per box s (assuming uniform 
discretization). It can be show that the optimal cost 
of the above scheme scales as O(N3/2) for surface 
problems. 
 
2) Multilevel FMM: While the above exposition 
details the necessary mathematics for 
implementing a single level scheme, nesting these 
in a hierarchical setting is the next logical 
extension. The first robust attempts to do so are 
[83–85]. Extension to multilevel is different from 
that encountered for the Laplace FMM; there, the 
number of multipoles at all level of the tree was 
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constant. But as is evident from (36) and (34) as 
the size of the source/receiver boxes increases, the 
bandwidth increase increases by a factor of two, 
which implies that the number of directions 
increase by a factor of four. This then creates a 
need for developing robust methods for going up 
and down the tree for the stages of aggregation 
and disaggregation. These operators can be 
thought of as filters. But before we proceed into 
intricate details of the methods to implement these, 
the theorems that help achieve these are as 
follows: 
 
Theorem 4.3: Translation of farfield signatures: 
If the farfield signature M(rs, κ) around the point 

s sr ∈Ω is known, then the farfield signature 

( ),p
sM r κ around the point p p

s sr ∈Ω is given by 
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An identical theorem for can be derived for 
translating local expansion at the parent level to 
that of its child. Numerical implementation of 
these theorems is not as simple as it seems. To 
maintain uniform accuracy across levels, 
employing (36), the L for parent is approximately 
twice that of its child. This implies that the number 
of direction for parent box is approximately four 
times that of its child; thus the multipole 
expansions for the child and parent box are 
defined on different grids. This process of 
computing a higher bandwidth representation from 
lower bandwidth farfield signature is referred to as 
interpolation and anterpolation is its inverse 
analogue applied during downward tree traversal. 
Implementing the above theorems calls for 
efficient methods to interpolate (or anterpolate). 
Several methods that exist have been elaborated 
upon in [33] and summarized as well in [75]. An 
efficient and exact algorithm can be devised using 
the forward and inverse farfield transform for both 
interpolation and anterpolation [23, 35, 85, 86]. 
This algorithm relies on the fact that at any level 
the farfield signature can be represented in terms 
of spherical harmonics., viz. 
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     As is well known, the farfield signature of a 
source constellation is bandlimited to O(κa) 
harmonics. This implies that the above expression 

can be truncated. Furthermore, since an Lth order 
rule is chosen to evaluate the spectral integral in 
(28), it follows that the upper limit in the 
summation over n can be chosen to be L. This 
said, direct computation of anm is expensive. 
Alternate methods both exact and approximate 
have been discussed in [23, 87]. Consider the 
computation of anm from child farfield signature 
M(rs, κkp) represented using (2L2 + 1) coefficients, 
i.e. p = 1, … , L and q = 1, … , (2L + 1), 
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                                                                           (39) 
where ωp are numerical quadrature weights. Since, 
the integration along φ is performed using uniform 
sampling, fast Fourier transform (FFT) can be 
used for summation inside the brackets. These 
coefficients are then used to compute samples 
along new polar coordinates ( ),p qθ φ� � with 

1,...,p L= � and ( )1,..., 2 1q L= +� as, 
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, cosq
L L

j m
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     Again, FFT can be used to evaluate the outer 
summation. In interpolation,  L L>�  to 
accommodate for the increase in bandwidth and 

pqκ� represents the discrete directions of the 
farfield signature corresponding to the parent. The 
required multipole coefficients about parent origin 

p
sr can be obtained using a simple shifting 

operation, 

       ( ) ( ) ( ).
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p
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An inverse procedure is performed when 
translating local expansions from parent to child 
where anterpolation is used in place of 
interpolation. First, the parent local expansion 
about p

or is shifted about child origin ro; then in 
anterpolation, the forward and inverse farfield 
transform are performed to reduce the bandwidth 
in an exact manner as described above but with 
L L<� , where L represents the number of 
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harmonics in parent domain. Above procedure for 
interpolation/anterpolation can be further 
accelerated with the use of fast Legendre 
transform [23] where the coefficients anm are not 
computed explicitly. Though this approach scales 
favorably the break-even point is large and not 
suitable for most practical applications [35]. This 
can be overcome to some extent using the 1D 
FMM for fast Legendre transforms [87]. Cost of 
Interpolation/anterpolation using this approach 
scales as O(QlogQ), where Q denotes the number 
of directions in farfield signature. This said it can 
be shown that overall cost of the multilevel 
algorithm scales as O(N log2 N) [35]. Other 
methods used for interpolation and anterpolation 
have been presented in detail in [33, 75, 84]. These 
include the use of polynomials and approximate 
prolate spheroidal wave functions. The singular 
advantage of these methods is their cost scales 
linearly with the number of samples, thus the 
overall cost scales as O(N log N). However, while 
interpolation is sufficiently accurate, one has to be 
more careful when anterpolating functions as it is 
necessary to remove higher order harmonics. 
While we have not digressed into implementation 
of these schemes for vector electromagnetic 
problems, we must caution that it is not a trivial 
extension. It is important to realize that the farfield 
component represented in terms of polar 
components in not bandlimited [88], whereas they 
are bandlimited when represented in terms of 
Cartesian components. This means that one either 
uses a fast scheme based on vector spherical 
harmonics [88] or converts these to Cartesian 
before interpolation/anterpolation. Another 
intriguing method for interpolation and 
anterpolation was introduced by Sarvas [48], 
wherein he introduced modifications that enabled 
the use of FFTs. In other words, bandlimited 
farfield signatures can be represented in terms of 
Fourier basis as 
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where DFT(.) represents forward discrete Fourier 
transform, 2M and 2N are number of samples or 
basis function in θ and φ axis respectively. Then 
the integral over the surface of sphere can be 
written as, 
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     Note that the above modification changes the 
limit on θ integral to [-π, π], thus it can also be 
evaluated in fast manner using FFT. In single level 
implementation, the integrand in (24) are first 
represented in terms of Fourier basis using (42) 
and then (44) is used for fast evaluation of 
integrals. In multilevel implementation the 
interpolation and anterpolation, for varying 
bandwidth of multipole and local expansion, can 
be achieved by zero padding and truncating the 
Fourier coefficients respectively. In anterpolation 
the Fourier coefficients of parent local expansions 
are symmetrically truncated before inverse Fourier 
transform, to obtain the local expansion about 
child domain with the desired bandwidth. Thus all 
operations, including the evaluation of integral, 
can be evaluated using FFT. Reader is referred to 
[48] for related theorems, proofs and numerical 
results. Finally, the numerical implementation of 
multilevel FMM has been scrutinized in terms of 
different errors and to ensure stability. This 
includes discussion on the relation between 
truncation and integration error in (34) [77], and 
interpolation/anterpolation error using Lagrange 
interpolation [79] and spherical transform [75]. In 
addition, errors due to round off and evaluation of 
special-function have been considered along with 
stability criterion [80]. Numerical experiments 
show that truncation error in (34) is lower bounded 
[43, 79]; thus for applications that routinely 
demand very high accuracies it is preferable to 
increase the distance between wellseparated boxes. 
Evidently this amounts to an increase in number of 
boxes in near-field interaction. 
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A. Other FMMs 
     The above exposition presented FMMs that are 
apt for analyzing very general problems. However, 
for certain problems it is possible to develop FMM 
schemes that take advantage of topological 
features of scatterer to reduce the asymptotic 
complexity. The first of such algorithm was the 
fast steepest descent path algorithm [89] that 
exploited spectral representation of the Green’s 
function. The next incarnation of this was the 
steepest descent FMM. It was developed following 
realization that when analyzing scattering from 
objects whose height is considerably lesser that its 
lateral dimension, it is not particularly useful to 
expand the fields using the complete spectrum. In 
other words, SDFMM can be interpreted to be a 
windowed FMM, and results in a method whose 
complexity scales as O(N). In SDFMM, it is 
achieved naturally using the Sommerfeld integral 
representation of the Green’s function and 
evaluating this integral using a combination of 
two-dimension FMM and steepest descent. More 
specifically, 
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where Nsd is quadrature rule along the integration 
path, ωn is the integration weight, 

( ) sinn
nρκ κ α= and cosz nk κ α= , and α is defined 

along steepest descent path. It is immediately 
apparent that the summation over Hankel 
functions can be accelerated using a generalization 
of the two-dimensional FMM, and as before, this 
algorithm can be cast within a multilevel 
framework. Another algorithm along these lines 
was the fast inhomogeneous plane wave algorithm 
(FIPWA) [47, 68]. This algorithm follows directly 
from Weyl’s identity 
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The path of integration yields contributions from 
both homogeneous and inhomogeneous plane 
waves. As written, the above integral is slowly 
converging, but the contour can be deformed along 

the steepest descent path. This integral is evaluated 
numerically. However, values of the radiation 
pattern for complex θ is obtained using 
interpolation/ extrapolation. Manipulation of the 
requisite equations results in a diagonal translation 
operator. This method has been extended for 
analysis of scattering from objects above a layered 
medium [45, 47]. Additionally, they have been 
modified for developing stable algorithms for 
broadband applications [90]. However, we shall 
describe these algorithms and others [42] for 
rapidly computing potentials for wideband 
applications in the next section. 
     Finally, other variants of FMM exist that 
exploit the fact that between well separated boxes, 
one may construct windowed translation operators 
to lower the cost. One such method is the ray 
propagation FMM (RPFMM) [72, 91]. Other 
windowed translation operators have been used in 
two-dimensions for the analysis of scattering from 
bianisotropic objects [92]. However, it follows 
from complexity analysis that these methods will 
be fruitful only when the objects are sufficiently 
far away from each other. This implies that the 
algorithm is most useful when used in a one-level 
setting and may not be effective with a multilevel 
implementation. 
 
B. Wideband FMM 
     In above discussion, a significant highlight is 
the restrictive choice of L used to truncate the 
expansions. This choice, based on the asymptotic 
behavior of Bessel and Hankel function, reveals 
the behavior of above expansions when applied to 
low frequency problems where κ is very small. It 
is well known that Hankel function is singular at 
origin and as κ→0 the expansion in (28), though 
valid, becomes numerically unstable. This 
breakdown is referred to as low-frequency 
breakdown [42, 43]. Consequently for fixed κ the 
size of source domain, which also defines the 
translation distance, cannot be made arbitrarily 
small. This issue becomes significant when the 
geometry is densely discretized, much more than 
the conventional λ/10 criterion, mostly to 
represent intricate structural details. 
 
1) Scaled expansions: At low frequencies the 
numerical instability can be averted by using a 
normalized form of the original expansion (28) 
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[44, 46]. This approach is motivated by the 
asymptotic behavior of spherical Bessel and 
Hankel function for small argument. Let t be a 
normalization constant such that t = O(kd) then the 
multipole expansions in (24) can be written as, 
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     In above expression, terms inside the square 
brackets are the new normalized multipole 
coefficients. As κ→0, using small argument 
approximation for spherical functions and with t = 
κ, it is a straightforward exercise to show that the 
normalized expansions reduces to the expansions 
(2) used in static case. While the normalized form 
ensures numerical stability, the low-frequency 
nature of the problem implies that one can choose 
the number of multipoles to be same at every 
level. This in turn implies that the multilevel 
version of this approach scales as O(N) [46]. A 
constant normalization factor is sufficient when 
the geometry is uniformly discretized. However to 
accommodate wide variation in domain sizes and 
maintain the stability of expansion different 
normalization factor should be chosen in different 
parts [33]. This approach has been successfully 
used in integral equation solution for scattering 
from sub-wavelength structures [46, 93]. 
 
2) Spectral representation based plane wave 
expansions: An alternate approach, inspired by 
the diagonalized form for static FMM, was 
introduced in [42] and later implemented in [49, 
50, 90]. It is based on the following well-known 
spectral representation of solution to Helmholtz 
equation [94], 
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this relation is valid for z > 0. Further it is 
straightforward to identify the purely propagating 
part of spectrum as 0 λ κ≤ ≤ and the evanescent 

part as κ λ≤ ≤ ∞ ; with simple change of 
variables, above expression can be written as [42], 

  
. .

,
j R j R j R

evan prop

e e e
R R R

κ κ κ− − −⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (49) 

where, 

 

( )

( )

2 2

0.
2

cos sin

0
/ 2

cos

0.

2
sin cos sin

0

1
2

,

2

.

j R
z

evan

j x y

j R
j

prop

j x y

e d e
R

d e

e j d e
R

d e

κ
σ

π
σ κ α α

πκ
κ θ

π
κ θ α α

σ
π

α

κ α
π

θ

∞−
−

− + +

−
−

− +

⎛ ⎞
= ×⎜ ⎟

⎝ ⎠

⎛ ⎞
= ×⎜ ⎟

⎝ ⎠

∫

∫

∫

∫

  

                                                                           (50) 
Notice that with κ→0 the propagating part 
vanishes and the evanescent part reduces to the 
diagnolized form (19) used in static FMM. Now it 
remains to discretize the above integrals for 
numerical evaluation and generalized Gaussian 
quadratures can be employed for this. However, 
unlike in static case, the integrand cannot be 
rendered scale independent and this means 
quadrature points and weights should be pre-
computed for all possible translation distances at 
all levels. It is worthwhile to recount that the 
multipole and local expansions are computed and 
stored as they appear in original spherical 
harmonics expansion (28); they are converted to 
exponential expansions back and forth during 
multipole to local translation only and these 
relations can be found in [50]. This approach 
avoids the floating point overflow as all the 
computed quantities and operations are regular and 
numerically stable. Other approaches based on 
above spectral representation have been presented 
[49, 90, 95, 96] and they differ significantly in 
their numerical implementation and structure. In 
all these methods the multipole and local 
expansion are represented directly in terms of 
exponential expansion coefficients; hence they 
require new interpolation/anterpolation operators 
for multilevel implementation. In [90], an 
extension of FIPWA as introduced for multi-
layered structures, the integrand is sampled along 
the steepest descent path (SDP) and extrapolation 
techniques to estimate the evanescent portion of 

94 ACES JOURNAL, VOL. 24, NO. 2, APRIL 2009



the spectrum from samples of the propagating 
portion. However, one has to treat “shallow” 
evanescent waves differently from “deep” 
evanescent waves. In [49], the evanescent 
integrand is sampled along the traditional 
Sommerfeld integral path (SIP) and singular value 
decomposition (SVD) of the integrand is used to 
obtain expressions for multipole coefficient and 
multilevel translation operators. An interpolation 
matrix approach is presented in [96] to relate 
exponential expansions at different levels. Using 
sample points in child and parent domain an 
overdetermined system of equation is formed and 
solved for the interpolation matrix entries in a least 
square sense. The advantage of latter approaches is 
that they avoid the spherical harmonic to 
exponential expansion and reverse mapping 
operations. 
 
3) Cartesian harmonics: At sufficiently low 
frequencies Cartesian harmonics provides the 
following convergent series expansions, 
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     In above expressions Kn(.) represents the 
modified Hankel function of order n, 

ˆ ˆ ˆr xx yy zz= + + , R r= and .⎢ ⎥⎣ ⎦ is the floor 
operation. Interestingly, it can be shown that 
above expansions reduces to the spherical 
harmonic expansions in (28) with low argument 
approximation for spherical Bessel and Hankel 
functions [97, 98]. This assures the accuracy and 
stability of above expansions for low frequency 
problems. Again the number of harmonics can 

remain constant for all levels and this results in an 
O(N) algorithm. As mentioned earlier the 
multipole and local expansions are independent of 
the form of potential; thus definitions of all 
operators, except M2L, remains same as that for 
static. 
 
4) Hybrid methods: In multiscale geometries the 
low-frequency breakdown occurs only in parts 
when the domain size is much smaller than the 
incident wavelength. This implies that both low 
and high-frequency FMM should be used 
simultaneously. Henceforth, the different versions 
of FMM are referred to as LF-FMM and HF-
FMM. When using different forms of expansions a 
switchover between LF-FMM and HF-FMM 
quantities is necessary to handle both large and 
small domain sizes simultaneously. Such hybrid 
methods have been developed by combining HF-
FMM with plane wave expansions [50] and with 
Cartesian harmonics [99]. A smooth transition 
between the two versions of FMM is a key 
necessity of these hybrid methods and operators 
are prescribed to map quantities from LF-FMM 
onto HF-FMM and vice versa. In plane wave 
based LF-FMM, the multipole and local 
coefficients are represented in terms of the original 
expansion; thus the conversion to farfield 
signature required in HF-FMM and the reverse 
mapping operation can be simply performed using 
the forward and inverse farfield transform using 
(30). Mapping the Cartesian harmonics, 
represented by tensors, onto farfield signatures is 
slightly involved. It follows from the observation 
that farfield signatures are essentially plane waves 
in different directions and following Taylor’s 
series expansion is possible, 
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     In above expressions p = p1 + p2 + p3, 

ˆ ˆ ˆx y zx y zκ κ κ κ= + + , rs and p
sr  represents the 
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center of child and parent domain respectively. 
Here T(p) is the mapping operator relating the 
Cartesian multipole coefficient about child box, 

p
sr , to the farfield signature about parent box. 

Since the local expansions take the same form as 
multipole expansions in both Cartesian and 
spherical forms, the reverse mapping is same as 
T(p) and in addition should evaluate the spherical 
integral 2d κ∫ . In implementation the infinite sum 

in (54) is truncated and it is fairly straight-forward 
to show that error due to this decreases rapidly as 
the translation distance ( p

s sr r− ) decreases or as 

the number of harmonics increases. This is shown 
numerically in Table 1, where the L2 norm error 
between multipole coefficients evaluated using 
farfield transform and by mapping from Cartesian 
multipoles are shown for different orders of 
Cartesian harmonics (P) and translation 
distance /p

s sa r r λ= − . As expected the error 

uniformly reduces to machine precision with 
increasing P and a. 

 
 
Fig. 7. Tree representation for hybrid methods. 
 
Table 1: Error convergence of Cartesian to spherical 
harmonics mapping operator (55). 
 

a P=3 P=6 P=9 P=12 
0.5 2.13 5.58E-3 9.62E-6 5.90E-9 
0.25 2.58E-2 8.04E-6 1.51E-9 1.27E-13 
0.125 3.49E-4 1.30E-8 1.55E-13 2.24E-15 
0.0625 1.04E-5 5.34E-11 1.41E-15 1.41E-15 

 
 
     The overall execution of hybrid algorithm, in 
both cases, proceeds as follows: an adaptive 
(compressed) oct-tree is constructed to represent 
the geometry and a transition level is chosen such 
that LF-FMM and HF-FMM are stable for all 
boxes below and above this level respectively. 

Further, for simplicity, it is assumed that all leaf 
boxes are below this transition level, see Fig. 7 for 
an illustration. First the LF-FMM multipole 
coefficients are computed at all leaf boxes and 
upward tree traversal is executed until the 
transition level. At this point, for Cartesian 
harmonics based LF-FMM, the farfield signature 
of parent box above the transition level are 
computed from the Cartesian expansions in child 
boxes at the transition level using mapping 
operators (54); in plane wave based LF-FMM the 
farfield signature of box at the transition level is 
computed from the plane wave expansion 
coefficients of the same box. With this the upward 
tree traversal is performed for all boxes above the 
transition level. Next, the multipole coefficients in 
each box are translated into local coefficients of 
boxes in its interaction list which, by definition, 
are at the same level. In downward tree traversal, 
the local expansion coefficients of all boxes in HF-
FMM region are updated with that of their parents. 
At transition level, for Cartesian harmonics based 
LF-FMM the child box Cartesian local expansions 
are computed by mapping the farfield signature 
about the parent box; for plane wave based LF-
FMM the child box farfield signature is first 
computed and then converted as spherical 
harmonic local expansion using inverse farfield 
transform. Then the downward tree traversal 
continues for all boxes below the transition level. 
Finally the local expansion coefficients at leafless 
boxes are used to compute the farfield potential at 
their respective observation points. As in all 
algorithms the complete potential is computed by 
accounting for the near-field contribution by direct 
evaluation. The choice of transition level is 
influenced by different constraints in both the 
methods and in general it is determined through 
numerical experiments. In Cartesian-spherical 
harmonics hybrid method, the O(N) scaling of 
Cartesian expansion algorithm may favor a higher 
transition level, however, this implies more 
number of Cartesian harmonics to maintain the 
accuracy of both LF-FMM and the mapping 
operations. Similar considerations for plane wave 
expansion based LFFMM and HF-FMM hybrid 
algorithm are detailed in [50] along with 
numerical experiments. Tables 2 and 3 shows the 
convergence and efficiency of the hybrid method 
obtained by combining the Cartesian and spherical 
harmonics. Table 2 presents the error in potential 
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evaluation for different orders of Cartesian and 
spherical harmonics. Here χsph is the oversampling 
factor in spherical harmonics FMM i.e. the 
truncation L = χsph κd and PCart denotes the 
maximum order of Cartesian harmonics used. All 
errors reported here are the L2 norm error in 
farfield values computed using hybrid algorithm 
and direct evaluation; also, in the numerical 
experiments reported here, 16,000 source and 
observer points were randomly distributed 
following a uniform distribution within a domain 
of size 4 2 2λ× × . The separation between 
interacting boxes was kept as three boxes to ensure 
uniform error convergence till machine precision 
(10-12) in both LF- and HF-FMM. Note that this is 
the worst case error as including the near-field 
contribution will only decrease the error further. 
Table 3 shows the time taken by the hybrid 
algorithm for evaluation of farfield potentials as 
the total number of unknowns is varied. N 
source/observer points were randomly distributed, 
following a uniform distribution, within a domain 
size 4 2 2λ× ×  and the boxes were subdivided 
hierarchically until the number of unknowns per 
box was 64 on average. The orders of expansion in 
Cartesian and spherical harmonics were chosen so 
as to obtain an accuracy of O(10-4). For this 
accuracy the distance between interacting boxes is 
reduced to one box separation. The time scaling 
(complexity) of this hybrid algorithm depends on 
the number of levels in LF- and HF-FMM i.e. the 
complexity would scales as O(N) if the number of 
LF-FMM levels are much more than that in HF-
FMM part. In essence the complexity of this 
algorithm has an O(N log N) upper-bound. 
 
Table 2: Error convergence of Cartesian-spherical 
harmonics hybrid algorithm for 16,000 random points 
in 4 2 2λ× × domain. 
 

χsph PCart ε 
1.5 3 2.14E-2 
1.7 4 3.91E-3 
2.0 6 3.91E-4 
2.2 8 6.74E-6 
2.5 12 4.84E-9 
3.2 16 6.08E-12 

 
 

Table 3: Time vs. N corresponding to an error of 
O(1.0E-4) in Cartesian-spherical harmonics hybrid 
algorithm 
 

N Tfast Tdirect
64000 9.38 468.81 
128000 16.25 - 
256000 34.40 - 
512000 65.15 - 

1024000 133.25 - 
2000000 268.98 - 

 
V. APPLICATIONS 

     This section provides an overview on 
applications of above discussed algorithms in 
different contexts. As mentioned in introduction, 
FMM and other fast methods, e.g. FFT and tree 
code based, were developed primarily to 
accelerate the evaluation of potential or field in N 
body problems. Integral equation solution, a 
common choice in simulation of many 
electromagnetic applications, sought through 
iterative solvers requires repeated evaluation of 
potential or field at source points itself. Thus fast 
algorithms play a significant role in solving real 
world problems within realistic time duration. The 
literature referenced here is only selective and not 
exhaustive as the use of these algorithms has 
become more common during recent years. Also, 
only topics related to electromagnetics are listed 
here; for applications in other research field refer 
to introduction.  
     First, electromagnetic application of static or 
Laplace FMM was evaluation of electrostatic 
potential in 2D [6, 100]. The extension to 3D has 
seen lot of applications, particularly, in plasma 
dynamics [8, 101]. FMM based FastCap and 
FastHenry are widely popular tools for extraction 
of equivalent capacitance and impedance among 
multiconnects in micro-electronic components [19, 
20]. Static FMM is also used in integral equation 
solution of magnetostatic problems predominantly 
for analysis and design of electric machines [102]. 
Simulations with non-linear materials have 
benefited much as they demand multiple solution 
before attaining stability [56, 103, 104]. It has also 
been applied to quasi-static case especially in 
simulation of eddy-current phenomena [105, 106] 
and micromagnetics is another area of practical 
interest [107, 108]. 
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     The recently published book on fast methods in 
electromagnetics is a virtual treasure house of 
FMM methods and their applications to various 
problems in high frequency electromagnetics [33]. 
As is to be expected, Helmholtz FMM has been 
applied to accelerate iterative solution of surface 
and volume integral equations. The means to 
modify Helmholtz equation such that they are 
applicable to vector electromagnetics problems 
was first presented in [84]. More detailed 
description can be found [33, 81, 109]. Since their 
introduction, they have been applied extensively to 
scattering and radiation problems of different 
flavors; for instance, scattering from perfect 
electrically conducting surfaces [28, 71, 75, 84, 
109–114], scattering from dielectric/ composite 
bodies [115–120], volume integral equations [76, 
121–123], anisotropic objects [124, 125], 
scattering from rough surfaces [126–128], 
application to microstrips [129], EMC/EMI 
analysis [130–132], antennas [133–135]. Efficient 
implementation of FMM in solvers with higher 
order geometry and basis function representations 
have led to the development of fast and accurate 
solvers [116, 136, 137]. [138, 139]. 
     Multipole accelerated algorithms have also 
been employed in various hybrid methods where 
solution is obtained with use of moment method 
combined with one or more of following 
techniques: to impose global radiation boundary 
conditions in finite element solvers [140–142], ray 
tracing and diffraction methods [143], multi-grid 
methods [144] and physical optics [145, 146]. 
These techniques are primarily used in 
applications with multi-scale scatterers like 
antenna interactions [147] and field predications 
for urban mobile communications [148]. 
Implementation of FMM was also modified to 
accommodate perfectly matched layer (PML) 
assisted integral equation methods used in 
simulation of monolithic microwave integrated 
circuit (MMIC) and photonic crystals [149–151]. 
Fast inhomogeneous plane wave (FIPWA) method 
and other forms of FMM have been used to 
accelerate solution of scattering simulations 
involving layered media structures with 
applications in design of microstrip antennas [138, 
139, 152–157] and geophysical investigations for 
sub-surface scatterers [70, 158–166]. A combined 
FMM-FFT algorithm [167, 168] and SDFMM 
have been used in electromagnetic analysis of 

general quasi-planar structures with applications to 
rough surface scattering, grating structure design 
in quantum devices and radiation from microstrip 
patch antenna [127, 169–171]. Parallel versions of 
FMM [36, 38, 41, 54, 81, 172–176], especially on 
cluster computers with distributed memory, have 
been employed to solve problems with few 
millions of unknowns [37, 40], aided with 
developments in different preconditioning 
techniques [177–181]. Finally, we note that while 
FMMs reviewed here primarily accelerate the 
solution off frequency domain integral equations, 
equivalent models have been developed for time 
domain integral equations also [88, 182, 183]. 
 

VI. SUMMARY 
     Introduction of FMM changed the landscape of 
numerical simulation in many fields and the 
developments in past two decades have made it an 
ubiquitous tool for fullwave analysis. This paper 
reviews different FMMs and their applications to 
problems in electromagnetics. The development of 
FMM is traced from static to dynamic, and covers 
various methodologies that form the current state 
of art FMM. These include the spectral 
representation to obtain diagonalized operators in 
both static and dynamic FMM, farfield signatures 
for diagonalized forms in dynamic, Cartesian 
harmonics based expansions for static and low-
frequency dynamic case and other application 
specific techniques to improve both accuracy and 
efficiency. This review also includes an overview 
of recent developments in combining different 
FMMs to obtain hybrid algorithms that are 
applicable to wideband analysis. But, all said and 
done, while we have tried to be as comprehensive 
as possible in this review, the papers cited herein 
provide only snapshot of the papers that exploit 
FMM for accelerating integral equation solvers. 
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