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Abstract

A hybrid method which uses both numerical and
asymptotic techniques is described and applied to the
scattering of an electromagnetic wave off a large corru-
gated circular cylinder. The radius of the cylinder is
large compared to the wavelength of the incident radi-
ation, but the corrugation height and period are of the
same order as the wavelength. This problem is a proto-
type of a more general situation where the surface of a
target is covered with a periodic coating. The method
of attack essentially blends boundary layer theory, which
describes the local scattering behavior of the surface, and
the theory of geometrical optics which gives a global de-
scription of the scattering. Although the hybrid method
is only developed here for this simple model, its applica-
bility for other targets is clear.

1. Introduction

Although recent advances in computer technology
have increased the speed at which engineers and sci-
entists routinely perform large scale scientific computa-
tions, there are certain classes of technological problems
which can not be efficiently solved by a direct computa-
tional approach. These problems typically contain dis-
parate length and/or time scales which make their gov-
erning equations ill-conditioned from a numerical point
of view. In many cases these disparate scales can be
exploited, using asympiotic methods, to yleld new ap-
proximate equations and boundary conditions which are
well suited for numerical methods. This combination of
asymptotic and numerical techniques often provides an
efficient hybrid method to study the original problem.

An important problem exhibiting these features arises
in electromagnetic (and acoustic) scattering theory.
There, an incident plane wave of wavelength A irradiates
an electrically {acoustically) large target whose overall
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size is measured by the length L. By large we mean
L >> A, Superimposed upon the target is a fine spa-
tial structure which varies on a length scale compara-
ble with A. This scattering problem poses an extremely
difficult boundary value problem from both a compu-
tational and analytical point of view. The fine spatial
structure suggests employing-a fine numerical mesh, but
the overall size of the target mitigates against such a nu-
mertical attack, regardless of one’s computer power. On
the other hand, the large overall size of the target sug-
gests an asymptotic method, such as geometrical optics
(acoustics), but the fine structure violates the mathe-
matical underpinnings of such an approach. A hybrid
method is required to efficiently solve this problem. Un-
fortunately, such a method does not exist for the general
problem just described. To proceed, more information is
required about the target shape and the fine structure.

In the case where the fine structure is a homogeneous
and isotropic dielectric coating which lies on a PEC sur-
face, considerable progress has been made [1-3]. These
authors use a local-planar analysis of the coating to de-
rive a surface impedance that models the layer. This
impedance condition is then applied to the PEC surface
and the ensuing scattering problem is solved numerically
using, for example, a finite difference time-domain tech-
nique. This hybrid technique works well for structures
whose overall dimension L is not too large compared to
X. On the other hand, this impedance can be used in
conjunction with geometrical optics to exploit the size
of the structure when A << L.

If the fine structure is a periodic coating of dielectric
material or the corrugation of a PEC surface, then an
analogous procedure can be carried out. Now however,
the local analysis is more involved and it requires numer-
ical methods to determine the reflection coefficients for
the various Bragg waves that are excited. This kind of
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analysis and numerical study have been combined with
asymptotic results that exploit the large size of planar
structures, such as, corrugated surfaces, gratings, and
acoustic arrays of baffled membranes [4-6]. The planar
character of the underlying large structure was critical
in these analyses.

If the underlying surface which carries the fine peri-
odic structure is not planar, then geometrical optics can
be used in conjunction with the local analysis described
above. It is intuitive that an incident ray will excite a
number of rays, each pointing in the direction of a local
Bragg wave. These scattered rays will each carry an am-
plitude and a phase governed by the laws of geometrical
optics. The initial amplitude and phase on any ray is
determined by matching it to the local Bragg wave that
generates it. Then the field at any point will be the sum
of the fields from each ray. Although the procedure is
straightforward in principal, it may become involved if
many rays are present.

To illustrate these ideas in a concrete manner, we
address here the scattering of a TM wave by a large
corrugated circular cylinder whose corrugation is com-
parable to a wavelength. This “gear-like” structure 1s
shown in Figure 1 where the local period B and the
height A are defined. The ordering of these scales is
A~ B ~ X << L. The analysis presented here uses the
method of matched asymptotic expansions [7] to system-
atize the ideas in the preceeding paragraph. An inner ex-
pansion is developed to analyze the local structure and
an outer expansion to exploit the large electrical size of
the cylindrical surface.

We now outline the remainder of our paper. Section
2 contains the formulation of the scattering problem In
two-dimensions. In Section 3 we define inner variables
by scaling the dimensional spatial variables by A. In
this scaling the corrugated surface becomes planar and
extends to infinity, as € = A/L = 0, so that the inner
problem is identical to the classical scattering problem
for a periodic surface. We assume here that an approx-
imate solution to this problem is known (e.g., from a
well-conditioned numerical method) and observe that it
does not satisfy the proper radiation condition at infinity.
Thus, this approximation becomes invalid or nonuniform
at large distances.

In Section 4 we introduce a new scaling with respect
to L and develop an outer expansion as ¢ — 0. In this
scaling the large corrugated cylinder becomes a smooth
cylinder of radius one. The fine structure of the corru-
gation has been smeared out in this scaling. The ge-
ometrical optics method is used to construct the outer
solution. We find at each irradiated point on the cylinder
the number of rays scattered and their directions. Then
we associate with each ray an amplitude and field whose
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initial values are determined from matching to the inner
expansion.

In Section 5 we determine the far field from the outer
expansion and specialize the results to determine the
backscattered cross-section. This result explicitly shows
a multiplicity of specular points and the dependence of
these points upon the frequency. Finally in Section 6,
we present nurnerical values for the backscattered cross-
section as a function of frequency. These computed val-
ues are compared against a full finite difference time-
domain simulation for a relatively large corrugated cylin-
der.

2. Formulation

We take the target to be an electrically large circu-
lar cylinder of radius L whose corrugated surface is ex-
pressed mathematically by r = L + Af(#). Here A is
the height of the corrugation measured from the circu-
lar surface and f(#) is a periodic function whose period
B is commensurate with 27. We also assume that the
parameters satisfy the ordering

A~Br~A<<L (1)
where A = 2we/w is the wavelength in free space, ¢ is
the velocity there, and w is the frequency of the incident
radiation. The structure resembles a gear with many
teeth and is shown in Figure 1. Finally, we assume that
the structure is a perfect electrical conductor {PEC).

“'y'

A

Figure 1 Scattering geometry

A plane time-harmonic TM wave

Eine= EUe—iKz'% (2)
impinges upon this structure and scatters from it. The
problem then is to determine the scattered field Es
ug2 where the scalar function ug satisfies the Helmholtz

= Uine?
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equation

Viug + Kug =0
exterior to the structure and takes on the values

—iKes zs € 08 (4)

ug = —Epe

where 85 denotes the surface of the scatterer and K =
2m/X. In particular, we wish to determine the far-field
behavior of Eg or ug. This is given by

iKr

us ~ D9, K)%—TT; (5)

where D is the differential scattering cross section of the
target.

3. The Inner Problem: A Periodic Structure

It is intuitively clear that the surface appears locally as
a planar periodic structure. We make this quantitative
by introducing the dimensionless inner variables (z/, y)

= %{(y — Lsine)cosa — {z — Leosa)sine} (6)
;1

) Z{(y—Lsincr) sina + (x — Lcosa)cosa} (7)

which locally describe the surface near the point
L{cos a,sina) on the irradiated portion of the target.
The Helmholtz equation becomes, under this transfor-
mation

V" us + kfug =0 (8)

where & = KA = O(1) is the dimensionless wave num-
ber, and the surface is now a periodic function of &' with
period & = B/A. The incident wave under this transfor-
mation becomes

Uine = Eoe—iKLcosa ez‘k(z’sin a-y'cos a) (9)
and the boundary condition remains the same
Us = —Uine (10)

on the surface. Thus, the local problem is that of an
incident plane wave of strength Ege™* L impinging
upon a planar periodic structure (see Figure 2).
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Figure 2: The planar periodic geometry

According to Floquet theory [8] the total field u
Uine + ts above the periodic structure is given by

u= Eoe—iKLcosa gk (' sin a—y' cos )

(==
+Eo Y Rne'(Pr¥' 41" (11)

-0
Bn=VkT—=92, Yo =ksina+2nr/b (12)

where the term ksina present in the definition of v, is
a result of the form of the incident plane wave in the
inner coordinates. The reflection coefficients R, are to
be determined.

For a fixed value of k only M(a) + N(a) modes are
propagating, namely, n = - M, ---,-2,-1,0, 1, 2, ---,
N. [The propagating modes, or Bragg waves, are those
terms in (11) for which the 3, are real and the evanes-
cent modes are those for which they are purely imagi-
nary.] The solution (11,12) represents a finite number of
plane waves as ' — oo and so does not satisfy the out-
going radiation condition (5). However, the character of
these outgoing waves can be used to construct a radi-
ation boundary operator which can be numerically im-
plemented along with a finite difference or finite element
approximation of the boundary value problem (8,9,10) to
construct an accurate approximation of this inner solu-
tion [9,10]. These numerical results can then be used to
approximately determine the reflection coefficients Rn.

Finally, as noted above, the structure of the scattered
field given by the second term in (11) does not behave
as an outgoing cylindrical wave in the far field, and so a
new expansion for ¥ must be determined in this region.

4, The Quter Solution

To initiate the study of the outer expansion, outer
variables scaled on the radius I must be introduced.
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They are {X,Y) = 4(z,y). Then, the Helmholtz equa-
o2 o?

tion becomes
2
{‘53?5 + 537} utgu=0

where ¢ = A/L << 1. In this scaling all the fine struc-
ture of the corrugated surface is smeared out along the
circle R = /X2 +Y? = 1, so that the solution of (13}
is required away from this surface. Moreover, the pres-
ence of the the ¢ in (13) suggests a high frequency or
geometrical optics approach.

(13)

Accordingly we seek an asymptotic approximation to
the solution of {13) of the form
2= Eoe—ikX/€+ EOZAﬂei(k/e)‘I'n (14)

where each phase function ¥,, satisfies the eiconal equa-
tion

|VE|* =1 (15)
and each amplitude satisfies the transport equation
2VA - VI + AVY = 0. (16)

The form of this solution is suggested by the structure of
the inner solution; each term in the sum corresponds to
a local Bragg wave launched from a point on the surface
in the direction of (X,Y’). Moreover, the number of ray
at a given point depends upon o. :

Consider an incident ray striking the surface B =1 at
the point (cos a,sina). A family of M(a) + N(e) scat-
tered rays emerge from this point, the nth being given
by

(X,Y) = (cose,sina) + 7(pn(a), gn(a)) (17)

where (p,, gn) 1s a unit vector along the line. The corre-
sponding phase function ¥, along this ray is given by
U, = ¥ (a)+7 (18)

where ¥? is a constant which will be determined shortly.
Similarly, the amplitude which satisfies {16} is

_AS(a)

Ay = 19
n ) (19)

where the Jacobian J is defined by
J =X, Y, - X, Y:. (20)

Here the subscripts denote partial differentiation.

In the Appendix we show by matching the field associ-
ated with the nth ray, as  — (}, with the inner solution,
as 22 + ' — o0, that
A2() = Rar/T0, o),

¥l {a) =0, (21)

60

Scattering by Large Structures with Periodic Surfaces

and

pn = Bpcosa—Gupsina

9n

Bnsina+ Grcosa (22)

where B, = 8./k and Gn = v,/k. The Jacobian can
now be computed using its definition (20) and {22). In-
serting this expression into (19) and using the initial data
for Ay, given in (21), the amplitude becomes

_ Bn B,
" /BZ +7(Bn +cosa)

An (23)

The field associated with this ray is then given by
(18),(21), and (23), i.e.

= E, BnBn
VB2 + 7(B, + cosa)

irfe

(24)

The field at any point (X, Y) is determined by finding
the totality of rays passing through it and by summing
up the fields associated with each ray. This may be a
formidable task, as the rays come from different points
{(cos a,sina} on the illuminated portion of the target.
We shall not pursue this point further here.

5. The Far Field

The process of determining those rays which pass
through a given point {X,Y’} simplifies considerably in
the far field where R >> 1. Focusing on the n’® ray
emanating form the point (cos @, sina), an application
of the law of cosines to (17} gives

7~ R — Bp{a), ¥, = R~ B,(e) (25)
and using the first part of this in (10c) yields
A LT — (26)

n= v/ Bn —i—cosaﬁ'

Setting X = Rcosf¢ and ¥ = Rsin# into (17) and using
(25), a simple relationship is obtained for # as a function
of . It is

6 =a+ dnle) (27)

where cos ¢ = B, /k. Omitting a lengthy trigonometric
calculation, this expression can be rewritten as

sina = -'-2-’1 {1 - \/;;-45 sin(8/2) — tan(8/2) } (28)

where n = 2n7/kb. The roots a{f) of (27) are now given
by the roots of (28). Clearly, (28) can be inverted as long
as the right hand side of this expression is less than one.
One case is worth noting explicitly here: for a fixed value
of # and n = 0, (28) gives sina = sin(6/2) or a = 6/2.
This is the specular result for a smooth PEC cylinder.
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To further develop these ideas fix a value of . Then
for a given value of # (28) will have a solution for at
most a finite number of n. Let o, (#) be one such so-
lution. Then the far field result is found by combining
(25,26,27,28), the definition of By, and (14). It is

w(X,Y) = Ege~X/¢
gi(k/e)R
VR

. where the sum is over the rays passing through (X,Y)
and 5, =6 — o, (0).
Finally we observe that the above results simplify even

more when § = 0, i.e., in the backscattered directicn.
Then, (28) simplifies to

(29)

sina = —nn/kb (30)
which again has a solution for at most a finite number
of n. For each of these roots ¢, = —a,,. Consequently,
the total far field in the backscatter direction is given by
(29) as

(X,Y)=E —z‘kx/e+s(0 k)ei(kls)R 1)
u , = e ,

o \/}_2
5(0,k) = %Zﬁyme—i(kh)cosa, (32)

where the sum is over the back scattered rays. Express-
ing R in terms of r and comparing the scattered field in
(31) with (5) gives

D0, K) = k/e S(0, k). (33)

6. Numerical Examples

In this section the backscattered cross section D(0, k)
will be determined from (31,32,33) for the range of fre-
quencies corresponding to 0 < kb < 27. This result
will be compared against a time-domain finite difference
approximation of the scattering problem for the target
shown in Figure 1.

Since the target is symmetric, we need only consider
0 < a < v/2. Thus, (30) implies that only negative val-
ues of n need be considered. When 0 < kb < 7 equation
(30) has only one real root. This occurs for n = 0 and
a = 0. The backscattered cross section D{0, k) for this
range of k is

D(0,k) = \/%Rg(o)e‘“‘/‘, 0< kb< m. (34)

When kb is increased to lie in the interval = < kb <
27, then (30) admits another solution n = —1 and o =
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@1 = sin~! 7/kb. The expression for the backscattered
cross section is now

D(0, k) = \/% [Ro(0)e=/¢

+2R-1(0-’_1)\ﬁ:::)s(7_1)- e—i(k/'E)cos{a_l)]

where the factor of two arising in the second term comes
from the symmetry of the problem. For 27 < kb < 37
(30) admits another new root which adds another term
into (35); this process goes on for increasing values of kb.

(35)

The numerical evaluation of D{0, %) requires the re-
flection coefficients Ro(0) and R_1(a-1) as functions of
k in the interval 0 < kb < 27 This can be done using the
finite difference scheme reported in Reference 10 or the
finite element method reported in Reference 11.

We have used a finite difference time-domain tech-
nique and a radiating mode extinction algorithm in the
far-field to determine the reflection coefficients for the
inner “waveguide” problem. A standard finite difference
time-domain methodology for the full scattering from the
“gear” was used but with the much simpler second order
two-dimensional radiation condition. Care was taken to
ensure that a minimum of 20 nodes per wavelength (de-
termined by the incident frequency) was used, and that
phase differences due to differing iteration stopping times
for the waveguide problem were scaled out. In each case
a stopping criterion involving variations of the scattered
wave amplitude was used to determine convergence of
the numerical schemes.

The actual physical parameters of the “gear” scatter-
ing problem (scaled by the height of the corrugations
A) are: L = 100/n® = 10, B = 10/# =~ 3, width of
slot = B/2, and there are 20 equally spaced slots in the
“gear”. The mesh for the “gear” problem had varying
At, but the spatial grid was fixed at A# = /400 and
Ar = 1/12. The physical parameters for the waveg-
uide problem were made to be commensurate with those
taken from the gear scattering. In particular, Ay = Ar
and Az’ = LAf = 1/4r.

The results of these calculations are shown in Figure
3 where the results of the present hybrid theory (34,35)
are given by the solid curve and where the results of
the full numerical simulation of the gear scattering are
given by the dotted curve. The agreement is excellent,
showing that the hybrid method predicts an accurate
result. Tha major discrepancies occur at kb = nx where
new Bragg modes are initiated in the inner problem. The
other minor errors are caused by the fact that (34,35) are
asymptotic results as ¢ = A/L — 0 and in the present
example ¢ = 0.1.
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Appendix

According to the principal of matching (7], the inner
and outer expansions must agree in a small layer where
both expansions are valid. In this layer one equates the
inner expansion (11) for y/z/2 + 2 >> 1 with the outer
expansion (14) as 7 = 0. This can be done efficiently
by expressing (11) in terms of the outer variables and
comparing the result with (14}. Upon inserting the outer
variables into the right hand side of (6, 7) and using this
new expression in (11), we obtain

o
ug = ZRnei{k/f)[Pa(X"XOH%(Y—Yo)]

—oo

where p, and g, are defined in (22). Since pn and g,
have components that are proportional to 3,, and G,
is purely imaginary for n > n(a) and for n < —M (e},
the sum need only run from —M to N. This just states
that the evanescent modes are essentially zero in this
matching region. Comparing this expression with (14,
17, 18, 19, 20 ) as 7 — 0 yields (21, 22, 23, 24).
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