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ABSTRACT. The classical approach to design of electric
motors is based on the concept of simplified magnetic
circuit analysis. This approach fails in today's design
situation due to wtilization of new materials and new
designs. Application of sophisticated numerical methods
becomes inevitable. Some problems arising in the
application of the finite element method in design of
electric motors are discussed in this paper.

Electric motors are always part of a system and their
behaviour within the system, which is characterized by
integral parameters (torques and reactances), should be
known at the design stage. Computation of these
parameters from a finite element magnetic field solution
is described here.

The computation of torquelangle characteristics from

finite element field solution by application of two basic

approaches:

- global virtual work method and cubic spline
interpolation techniquie,

- Maxwell stress tensor integration,

is described. The applicability of both approaches is

illustrated by computation of the torque in a switched

reluctance motor and the advantages of virtual work

approach are emphasised.

The main problem in application of the finite element
method to computation of magnetic fields in electric
motors is that the field sources (currents) and load angle
are unknown. External environment (terminal voltage and
mechanical load) are known, and the magnetic field
solution is iterated until the external constraints are
satisfied. To avoid finite element mesh rotation an
iterative process was implemented in which only the
Sfundamental harmonic of the lumped stator winding
distribution is taken into consideraiion instead of the
three-phase winding excitation. The direct and quadrature
reactances are computed from the finite element magnetic
field solution utlizing flux linkage and stored energy
approaches. The procedure is illustrated by computation
of the reactances of a permanent magnet Synchronous
electric motor.

30

L INTRODUCTION

Design of electric motors is a process of synihesis based
on geometrical modelling and analysis. The traditional
approach to analysis in the design of electric motors was
based on the concept of magnetic circuit analysis resulting
with simple analytical models. These models incorporate
equivalent circuits postulated on the basis of experience
and intuition. Results of such an approach are
qualitatively correct but quantitatively inaccurate and have
to be corrected with empirically introduced correction
parameters based on previous experience and
measurements on prototypes. These parameters are usually
valid for very narrow classes of motors significantly
similar to those which were produced and measured
before the new design. From the designers point of view
the main advantage of this approach is its simplicity and
ease of application.

This traditional approach to design of electric motors fails
in new situations. Utilization of new magnetic maiterials
enables developing of new designs. Precise prediction of
motor characteristics before a motor is manufactured is
one of the essential prerequisites for good, concurrent
design and cost-effective production. Accordingly, more
sophisticated methods of analysis based on
electromagnetic field theory which enable more accurate
modelling of electric motors are required to be
implemented in the design procedures. Numerical field
analysis is the only available tool capable of dealing with
problems which arise in the design of the new generation
of electric motors. The most widely spread numerical
method for electromagnetic field analysis in electric
motors is the finite element method (FEM). Its application
to the calculation of two main integral characteristics of
electric motors: torques and reactances is described here.

2. CALCULATION OF TORQUES

One of the most important characteristics of electric
motors is torque as a function of rotor position. It can be
derived from the FEM solution of the magnetic field
in the electric motor. Two distinct approaches for directly
calculating the torque from the FEM solution are Maxwell



stress tensor integration and the virtual work approach.
21 Maxwell Stresses

The torque on a rigid body enclosed by a surface S via
Maxwell’s magnetic stress tensor integration can be
obtained by calculating the surface integral [1):

T=§(Fxi)ds (1)
Ly

where n is an unit vector normal to the integration surface
S, r is a distance vector, and t is Maxwell stress tensor
defined by:

—

t=H-(BA)-L
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In the case of the exact solution the integral in (1) is
independent of the chosen integration surface.
Approximate and discreie nature of the FEM solution
introduces dependency of the accuracy of torque
calculation upon the accuracy of the calculation of the
local flux densities and upon the choice of the integration
surface (3D models) or integration contour (2D models).
High accuracy of the calculation of the local flux
densities, which are obtained from potential solutions
(scalar or vector) by differentiation, can be assured by
increasing the FEM mesh density. The most convenient
choice for the integration surface (contour) in the FEM
models of electrical motors is in the airgap between the
stator and the rotor. In a practical applications of this
approach it is advisable to evaluate the torque using
several surfaces (contours) and to average the results, or
to apply relatively complicated iterative methods for
selection of the best surface (contour) [2].The application
of this approach in normal design practice is very
complicated,

(H-B)-it V)

The main advantage of the Maxwell stress tensor
integration approach to torque calculations is that it
requires only one field solution to obtain the torque for
one position. If it is necessary to obtain a complete
torque-angle characleristics this advantage becomes
obsalete.

2.2 Virtual Work

Since the extremization solution procedure used in the
finite element method optimizes the calculation of stored
energy, the virtual work method seems to be more stable
and accurate approach to torque calculation, The torque
can be calculated from the coenergy of a system by [3.4]:
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where W_ is the total coenergy of a system and « is the
angular displacement. Total coenergy of a system can be
calculated from the FEM solution by:

W= \facBave- | }H‘dB' dve @
e |pe o
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The main disadvantage of this approach is the calculation
of the coenergy derivalives with respect to a small
perturbation of the rotor position. The numerical
realisation of this method can give rise to a
significant  round-off error in computing a finite
difference approximation of the required derivative
because of near identical coenergies  for small
displacements. On the other hand using increased
displacements of the rotor in order to achieve
greater differences in the system coenergy decreases the
accuracy of the finite difference approximation,

In order to overcome those difficulties, a cubic spline
interpolation of the coenergy function through points
calculated in several rotor positions is introdoced [S1.
The interpolation of the coenergy on the i-th segment is
defined by [6]:
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The unknown coefficients of the interpolation m,; are
derived from the condition of smooth joints {equal first
derivatives) at points o (i=1,..n-1). The first derivatives
at the first point (i=0) and the last point (i=n) of
interpolation are set to the zero, which is natural for this
problem. The torque is calculated by derivation of the



cubic spline interpolation of the coenergy function with
respect to displacement o.

2.3 Example: Torque in a Switched Reluctance Motor

The usage of switched reluctance motors (SRM) has
increased in recent years due to their simplicity and
controllability, As a variable speed driver they are much
more efficient compared to variable speed induction
motors. The motor has salient poles on both the stator and
the rotor, the windings on the stator are of simple form
and there are no windings on the rotor. This results in a
relatively simple construction of such motors. The
currents in the stator circuits are switched on and off in
accordance with the rotor position and with simple control
the motor develops the torque-speed characteristics typical
for series-connected d.c. motors. The main characteristics
of the magnetic field analysis in SRM are:
- complex geometry and very small airgap between
stator and rotor,
- deep saturation of magnetic material in normal
operation,
- eddy currents can be neglected.
. the influence of edge effects must be taken into
account.

Figure 2.1 Cross-section of SRM motor

Taking into consideration the aforesaid one can conclude
that a 3D nonlinear static model of SRM is sufficient for
design analysis. The importance of 3D calculation is
emphasized in the case of deep saturation of magnetic
material and/or in the case of rotor-stator position with
maximum reluctance. In those cases the magnetic field is
leaked out of iron parts of the motor,
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Because of the static model, a total scalar potential

approach to the numerical field calculation is chosen. The

main advantages of this approach are [7]:

- one unknown per node,

- current regions are not
discretization,

- the influence of current sources is faken into
account by applying the Biot-Savart law.

The finite element discretization of the SRM model is

based on the application of twenty-node isoparametric

brick elements. This ensures good approximation of the

motor geometry as well as giving a good approximation

to the field values (gradients of the potentials). The space

around the active part of the SRM must be included in the

finite element mesh.

included in the

The above mentioned approach was applied to the
computation of the torque/angle characteristics of the
SRM shown in Figure 2.1. The surface for Maxwell stress
tensor integration was chosen to be a cylinder through the
middle of the airgap. The airgap was discretized by three
layers of finite elements. Total coenergy of the system
was calculated from the same FEM solution. The resulting
curves showing the comparison of the virtual work
approach and the Maxwell siress tensor integration with
the measurements are shown in Figure 2.2,

3. INDUCTANCE CALCULATIONS

The main objective of inductance calculations in electric
motor design is the computation of the reactances in the
direct and quadrature axis system (X, and X). The two-
axis system was introduced into classical theory of electric
machines as a mean of facilitating analysis of salient pole
machines [8]. Reactances X, and X, are the basis for
further representation of the motor in system studies.
Two fundamental approaches to inductance calculations
are: :
- calculation of inductance from flux linkage,
- caleniation of inductance from stored magnetic
energy.
Both approaches can be applied in the case of the FEM
magnetic field solution.

31 FEM Modelling of Electric Motors

A specific problem in applying the FEM to the design of
electric motors is that in most cases the source (currents
in stator slots) and load angle (relative position rotor-
stator) are not specified. Under normal orperating
conditions for electric motors the stale of the system is
defined by the external quantities {terminal voltage and
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mechanical load) while source currents and load angle
which are necessary for the FEM problem formulation are
unknown. Solving a problem under these new constraints
requires an iterative application of the FEM solution. The
iterative scheme starts with the initial estimate of the load
angle and field source currents which can be obtained by
the classical design approach. The FEM solution is then
applied and a first estimate for problem external sources
can be determined. The derived terminal voltage is then
compared with the specified conditions and the inputs to
the FEM solution are iterated until a solution which
agrees with the load point specification is obtained.

One way of forming the FEM models of electric motors
is to specify source currents densities in stator slots which
comrespond to phase currents determined from the three
phase excitatiomr current system. Utilization using that
approach requires rotating the FEM mesh as load angle
varies, which complicates the iterative scheme of the FEM
application. In most electric motors the fundamental
component of excitation is dominant, while higher
harmonics can be neglected. It enables decornposition of
the lumped stator winding distribution intc Fourier
components and only the fundamental component of the
current sheet is retained [9]1. Stator currents in the FEM
model of the motor are then assigned to the stator slots
proportional to the area under the current sheet density
distribution associated with each slot. The three phase
sum of the fundamental components rotates in
synchronism with the rotor, which means that changing
load angle can be simulated by changes in the
fundamental curent sheet distribution while the FEM
mesh remains the same,

3.2 Definition of Reactances

The quantities obtainable from the FEM magnetic field
solution are direct and quadrature axis flux linkages and
energies. In order to find them, taking into account
saturation of magnetic material, a three step procedure for
FEM solution is given in [10]:

Step 1. Nonlinear solution of the FEM problem where
the sources are excitation current together with
total armature carrent (both d and ¢ components)

Step 2. The permeability for each element achieved in
nonlinear iteration procedure (step 1.) is fixed.

Step 3. Two lincar solutions of the FEM problem with
separately applied d and q components of
armature current while excitation current is set to
zero. Permeabilities in the FEM mesh for this
step are the ones fixed in step 2.

Direct axis flux Hnkage y, and stored magnetic energy W,

are calculated from the FEM solution in step 3 when the



direct axis component of armature current is applied,
while quadrature axis flux linkage y, and stored magnetic
energy W, are calculated from the FEM solution in step
3 when the quadrature axis component of armature current
is apptied. The reactances are then defined as:

de 2de
Y=t 5 X @)
4 31
X - ) ‘I'q : =2qu ®)
S, o

where 1, and I, are the direct and quadrature axis
components of armature current respectively.

33 Example: Synchronous Permanent Magnet
Motor (SPMM)

The high energy density of rare earth permanent magnets
and relatively low costs of their utilization has permitted
them to replace classical DC excitation systems of electric
motors. The elimination of the excitation winding (copper
losses, brushes..) results in more reliable and
mechanically simpler motor. The rare earth permanent
magnets have near linear characteristics over normal
operating conditions. This fact greatly simplifies their
modelling in the FEM. They can be replaced with simple
current sheets swrounding a material having a
permeability equal to the recoil permeability of the
permanent magnet material which is, in the case of rare
earth materials, slightly greater than the one of free space.
The geometry of such motors enables utilization of a two-
dimensional model. FEM approach based on magnetic
vector potential is applied in the solution procedure, The
cross-section of the analyzed motor can be seen in Figures
3.2 to 3.4. The fundamental component of decomposition
of lumped stator winding into Fourier component is given
as [9]:

ni§) = 2 N,21, sing ) ©
T

where:

- 1, is the root mean square value of the armature
current,

- N, is the number of tumns in the stator winding
per pole and per phase,

- £ is the electrical angle with respect to the d
axis,

- o is the electrical angle between the phasor of
the armature current and the d axis.
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Current I, associated with i-th slot of the stator winding is:

1= %Nsﬁ I sin(€ -«) A (10)

A set of equations which define the external environment
in steady state operation of a permanent magnet electric
motors can be deduced from the d-q theory by adopting
the Park transformation in rotor reference frame. The
equations are [11]:
=RI +

Vq P ¢’d (11)

Vi=RI;-0 ¢,

V, and V4 are q and d components of the terminal
voltage, I, and [, are the comesponding current
components, R is ohmic resistance of the winding, @ is
steady state frequency and @, and @, are the
comresponding flux linkages. These equations can be
expressed in phasor form and combined to obtain the
phase stator voltage V, in phasor form:
V=@R+jX ) +jX X )1+ Ey (12)
E, is the open circuit voltage (I,;=1,=0) resulting only from
permanent magnets (excitation) and can be considered as
a constant. This voltage is computed from the FEM
solution of the model excited only by permanent magnets.
A phasor diagram derived from (12) is presented in
Figure 3.1.
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Figure 3.1 Phasor diagram of SPMM

Unknown reactances X, and X are obtained from the
FEM ficld solution using the idea of distributed turns in
the flux linkage calculations as described in [10]:



le=f2A(E) 61:“ sing d& (13)
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Stored magnetic energy is calculated from the FEM
solution by:

8
W,=Y [([H®aB*)ds® (15)
¢ g¢ 0

The iterative procedure described in section 3.1 was
performed and after three iterations an agreeable solution
( successive solutions for X, and X, differed by less than
3.5%) was obiained. FEM field solutions for step 1 and
step 3 in the third iteration are illustrated in Figures 3.2 to

Figure 3.3 Linecar FEM solution in q axis
(third iteration, step 3)

Figure 3.2 Nonlinear FEM magnetic field solution Figure 3.4 Linear FEM solution in d axis
(third iteration, step 1) (third iteration, step 3)

The results of the computation of the reactances calculated
from flux linkages as well as the reactances calculated
from stored energy are given in Table 1.
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Energy Flux Linkage
X, X, Xy X,
Iteration 1 | 55.44 87.83 5342 | 78.88
Iteration 2 | 43.97 93.80 42.80 | 89.82
Iteration 3 | 42.76 96.50 4160 [ 92.15
Bt |

Table 1. Reactances through iterations 1 to 3
4. CONCLUSIONS

The application of the finite element method in
computation of integral parameters of electric motors
cannot be avoided in today’s design practice. The problem
in applying of the method is that a certain level of
speciatist’s knowledge is required from a designer. Some
aspects of that knowledge are clarified in this paper. The
most important parameters of electric motors are torques
and reactances. In order to calculate them additional
computations must be performed after the FEM solution.

The torques can be computed by the application of
Maxwell stress tensor integration or by the virtual work
approach. The virtual work approach is improved by the
introduction of cubic spline interpolation of coener-
gyfangle dependence. This results in the smooth
approximation of the coenergy/angle curve and well
defined differentiation with respect to rotor/stator position.
The method is based on computation of the total coenergy
of a system and thus less sensitive to meshing of the
model. The described approach was apphlicd on a test
example and compared with the Maxwell stress method
and measurements.

Computation of reactances of electric motors requires
iterative application of FEM magnetic field solution
because the field sources and load angle are unknown.
The iterative procedure is simplified because only the
fundamental compenent of the lumped stator winding
distribution is taken into consideration instead of three-
phase winding excitation. Three phase sum of the
fundamental components rotates in synchronism with the
rotor and rotating of rotor the FEM mesh is unnecessary.
Direct and quadrature axis reactances are computed from
the FEM solution by flux linkage and stored energy
approaches. The method was tested on a synchronous
permanent magnet motor.

The final conclusion is that the stored encrgy approach to
torque and inductance calculations is better for use in
traditional design procedures because of the nature the
FEM (minimization of energy functional) and weak
dependence on local emrors due to bad meshing of the
model.
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