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ABSTRACT. A current—based hybrid method combin-
ing the method of moments (MM} with asymptotic cur-

rent expansions for the higher frequency range is pre-

sented for the analysis of arbitrarily shaped, three—di-
mensional, perfectly conducting electromagnetic radia-
tion and scattering problems. Some examples demon-
strate the drastic saving in memory requirement and
CPU-time when applying the hybrid method as com-
pared to the conventional MM. Even though the pro-
posed method is a frequency domain formulation, some
time domain results based on a Fourier transform are
presented as they show an accurate description of dif-
fracted and creeping waves.

1 Introduction

The MM [1] is a widely employed method to deal with
perfectly conducting, lossy, or dielectric scattering prob-
lems either in the frequency or time domain. Here we will
concentrate on three—dimensional, perfectly conducting
bodies.

Rao et al. [2] proposed a current basis function Fn defined
over triangular patches to deal with this type of problem
in the frequency domain. The electric surface current
density Jis expressed as a linear superposition of basis
functions

— N -
J = Zan * fn (1)
n=1

with unknown coefficients «y,. The electric field inte-
gral equation leads to a system of linear equations to
determine these N unknown coefficients. Therefore, the
memory requirement to store the elements of the matrix
is of order N2, and the CPU time to solve the system
of linear equations is of order ¥2-2, depending on the
applied algorithm, e.g. Gauf elimination or conjugate
gradient method.

The required number of triangular patches depends on
the size of the scattering body with respect to the wave-
length. In our experience, a value of about N == 7¢...100
basis functions for modelling a surface with an area of
a square wavelength A? seems to be appropriate. This

means that for a two—dimensional surface of fixed area
the necessary number N of basis functions grows pro-
portional to f2, the square of the frequency. The result
is a memory requirement proportional to f%, and the
CPU-time grows as f*-%,

These dependencies cbviously show that the conventional
MM is restricted to the lower frequency range. The hy-
brid method proposed in the next section can overcome
this difficulty.

2 Hybrid method

PO-region

Fig. 1: Plane electromagnetic wave incident on a perfectly
conducting sphere with radius R =1m.

Consider the example depicted in Fig. 1 where a plane
electromagnetic wave is incident on a perfectly conduct-
ing sphere with radius R = 1m. The surface of the
sphere has been subdivided into triangular patches, where
basis functions f, according to Ref. [2] are applied in eqn.
(1) to represent the current density J on the surface of
the sphere.

Ray-based hybrid methods combining the MM with the
geometrical theory of diffraction [3, 4, 5] are not very

38



suitable to deal with this class of problems involving one
large scattering body. Their scope of application is, for
instance, radiation problems with an antenna located in
front of a large scatterer. Here, however, current—based
hybrid methods [6, 7, 8, 9, 10] seemn to be more advanta-
geous. As depicted in Fig. 1, we can subdivide the sur-
face into a MM~ (light shading) and a PO-region (dark
shading), where the physical optics approximation is ap-
plied.

In general, the MM-region may consist of wires and sur-
faces while the PO approximation can be applied only
to surfaces. We subdivide metallic wires into electrically
short segments and employ triangular basis functions to
represent the electric current ¥ . On the surfaces in
both regions we use an expansion according to eqn. (1}
for the surface current density:

NMM

E an - fn
n=1
NMM+NPO

2

n=NMM4]

j'MM

(2)

j"PO

(3)

Qp - fa-

Every basis function fn extends over two adjacent trian-
gular patches [2]. Basis functions located at the bound-
ary between the MM- and the PO-region, i.e. one of the
two patches lies in the PO-region and the other in the
MM-region, are assigned to the MM-region. This allows
a continuous current modeling across the boundary.

Only the N™* unknown coefficients o, in eqn. (2) are
determined by solving a system of linear equations which
results from the electric field integral equation and a
Galerkin testing procedure. The remaining N¥C coef-
ficients o, in eqn. (3) are based on the physical optics
approximation
j"PO (,,-_')

26; - & x H;(F)
NMM
+ 3 2anbn-axA{f}. @

n=l

The first contribution in eqn. (4) represents the conven-
tional PO current density caused by the incident mag-
netic field strength H; of the excitation. The vector 7
denotes a unit vector normal to the surface at the obser-
vation point . A coefficient §; accounts for shadowing
effects. If 7 lies in the shadowed region, & must be set
to zero. Otherwise §; equals £1, the sign depending on
the direction of incidence with respect to the crientation
of i1

The second contribution in eqn. {4} accounts for the cou-
pling between the MM- and the PO-tegion. A summa-
tion takes place over basis functions f, in the MM-region
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with respective coeflicients a,. The operator H acting
on fp yields the magnetic field strength caused by the
basis function f, and can be expressed as

A{i}=-5 [[RE)<Te7an @
X

with the free space Green’s function

e"jﬁ!F—FII

7]

G(7, 7) (6)

and the wave number 3 = 2%. The vector product 2fix
in eqn. (4) leads to the PO—current density. Again, coef-
ficients 4, must be considered to account for shadowing
effects.

The coefficients a, in eqn. {3) can be obtained directly
from eqn. (4), thus circumventing the process of solving
a system of linear equations.

All further details of the hybrid method can be found
in Ref. [11]. In that paper we also developed correction
terms JFW (fringe wave) based on the exact solution for
the half-plane scattering problem to account for effects
of edges of polygonal plates. Further correction terms
to consider the edges of perfectly conducting wedges are
presented in Ref. [12]. The following examples show that
these high frequency current approximations implemen-
ted in a hybrid method together with the MM represent
a powerful tool for the analysis of a wide variety of elec-
tromagnetic radiation and scattering problems.

3 Examples

The first example has already been depicted in Fig. 1.
The perfectly conducting sphere of radius R = 1lm is
subdivided into 368 triangular patches resulting in 552
basis functions f,, associated with the intertor edges be-
tween the triangular patches. A plane electromagnetic
wave polarized in z—direction and propagating in posi-
tive z—direction is incident on the sphere.

We have chosen this particular example because the re-
sults can be compared to the exact solution available in
the literature (e.g. Ref. [13]). First we have calculated
the monostatic radar cross section {(RCS) o of the sphere
in the frequency domain using the MM or the PO ap-
proximation, respectively, on the entire surface of the
sphere, i.e. contrary to Fig. 1 no subdivision into a MM-
and a PO-region has been made.

The result is depicted in Fig. 2. It shows an excellent
agreement between the exact solution (dash—dotted line)
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Fig. 2: Monostatic radar cross section & of the sphere as a
function of the frequency f.
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Fig. 3: Adaptive subdivision of the surface of the sphere into
triangular patches {1272 triangles here, 368 patches
in Fig. 1).

and the MM solution (solid line). The PO solution (dot-
ted line) fails, mainly because of the small size of the
sphere. At f = 1580 MHz the diameter of the sphere just
equals one wavelength A.

It should be noted that the implemented computer code
allows an adaptive segmentation based on the actual
value of the wavelength. When dealing with low fre-
quencies the sphere is subdivided into 368 patches as
shown in Fig. 1. With increasing frequency the program
automatically chooses a larger number of patches, e.g.
at 500 MHz 1272 triangles are used as depicted in Fig. 3.
This varying number of patches causes the small jumps
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Fig. 4: Pulse incident on the sphere according to eqn. (7) at
the origin ¥ = 0 with a = 1.5-}5, t1 = 6lm, and

tp = 7.251m.
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Fig. 5: Normalized spectral density for the pulse according to
eqn. (7) with a = 1.5 i, t; =6lm, and t; = 7.25lm
as depicted in Fig. 4.

that can be observed in the MM-solution in Fig. 2 e.g.
at about 225 MHz.

Now we will investigate the time domain response when
a pulse described by

EiFt) = Ey- (6"":[': (t=t2)=FBT" _ g=o®le (t_h)—i.-ﬁ]z)

_ (7)
witha =151, ¢, = 20ns, t, = 24.18ns, Ep = Ep &, and
@ = % 1s incident on the sphere. ¢ denotes the velocity
of light in free space. It is useful to specify the time ¢

in units of lightmeters (Im) with 11m = 12 ~ 3.34ns.
Thus we have ¢; = 6lm and #3 = 7.25Im.
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Fig. 6: Backscattered pulse in the farfield as a function of
time for the pulse according to Fig. 4 incident on the
perfectly conducting sphere.

Fig. 4 shows the shape of the incident pulse as a function
of time. The corresponding normalized spectral density
is depicted in Fig. 5. We have chosen two successive
GauB pulses with a time delay of t3—1; = 1.25lm so that
the spectral intensity is maximum at about 79 MHz.

The backscattered pulse in the farfield region can be cal-
culated by means of Fourier transforming the complex
frequency response, as depicted in Fig. 2, multiplied with
the complex spectral intensity of the excitation. The re-
sult is shown in Fig. 6, where r denotes the distance of
the observation point in the farfield. The time ¢ is shifted
by L so that t-£ = 0 describes the propagation of a pulse
starting at { = 0 at the origin of the coordinate system or
at the center of the sphere, respectively. Looking at Fig.
3, we can see that the maximum of the incident wave at
t = 6lm in Fig. 4 is reflected at the point z =y = 0
and z = —R = —1m at the time { = 5lm. This re-
flected wave can be observed in the farfield at the time
¢ — L = 41lm, which is in accordance with the calculated
response in Fig. 6.

The solid line in Fig. 6 represents a solution based on
an application of the MM on the whole surface of the
sphere, i.e. no asymptotic current expansion is involved.
This curve is in excellent agreement with the exact result
(dash-dotted line). The dotted line is the resuli of the
PO approximation on the whole surface of the sphere.
This solution differs distinctly from the exact result for
times t — £ > 6lm. The additional negative peak of
the exact solution at ¢ — T ~ 9lm can be interpreted
as a creeping wave with a time delay of % e 3.141Im
arriving at ¢t — £ s (6 + 3.14) Im in the farfield region.
This creeping wave term is absent in the PO solution.
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Fig. 7: Plane electromagnetic wave incident on a perfectly
conducting square plate with side length 12m.

Now we will demonstrate the application of the hybrid
method. For frequencies lower than 75 MHz (compate to
Fig. 5) we employ the conventional MM for the whole
surface of the sphere. This is not a disadvantage, as
we malke use of an adaptive segmentation scheme and
for these low frequencies only a moderate number of un-
knowns is required. The hybrid method is used for fre-
quencies above 75 MHz. The range 0° < ¢ < 120° in
Fig. 3 represents the MM-region while PO is applied on
the remaining part of the surface {dark shading). The
resulting backscattered pulse is depicted in Fig. 6 by the
dashed line. Good agreement with the exact solution can
be observed also for times t — Z > 61m when PO fails.

A second example is shown in Fig. 7. A plane elec-
tromagnetic wave according to eqn. (7) witha =1 %,
t; = 6lm, and t» = 81m is incident on a perfectly con-
ducting square plate with side length 12 m. First the case
of perpendicular incidence with J; = 90° and ¢; = 270°
will be considered, i.e. the wave is propagating in positive
y-direction with Ey = Ep % and 4 = § in eqn. (7).

The backscattered pulse in the farfield region is depicted
in Fig. 8. The solid line corresponds to the solution based
on the MM applied to the entire structure. The dot-
ted curve is the result of the PO approximation JF° =
2 H;z. We can modify this PO current density by a
heuristic superposition of correction terms J¥% asso-
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Fig. 8: Backscattered pulse in the farfield as a function of
time for the perfectly conducting plate with perpen-
dicular incidence.
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Fig. 9: Scattered pulse in the nearfield at an observation

point £ = z = 0 and y = —~2m as a function of time
for the perfectly conducting plate with perpendicular
incidence.

ciated with the four edges of the plate {11]. This leads
to the dashed line in Fig. 8. If we try to interpret the
results with diffraction theory, we find one reflected and
four edge diffracted rays that overlap because of the same
time delay for an observation point on the negative y-
axis in the far field. The double diffracted rays have an
additional time delay of 121lm and can be observed in
Fig. 8 at{ — Z &~ 181m.

We can separate the reflected pulse and the four edge
diffracted pulses by choosing an observation point in the
nearfield. Fig. 9 shows the scattered field at an observa-
tion point * = # = 0 and y = —2m. The maximum of

o 2 4 6 8 10 12 14 16 18 20
time £ — = in lightmeters

Fig. 10: Backscattered pulse in the farfield as a function of
time for the perfectly conducting plate with direction
of incidence ¥; = 90° and ¢; = 250°.

the incident pulse, which is reflected at ¢ = t; = 61lm,
arrives at the observation peint at ¢ = 81m. The first
maximum of the four edge diffracted pulses can be ob-
served at ¢ = (6 + v/6% + 22) Im ~ 12.321m, whereas the
double diffracted pulses arrive at ¢ /2 24.32lm.

The two figures 8 and 9 show that the agreement between
the MM solution acting as reference and the PO solution
is very accurate concerning the reflected pulse. However,
this is not true for other than perpendicular incidence.

Fig. 10 shows the monostatic backscattered pulse in the
farfield for the direction of incidence #; = 90° and p; =
250°. If we try to interpret this figure with diffraction
theory, we find that for the first maximum of the inci-
dent pulse at 1 = 6lm a diffraction process at the point
z = —6m and y = z = ( takes place. The farfield re-
sponse can be observed at 1 —Z = (6 —2-6 sin20°) Im ~
1.91lm. This time agrees well with Fig. 10, but we can
observe that the amplitude of the pulse based on the PO
solution (dotted line) differs from the MM solution (solid
line). Omnly through the superposition of correction terms
(dashed line) can the amplitude be improved. This ap-
plies equally to the second pulse caused by a diffraction
process at the point £ = 6 m and ¥ = z = 0, which can
be observed in Fig. 10 at ¢ —Z = (6 +2-6 sin20°) Im =~
10.1im.

A further example is shown in Fig. 11. A backfire Yagi-
Uda antenna consisting of three shape optimized ele-
ments [14, 15] is located in front of a perfectly conducting
square plate with a side length of 3A. As opposed to the
previous examples, we will restrict our investigations to
one single frequency.

The radiation patterns in the E- and H-plane of the
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Fig. 11: Backfire Yagi-Uda antenna of three shaped opti-
mized elements in front of a reflector of size 3A x 3A.
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Fig. 12: E-plane radiation pattern of the shape optimized
Yagi-Uda antenna in front of a reflector.

Yagi-Uda antenna are depicted in Fig. 12 and 13, re-
spectively. The solid line results from a calculation based
on the conventional MM. Applying the hybrid method
proposed in Section 2, we assign the wire antenna to
the MM-region and the surface of the reflector to the
PO-region. This yields a radiation pattern shown by
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Fig. 13: H-plane radiation pattern of the shape optimized
Yagi-Uda antenna in front of a reflector.

Table 1: Input impedance, gain, memory requirement and
CPU-time for the backfire Yagi-Uda array in front
of a reflector.

hybrid method
MM
PO | PO+FW
input impedance in 2
real part 15.6 154 15.5
imaginary part -66.9 | -56.8 -56.9
gain in dB 12.67 | 12.47 12.62
no. of basis functions
MM-region 1494 86 86
PO-region - 1408 1408
numbffr_of unknowns 397 45 45
{exploiting symmetry)
memory for matrix
. 24
in kByte 63 32 32
CPU-time in sec
380 16 325
(HP 9000/710) 8 3

the dotted lines in Figs. 12 and 13. Superimposing addi-
tional correction terms J¥% to the PO current density
on the surface of the plate leads to the results depicted
by dashed lines.

Values of the input impedance and the gain of the an-
tenna as obtained by the three methods are tabulated in
Table 1.

In the introduction we claimed that the application of the
hybrid methed leads to a drastic reduction in memory
requirement and CPU time as compared to the conven-
tional MM. This is confirmed in Table 1. 86 triangular
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Fig. 14: A-dipole antenna in front of a circular cylinder of
finite length with variable distance a.
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Fig. 15: E-plane radiation pattern of the A-dipole antenna
in front of a circular cylinder {(a = 0.7 A).

basis functions defined along the wire segments are re-
quired to model the wire antenna. On the surface of
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Fig. 16: H-plane radiation pattern of the A-dipole antenna
in front of a circular cylinder (a = 0.7 A).

the reflector 1408 basis functions f, are used leading to
a total number of 1494 basis functions for the conven-
tional MM. Exploiting symmetry of the structure, the
total number of unknown coeflicients which have to be
calculated from the solution of a system of linear equa-
tions can be reduced to 397. When applying the hybrid
method, this number equals 45. Consequently, we have
a reduction in memory requirement for the matrix of the
system of linear equations by a factor of about 77.

Finally, one last example shown in Fig. 14 shall be in-
vestigated. A A-dipole antenna is located in front of a
circular cylinder of finite length with variable distance a.
The cylinder has a diameter of £ and a height of ).

When applying the hybrid method, the dipole antenna
represents the MM-region and the PO-region consists
of the surface of the cylinder. Note that we have used
conventional PO on the cylindrical surface. Similar to
accounting for effects of edges of polygonal plates by cor-
rection terms JFW, we are presently investigating the
improvement of the PO—current for curved surfaces by
correction terms derived from the Fock theory [16]. Re-
sults will be reported in an upcoming paper.

The four figures 15-18 show the E-plane and H-plane
radiation pattern, respectively, for the two distances a =
0.7 A and a = 0.9 A, respectively. The solid line is based
on a calculation with the conventional MM whereas the
dotted curve shows the result of the hybrid method.
Good agreement can be observed.
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Fig. 17: E-plane radiation pattern of the A-dipole antenna
in front of a crcular cylinder (a = 0.9 A).

Fig. 18: H-plane radiation pattern of the A-dipole antenna
in front of a circular cylinder (a = 0.9 A).

Table 2 summarizes memory requirement and CPU-time
for this example.

Table 2: Memory requirement and CPU-time for the A-
dipole antenna in front of a circular cylinder.

MM | hybrid m.
number of basis functions
MM-region 2852 20
PO-region - 2832
numbgr'of unknowns 726 1
(exploiting symmetry)
memory for matrix
in kByte 8236 2
CPU-time in sec
258 54
(FIP 9000/735)

4 Conclusions

A hybrid method has been presented combining the MM
with asympiotic current expansions for the higher fre-
quency range. In the simplest case the conventional
PO approximation is employed. For polygonal scatter-
ing bodies we have improved the asymptotic PO current
density by heuristic correction terms to take the effects of
edges into account. Currently we are also investigating
the application of Fock currents for curved surfaces.

Some examples have demonstrated the accuracy of the
hybrid method as compared to the conventional MM
even though a drastic reduction in memory requirement
and CPU-time can be achieved. Some computational
results have been transformed from the frequency do-
main into the time domain allowing a physical inter-
pretation with diffraction theory considering reflected,
creeping and diffracted waves.
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