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Abstract —1In this paper, an advanced
approximation method is presented, which
separates the twist wire pairs into common and
differential modes using the multi-conductor
transmission line model. The simulation storage
and time cost has been significantly reduced and
its accuracy is better than traditional
approximation methods. Analyses of dealing with
the impedance and admittance and the separation
procedure of common and differential modes are
presented. In addition, the load dealing methods
for terminal and source has also been specified in
this paper. Numerical experiments validate the
accuracy and listed the storage efficiency and time
cost reduction of the proposed method.
Index Terms — Common mode, crosstalk,
different mode, twist wire pair.

I. INTRODUCTION

In the recent years, Twist Wire Pair (TWP)
has been well developed and has become a most
widely used physical layer for a number of
technologies in communication systems, such as
controller-area-network buses and gigabit Ethernet
cables. Crosstalk comes on them when these wires
are used to transport signals, which affects the
bandwidth and the transmission rate. A special
structure of TWP is used to reduce crosstalk,
which introduces non-uniformity into model and
makes prediction more difficult [1-4].

In order to predict crosstalk, a wiring structure
is proposed based on the simplified -circuit
modeling and interpretation of crosstalk [5-8]. The
twisted pair is modeled as a cascade of normal
transmission-line loops consisting of two-wire
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sections with abrupt interchanges of wire positions
between 2 different transmission line parts [5, 7].
This model is typically accurate for frequencies
such that the total line length is no more than 1/10
of a wavelength [5]. According to this technique,
one can easily add multiple TWPs into the normal
Multi-Transmission Line Networks (MTLN).
There are some advanced predicting techniques
based on this model [9-14], such as the response of
plane wave [9] and the effect of randomness of
twist pitch lengths [10], but it needs more space
and time cost to solve the transmission line
parameters due to its model complexity and the
parameters variation with distance, so some
approximation is needed.

While introducing TWP or other cables into
the transmission line model, one difficulty is the
larger matrix size and the parameters stored in the
MTLN model. In addition, the large-size matrices
will also cause an extra simulation time.

Several approximation techniques have been
proposed, such as the equivalent cable bundle
method [15-19], which approximates the cable
bundle size by calculating the common mode
voltage and current along wires in the same group
whose response is more critical than the
differential-mode. Its accuracy depends on the
ratio of the loading impedances on the terminal
and the source sides to the characteristic
impedance. For a model with TWP, this
categorization may cause the two wires in TWP
into two different groups. What is more, it will add
the difficulties into the categorization since the
characteristic impedance may vary with position.

An approximation model for TWP bundle was
proposed using the finite-difference time-domain
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method [20]. The abrupt section calculating was
avoided for the approximation, so the procedure of
solving the chain parameter matrix effect was
much simplified, but this method does not have
distinct reduction in the storage demand or the
time cost.

In this paper, an advanced approximation
method based on variation of the common and
differential modes will be presented. Also, we will
discuss the way of dealing the loading impedance
in the advanced model and the usage of the
simplified model in MTLN. The method will be
proved to be accurate than the equivalent cable
bundle method and will save much more space in
storage and time.

II. TWISTED WIRE PAIR CROSSTALK
MODEL CASCADED THEORY OF
PAUL AND MCKNIGHT

A. Twisted wire pair crosstalk model cascaded
theory of Paul and McKnight

Since TWP has a periodic structure, it can be
cascaded. In the cascaded theory, the twisted wire
pairs consist of loops of the half twists and each
Half Twist (HT) is divided into a transmission line
section and an abrupt transition section, as shown
in Fig. 1. Wires 2 and 3 in Fig. 1 are twisted, while
wire 1 is a single line. A/ is the length of the
transmission line section, and the length of the
abrupt transition section is assumed to be zero.
This zero length will drive this section, acting an
exchange of the voltages and currents on wires 2
and 3. In the transmission line section, the chain
parameter matrix in @ can be written as the
following format:

()

500

500 500

o _| O L —jsin(pAZ,]
= Jsin(BADY,  cos(BAl) Ty, |
In the equations above, Vi~Vsand I;~I3 are the

voltages and currents on wires 1~3. Izx3 is a 3x3
identity matrix. A/ is the total length of the
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transmission line section in the half twist. f is the
wave coefficient. Z. and Y. are the transmission
line characteristic =~ impedance matrix and
characteristic admittance matrix, respectively [8].

For the abrupt transition section, the voltages
and currents on the wires exchanging with each
other, the transition matrix can be written as
follows [5,8]:

Vi(x,) Vi(x) ]
V,(x,) V,(x)
e |_ne|
1,(x,) 1,(x))
1,(x,) 1,(x))
_13()62)_ _Iz(xl)_
p= P, Oy, 4
o n @

where the Osx3 represents a 3x3 identity matrix of
zeros, and P, is equal to:

1 00
P=0 0 1| (5)
01 0

Combining the equations (1)-(5), the total
chain matrix of a full twist loop, which consists of
two half twists, is multiplication of the matrices:

V() | Vi (x) ]
V,(x,) V,(x,)
V.(x V. (x
(%) = P® PO, ()] (6)
I(x,) I,(x,)
1,(x,) I,(x,)
RACH) | 15(x,) |
Wire 1
Wire B
Transmission
Wire Line Section o
AT S
-aAnother Half Twistm A Half Twist—» (distance=0)

Fig. 1. Abrupt model of the TWP in the Paul and
McKnight model.



B. The approximation impedance and the
admittance matrix of a full twist

Original model of the cascade theory separates
a full twisted loop into 4 sections, which consists
of 2 transmission line sections and 2 abrupt
transition sections. The description of a full
twisted loop is shown in Fig. 2. Notice that the
ground effect has been brought into the model, this
effect can be reflected through the changes of the
characteristic impedance matrices and admittance
matrices [5]. The sections from the point x; to x4
can be regarded as an independent part. In this
part, the transmission line chain parameter matrix
can be defined as:

Vi(x,) ] V(x|
V,(x,) V,(x)
Vi(x,) —®, Vi(x) ’ )
1,(x,) S (x)
I,(x,) 1,(x))
_13()64)_ _13()61)_
o ,=POP
_ COS(ﬁAZ)'E3x3 _jSin(IBAI)ZcP (8)
[ —Jjsin(BADY,,  cos(BA)-Es; |

This part has an independent characteristic
impedance matrix Zep and an independent
characteristic admittance matrix Y.p. The matrixes
Z and Yp in equation (8) are expressed as:

2 43 4
Z,=PLP =z, z, z,

Zn 2y Iy ©)

Yu Vi o
Y,=PYP =y, yy »yy|

Yoo Vi I

Substituting the equations (8) and (9) into (6),
the matrix of a full twisted loop can be derived
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easily:

(I)l (I)Z
PO PO =® & =
s s sP s D, P

® = cosz(ﬂAl)I3 i —sin2(BAl)- ZY, (10)

cP
®, =—jsin(SAl) cos(ﬂAl)(Zc + Zc P)
D, =—jsin(pAl) cos(ﬂAl)(Yc + YcP)'

Considering the case: sin(fAl) << cos(fA/), the
matrices Z.Y and YcZep after sin’(BA/l) in (10)
can be replaced by an identification matrix Esxs,
then the equation (10) can be simplified into:

PO PO =D D,

cosQANE,,  —j sin(2ﬁ’Al)(%) (11)
—jsin(28Al )(%) cos(2PANE, ,

This can be true for several full twisted loops,
if their total distance (nfA/) satisfies the condition
sin(nfAl) << cos(npAl).

The condition sin(fAl) << cos(SAl) requires
that the (BA/) is fewer than m/12, then the
frequency should match f<c/(24Al), c is the speed
of light of the material. For a TWP whose A/ is
equal to 0.02 m, so the frequency should be no
more than 625 MHz, it can match the condition
sin(fA/l) << cos(SA/) for the frequencies discussed
in [5] (which is no more than 107 Hz); also, its
accuracy will become a little worse when the
frequency grows.

Equation (11) can be rewritten through the
approximation way, the approximation impedance
and admittance is:

Z,=(Z,+Z,)/2
Y, =(V+Y,)/2.

It is worthwhile to mention this pair of
simplified  approximation  impedance  and
admittance does not match the normal equation of
the impedance and admittance ZY=YZ=Ej,;.

(12)
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Wire 1

Wire 2 Wire 3 Wire 2
Half Twist Half Twist

Wire Wire 2 Wire 3

Part whose chain
parameter is ®.

Part whose chain
parameteris PO P

Xo X1 X4
Ground Plane

L

Fig. 2. Description of a full twist.

C. The effectiveness of the approximated
matrices

To show the validation of this approximation
method, we simulated a TWP model and
compared the result with equivalent cable bundle
method. The TWP model is presented in Fig. 5,
the radius 1=0.406 mm, the height of TWP is
h=2mm, the height of wire 1 is hs=4 mm; these
heights are measured form the ground. The
distance Ah is 0.432 mm, that is one half of the
distance between the centers of wires 2 and 3. The
load impedance on the terminal side and source
side is showed in Fig. 6.

Figures 3 and 4 show the simulation results of
the cascade theory matrix and the simplified
matrix for length 2Al and matrix for a total length
of 8Al. Figure 3 is the current on wire 1 at the near
end (the current point which is nearest to the
source), and Fig. 4 is the current at the far end (the
current point which is nearest to the load).

Currents on the near end

012k Method of Paul&McKnight i
) +  Approximating in each full-twist
*  Approximating in each 4 full-twists
01t < The equ. model i
¢
008 1
< &
s + L
S 006} 5
3 +
&
o4l ¢ 1
* ® 0 *
& o # O 5 . %4
+ *
002k 4 o oy Y £ ¢ A
0 L L L
10 20 30 50 100

Frequency(MHz)

Fig. 3. Current variation with frequency on the
source part on wire 1.
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Currents on the far end

T
012}k Methad of Paul&McKnight

+  Approximating in each full-twist |
*  Approximating in each 4 full-twists
01t < The equ. model i
_ 008 o 1
< b +
s #
S 006f 4
3 v
&
& * L * + ¥
4 * + @
(ETIE E L o
002 q
0 L L L
10 20 30 50 100

Frequency(MHz)

Fig. 4. Current variation with frequency on the
load part on wire 1.

B

(TWP)

Wire 2,
}7’

Fig. 5. Considered problem of one TWP and one
signal line over earth.

+

50Q
50Q
50Q

Wire
500

Twisted Loops

T 1

Fig. 6. The source side and the terminal side of the
model.



In both Figs. 3 and 4, the result of using the
method by Paul and McKnight was shown by the
dashed line, and the result of the approximated by
one full twist whose distance is 24/ and whose
chain parameter matrix is eq. (11), is shown by the
dots. The octangle shows a simple model of each 4
full-twists whose distance is 8Al, and the factor in
the cosine and sine factor (264/) in chain
parameter matrix will be replaced by 8f4/. The
diamond shows the result by using the equivalent
cable bundle method.

Comparing the result of the current on wire 1
calculated by the different ways, we could find
that their results vary little; it proves that the
approximation method is valid when the distance
satisfies the rule sin(nfA/)<<cos(nfA/).

III. THE COMMON MODE AND THE
DIFFERENTIAL MODE OF THE
APPROXIMATION CHAIN
PARAMETER MATRIX
A. The approximation
admittance matrices
The transforming of the voltages and currents
on wire 2 and wire 3 to common mode and
differential mode are wusually expressed as
equations below:

L] [t 171, 13)
A A
V. [1/2 172V,

= . (14)
v, 1172 -1/2|V,

Here we use another way of transforming, which

1S:
(1] [uz2 vz 1, s
Id _1/'\/5 _l/'\/z__lb ’

impedance and

and

and

RARIRCERVN N 14 6

Vol (U2 -2 |7

This is because the transforming matrix T,

po|VN2 U2 | a7
/N2 —1/42]

can match the condition T=T"; for a three-wire
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TWP system like Fig. 1 we get:

1 0 0
T=|0 1/42 1/42 |. (18)
0 /2 -1/42
For the MTLN theory, transforming the

characteristic impedance matrix and admittance
matrix into the common and differential mode can
be expressed as:

Z, = TZT

Y, = TYT .
For the approximation impendence and admittance
based on the sin(fA/) << cos(fA/) condition,
which is shown in (12), these matrices will be

transformed by (19), the result of the impendence
transforming is:

(19)

ZIS +ZIZ

z, 0
2 (20)
Z, = 2y ;’Zsl Z3 +2222 +2223 0 ,
0 0 Iyt 2y — 2223
2

and the admittance Y has a similar form.

For the approximation equation (11) (whose
original equation is (10)), expressing the chain
parameter matrix in (11) in a common and
differential mode, and considering TIT'=I, for a
full twist shown in Fig. 2 we get:

_Vl(x4)_ _Vl(xo)_
V.(x,) V. (x)
V,(x,) o, V,(x,) ’ 2
1,(x,) 1,(x,)
I.(x,) 1.(x,)
1 1,(x,) ] 1 1,(x,) |

where the chain parameter matrix is:

cos(2pAIL,,,  —jsin(2BAl)Z,,
—jsin(2BAI)Y,,  cos(2BAIN,,

There are 4 zero elements in above matrix (20),
and these zero elements indicate that the voltages
and currents of differential mode are irrelevant
with the voltages and currents on other wires (wire
1) and the common mode, the voltage and current
of the differential mode can be expressed as:

cd

} .(22)
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V,(x,) =cos(BADV,(x,)
—j sin(ﬂAl)Mld (x,)
(23)

. Y.+Y,.-Y
1,(x)=—] Sln(ﬂAl)%ld(xo)

+cos(LANI ,(x,).

So the differential mode can be -calculated
independently, the differential part of the
approximation chain parameter matrix for length
Al (from x0 to x4) is:

cos(/) jsin(pafe i | (24)

D, = 2
. 3 Ve =2V
—jsm(,BAl)y33 Y Vexs

5 cos(SAl)

Also, since the voltages and currents on other
wires (wire 1) and the common mode are
irrelevant with that on the differential mode, which
is calculated already, the approximation matrix of
the common mode and wire 1 has no elements
relevant with the differential mode. The matrix is
proposed in (25):

| cos (BAI,, SIN(BADZ ..on2 (25)
s Sin (IBAZ) Ycomman2><2 COS(,BAZ)szz '

Both Zcommon2x2 and Ycommon2x2 in (20) are 2x2
matrices with the equal elements of rows 1 and 2
and columns 1 and 2 in (22).

Above all, the total number of elements is 20
(see (24) and (25)), which are much fewer than the
original number, 36.

B. The dealing of the load impedance

Since the voltages and currents have been
changed into the common and differential modes,
some transformations of the load and source
impedance (or admittance) into the common and
differential modes are required.

The definition of the load impedance is
usually described as:

V(load) =Z,I(load) . (26)
In the equation above, Z; represents the load
impedance. While changing this equation into the

common and differential modes by the way shown
in part III in (14)-(16), one can get:
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V. (load)=|0 V(load), (27)

5=&5 -2
_5il=e

O -
i V2
1 0 0
1 1
I(load)=|0 5 5 1.,(load). (28)
o L L
V2o V2]

Substituting (27) and (28) into (26), the load
impedance in the common and differential modes
will be:

Z, ,=T'ZT. (29)

The load impedance can be transformed by the
common and differential approach. We can also
transform the source impedance in a same way.
The voltage source Vi is added at wire 1, so the
voltage source matrix is:

Vo=|0], (30)

and this Vs, multiplies the transformation matrix, T
will be TV&=Ve.

So in the new model TWP was changed into a
common mode line and a differential mode line
that has fewer total elements in their matrices.

IV. THE EFFECTIVENESS OF THE
COMMON & DIFFERENTIAL MODE
MODEL

A. Numerical experiment of one TWP and one
single wire

Now, we simulate the TWP model in Fig. 5
again in the common and differential mode
approach. In this approach, the mode transform
will happen on wire 2 and wire 3. Through this



way, the total number of the non-zero elements in
the impedance (or admittance) matrix will be
reduced from 9 to 5, this simplification will save
the 4 spaces. The octangle in Fig. 7 shows the
current at the near end (the current point which is
nearest to the source) on wire 1 using the common
and differential mode approach, and Fig. 8 shows
the current at the far end (the current point which
is nearest to the load). The dashed and dot lines
represent the results using the Paul and McKnight
method and the method shown in Section II B,
respectively. We also calculated the current result
by using the equivalent cable method for TWP [16,
17], which is shown by the diamond dot.

Currents on the near end of wire 1
T

T T
012k Method of Paul&McKnight

+  Approximating Model

*  Approximating Model calculated by C&D Maodes
01t & The eqv. model

008

Current(A)

006 +
&
0041 & & o
*ﬁooc ) ol
*

002k + *

L L L
10 20 30 50 100
Frequency(MHz)

Fig. 7. Results of the near end current on wire 1 by
different methods.

Currents on the far end of wire 1

014l Method of Paul&McKnight

#  Approximating Model

+  Approximating Model calculated by C&D Modes
012k < The eqv. model

0068

Current{A)

0.061

0045

0.02 L I L
10 20 30 50 100

Frequency(MHz)

Fig. 8. Results of the far end current on wire 1 by
different methods.

Figures 7 and 8 show that the variation in the
original Paul and McKnight TWP model and the
proposed approximated model is very little, the
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total Root-Mean-Square (RMS) form 10 MHz to
100 MHz is 3.1922x10 at the near end and the
one at the far end is 3.8725x10*, and the RMSs of
the equivalent cable method are 1.6046x107 and
2.1333x102. So it is obvious that the present
method is more accurate. The time cost of the non-
approximated Paul & McKnight method and the
time cost of/the approximating model are 0.47s
and 0.31s. The time cost of the approximating by
common and differential mode and the equivalent
model [16, 17] are 0.16s. The 2 models have both
shortened the solving process through their own
way, so the time cost has been reduced.

B. Numerical experiment of two TWPs and one
single wire

We have also calculated the situation of 2
TWPs. The equivalent bundle method’s result has
not been listed, this is because the model will
approximate the TWPs by the value of the load
and source impedance, and it was different from
the model proposed. The model is shown in Fig. 9,
and the lengths in Fig. 8 are selected to be h=2
mm, Ah=0.432 mm, d=3 mm, r=0.406 mm, h~=4
mm and d,=2 mm. In the common and differential
mode we transform each wire pair twisted into
their own common and differential modes. The
results of the near end current and far end currents
on the single wire are shown in Figs. 10 and 11. In
this method, the mode transform will happen on
each couple of the TWPs. There is 1 single wire
and 2 common mode wires, and 2 differential
mode wires in the total model. The differential
modes are irrelevant with other wires, so non-zero
elements number in the impedance or admittance
matrixes of the reduced model will be 11 and the
original number is 25. The total RMSs without
mode transform are 1.1213x10” at the near end
and 2.3106x107 at the far end. The ones with the
transform are 7.0357x107 at the near end and
6.7700x107 at the far end. The RMSs grow a little
because some errors occur in the calculation of the
Z and Y in the mode transform, but it is still
accurate for this method. When extending this
method into N TWPs and M single wires, we
could transform a (2N+M)? non-zero elements’
matrix into an (N+M)* N elements’ one. The total
reducing number is N(2N+2M-1), and it will save
much space for storing the matrix that will affect
on the result little by using the approximation
method.
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d:
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Fig. 9. Simulation model of 2 TWPs and one
single wire.

Currents on the near end
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008f
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*  Approximation Model calculated by C&D Modes

*

Fig. 10. Near end current results of the 2 TWPs
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and 1 single wire model.

Currents on the far end
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V. CONCLUSION

In this paper, we proposed the approximation
model of a twist wire pair into the common and
differential mode, the derivation of the
transforming has been provided. Due to the RMS
result shown by the simulation, the approximation
model varies little from the original model and it
succeeded in the reduction in the total number of
non-zero elements, and the method proposed has
much reduction in storage and time cost.
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