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Abstract ─ Circuit analysis of frequency selective 
surfaces is reviewed with the aim to underline 
range of validity of different models and their 
advantages in terms of simplicity and physical 
insight. The circuit approach is based on an 
equivalent representation of the FSSs with series 
or shunt connections of inductances and 
capacitances. Dense non-resonant periodic 
surfaces (i.e.: grid or patch arrays) can be analyzed 
analytically by computing the values of inductors 
or capacitors via the homogenization theory. As 
the lattice period increases with respect to the 
operating wavelength or the element shape 
becomes resonant, a fully analytical circuital
approach fails, in particular, in the presence of thin 
substrates. However, simple circuit approaches 
can still be employed by deriving lumped 
parameters values via a quick pre-processing and 
then generalizing them. The results are accurate up 
to the resonant frequency region of the element. 
By including an additional lumped element it is 
possible, taking into account the effect of the first 
high order Floquet harmonic. The multi-mode 
formulation is also able to catch the highly non-
linear response of FSS screens in the grating lobe 
region provided that the current profile of the 
element does not change significantly. 

Index Terms ─ Equivalent circuit model, 
frequency selective surfaces, periodic gratings. 

I. INTRODUCTION 
The fact that non-continuous surfaces can

diffract electromagnetic waves, was proved for the 
first time by the American physicist David 
Rittenhouse in 1786 [1]. He found explanation to 
the curious phenomenon observed by Mr. 

Hopkinson, that is, the presence of multiple 
images when he tried to observe a distant street 
lamp through a silk handkerchief. Rittenhouse 
reproduced a grating by using 50 hairs between 
two finely threaded screws. In 1821, Fraunhofer 
built a similar diffraction grating which used to 
measure wavelength of specific colors and dark 
lines in the solar spectrum [2]. In 1902 and 1904, 
Wood [3] and Rayleigh [4] debated on the popular 
Wood’s anomalies of periodic gratings. Rayleigh 
formulated a theory that was able to predict 
diffraction angles of the grating [5], but a 
comprehensive understanding of resonance effects 
observed by Wood was achieved with the papers 
of Fano in 1941 [5], and Hessel and Oliner in 1965 
[7]. Probably, the first microwave application of 
gratings at microwaves by Marconi and Franklin 
who designed in 1919 a parabolic reflector built of 
wire sections instead of a continuous surface [8].
Although, the concept of frequency selective 
surface is known at microwaves since the 
beginning of 20th century, the filtering capability 
of these periodic surfaces were scarcely exploited. 
Some applicative works have been done in the 
fifties: in 1956, Trentini proposed the use of 
gratings for enhancing the gain of antennas [9]. In 
the same period, Marcuvitz, Oliner and other 
scientists studied the properties of waveguides 
loaded with periodic structures [10]-[12] and 
proposed waveguide antennas based on leaky-
waves [13]-[16]. Besides the aforementioned 
seminal research findings, early practical 
applications of selective surfaces were mainly 
focused in Cassegainian subreflectors in parabolic 
dish antennas. The satellite Voyager 77 exploited a 
frequency selective surface for implementing a 
double-frequency reflector [17]. The principle was 
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extended to four frequency bands in the satellite 
Cassini in 1996 [18]. Nowadays, FSSs [19], [20]
are employed at microwave frequencies for 
designing frequency selective radomes [21], leaky 
wave/Fabry-Perot, low-profile and low-RCS 
antennas [22]-[24], reflectarays, trasmittarrays and 
lenses [25], [26], polarization converting surfaces 
[27], waveguide filters [28], electromagnetic 
shielding [29], radar absorbing materials [30], and 
more in general, to synthesize the bidimensional 
version of metamaterials, that is, metasurfaces 
[31]. In the THz domain, Frequency Selective 
Surfaces are frequently addressed as metasurfaces 
and are massively employed for designing sensors, 
spatial filters, absorbers, THz modulators and 
imaging devices [32]-[34]. In optical domain, 
FSSs have been recently proposed to improve the 
efficiency of photovoltaic cells [35], [36], but 
more frequently they are employed to achieve 
light diffraction (diffraction gratings). In the latter 
case, the lattice period is several wavelengths for 
achieving light diffraction towards different 
directions. Diffraction gratings are used in several 
optical commercial devices such as 
monochromators, spectrometers, lasers, 
wavelength division multiplexing devices, optical 
pulse compressing devices, optical microscopes 
and many others [2]. 

Classical numerical methods for the analysis 
of frequency selective surfaces are based on the 
Finite Difference Time Domain (FDTD) or Finite 
Element Method (FEM) techniques. These 
methodologies can be applied to arbitrary FSS
configurations (single-layer, multi-layer, finite, 
and curved frequency-selective surfaces), but they 
are computationally onerous. Conversely, other 
dedicated highly efficient methods have been 
proposed since the seventies. The most famous is 
the Integral Equation Method (IEM), used in 
conjunction with the Method of Moments (MoM) 
[37]-[40]. 

A helpful way to understand the FSS behavior 
is to establish an analogy between lumped filters 
and the periodic surfaces. A circuital analysis, 
unlike full-wave simulations, provides immediate 
results and a good physical insight into the design 
properties of the structure. 

This paper is organized as follows. In the next 
section a comprehensive review of the literature is 
presented. The third section is dedicated to the 
description of three efficient methods to represent 

the FSS response in different operating regimes. In 
the fourth section it describes a simple procedure 
for calculating the transmission and reflection 
coefficient of the FSS within a multi-layer. Lastly, 
the fifth section describes the results obtained with 
the equivalent circuit models on various 
meaningful examples of FSS elements. 

II. LITERATURE REVIEW OF FSS 
MODELLING 

In the beginning of 20th century, MacFarlane 
[41], Wessel [42], and Hornejäger [43] showed
that the scattering problem of a parallel wire grid 
can be solved using a transmission line model, 
where the wire grid is modeled as a shunt 
impedance and the homogeneous surrounding 
medium is modeled as infinite transmission lines. 
Initially, only simple elements comprising wire 
grids or patches were considered. Later, Trentini 
[44] included the periodical loading of the wire 
grid with lumped circuit elements, and Wait 
developed the MacFarlane model to analyze the 
reflection properties in the vicinity of a dielectric 
interface [45], [46]. In the sixties, Ulrich [47]
improved the equivalent circuits for inductive and 
capacitive grids with an additional capacitor or
inductor, respectively, to take into account 
resonant effects of these structures as the 
periodicity of the mesh becomes approximately 
equal to λ. The value of these extra circuit 

elements was evaluated from the measurements by 
matching the resonance at in the circuit model 
with measurements. Lee and Zarrillo [48]
compared the accuracy of different models for 
inductive or capacitive grids. 

An alternative way to derive the impedance of 
the metallic grids was proposed by Kontorovich 
and Astrakhan in [49], [50] by averaging the 
currents flowing on the periodic structure. The 
expression of the surface impedance for array of 
patches can be obtained by using the Babinet 
principle [51]. The averaged model works 
properly in the quasi-static regime where grids or 
patches have respectively a pure inductive and 
capacitive behavior. When the frequency increases 
up to the first resonance, this model clearly fails 
because it does not take into account any 
resonance phenomenon. The accuracy of the 
averaged capacitances/inductances can be 
improved further by taking into account terms of 
higher orders [52]. The main limitations of these 
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models are: 
� only simple FSS configurations are 

considered; 
� the effect of a thin nearby material interface is 

not adequately modeled. 
Attempts to derive formulas for more complex 
FSS shapes (e.g., loops, crosses, Jerusalem 
crosses) have been made in the eighties [53]-[57], 
but the derived formulas often contain empirical 
derived correction factors turning out to lose the 
intuitive understanding on which a model is based. 

The effect of substrates is generally taken into 
account by multiplying the FSS capacitance 
through the averaged permittivity of the dielectrics 
enclosing the FSS [51]. This approximation is 
acceptable only for thick dielectric substrates 
(thicker than an half of the cell periodicity) or 
when the FSS periodicity is much lower than the 
operating wavelength [58], [59]. In practical cases, 
the supporting dielectrics are usually much thinner 
than the wavelength, and the dielectric thickness 
also has to be taken into account in computing the 
averaged permittivity. In order to achieve more 
accurate results, valid also for thin substrates, a 
corrected single mode circuit [58] or a multi-mode 
formulation may be adopted [60]-[62].

III. FSS MODELING
An important parameter in the FSS analysis is 

the wavelength at which the grating lobes or 
trapped modes onset [1], [63]. For freestanding 
FSS, the wavelength of the first high order Floquet 
harmonic reads: 

# $# $sinr
g rD�% � &� � , (1) 

where D represents the inter-element spacing, c is 
the speed of light and θ is the incident angle, and 
εr is the dielectric permittivity of the media where 
the FSS is embedded. For wavelengths longer that 
λg (or frequencies smaller that c/λg) the only 
propagating Floquet harmonic is the fundamental 
one. Higher modes are evanescent and decay 
exponentially away from the mesh. At normal 
incidence, the grating lobes wavelength is equal to 
the FSS periodicity. However, it has to be pointed 
out that when the FSS is embedded with dielectric 
media, the first high-order phenomenon is 
represented by the onset of trapped dielectric 
modes [19] (or trapped surface waves) that occurs 
well below the propagation of the first grating 
lobe. 

In the analysis of periodic structures, three 
different fundamental regions can be individuated 
[63]. At long wavelengths, when the FSS 
periodicity D is much larger than the operating 
wavelength λ, quasi-static regime, the periodic 
surface can be efficiently analyzed by using 
homogenized theory. The intermediate frequency 
range, where the FSS periodicity is smaller but 
comparable with the operating wavelength, the 
periodic surface element can be resonant. In this 
region the FSS can still be modeled by using the 
circuit theory, but the values of the lumped 
parameters need to be retrieved by using full-wave 
simulations followed by an inversion procedure. 
The last region, where the operating wavelength 
becomes shorter than guided wavelength λg, is 

highly non-linear because more than one Floquet 
harmonic is in propagation and FSS elements (also 
single resonant ones) need to be represented by 
using a multi-mode network. The three regions are 
summarized in Fig. 1. In the following paragraphs 
we briefly summarize three efficient approaches 
for analyzing FSSs in the three described 
frequency regions. 

Fig. 1. Three characteristic regions of periodic 
structures. 

A. Averaged approach
For simple non-resonant elements as wire 

grids or patch arrays, the impedance is mainly 
inductive or capacitive, respectively [65] (Fig. 2).
The calculation of the inductance or the 
capacitance value can be accomplished by 
averaging the currents flowing on the periodic 
structure. The derived FSS impedance is of the 
second order since it is angle dependent and it has 
a different expression for the TE and the TM 
polarization. In the case of a patch array, the 
impedance # $/ 1TE TM

patch patchZ j C�� , is just a 
capacitor [51]: 
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while for grids, the impedance /TE TM
grid gridZ j L�� , is 

an inductor: 
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where D represents the periodicity of the FSS, w is 
the gap between the squares patches and 0k  is the 
wave number in free space, 

# $0 1 2 2eff r rk k � �� �  is the wave number of 
the incident wave vector in the effective host 
medium, θ is the incident angle. �r1 and �r2 are the 
relative dielectric permittivity of the dielectric 
slabs surrounding the periodic surface (typically 
the upper dielectric is air). 

Fig. 2. Bi-dimensional sketch of non-resonant 
capacitive and inductive FSS filters with their 
lumped model. 

The agreement between the approximated and 
full-wave results are good if the FSS periodicity is 
smaller than an half-wavelength. In [66], [67] the 
formulas for an array of Jerusalem crosses are also 
proposed, but they are sufficiently accurate only 
up to the first resonance of the Jcross. 

B. First order retrieving method
The simple circuit model presented in the 

previous section can be improved by adding 
additional lumped components which allow to 
follow the FSS response even in the second zone; 
i.e., the resonant one. A simple LC circuit can fit 
the frequency response of a capacitive frequency 
selective surface, whereas, a shunt LC connection 
replaces the LC series for an inductive FSS. In 
absence of losses, the FSS impedance is purely 
imaginary and it is represented by two lumped 
parameters. Losses can be introduced by adding a
series resistance in the equivalent circuit [68]-[70]. 

In order to compute FSS reactance, the 
knowledge of the current density on the FSS 
element is necessary even for the zero order 
approximation. Alternatively, a retrieving 
approach which starts from on the determination 
of the complex reflection coefficient through a
preliminary full-wave simulation can be employed 
[58], [71]-[73]. Then, according to classical 
transmission line theory, it is possible to obtain the 
impedance of the freestanding FSS as follows: 

# $2
0

0

1
2

in
FSS

in

Z
Z

Z
�'

� �
'

, (4) 

where Γin is the reflection coefficient of the 
periodic structure calculated at the FSS position 
and Z0 is the free space impedance. Once 
computed the FSS impedance at two frequency 
points, it is possible to calculate the values of the 
capacitance and the inductance approximating the 
actual impedance by solving a two equations 
system [58]. Even if the inversion procedure is 
quick, it is unstable with respect to the chosen 
inversion frequency points ω1 and ω2, leading to
some inaccuracies in the calculation of L and C
values. A more reliable procedure starts from the 
calculation of the null of the FSS impedance and 
then computes the inductance by an iterative 
procedure which minimizes the Euclidean distance 
between the MoM and the LC series impedance,
while imposing 21 zeroC L�� . If the frequency 
selective surface is embedded within dielectric 
layers, additional transmission lines representing 
the dielectric layers need to be considered in 
retrieving L and C parameters. Figure 3 reports, 
for instance, the model of an FSS embedded 
within two dielectric layers. The reflection 
coefficient in'  used in (4) is determined from the 
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reflection coefficient d'  obtained with a full-
wave simulation. The additional quantities are 
defined in Fig. 1. After the calculation of the load 
impedance ZL by using classical transmission line 
formulas, it is sufficient to solve a simple parallel 
circuit to extract the FSS impedance as shown 
above. 

Fig. 3. Transmission line model for the analysis of 
an embedded FSS. 

The equivalent circuit parameters are obtained 
for a particular FSS configuration but several 
degrees of freedom; e.g., repetition period of the 
unit cell, the angle of incidence of the incoming 
wave, influence the values of the equivalent 
inductance and capacitance. If these corrections 
are understood and modeled, the capacitances and 
inductances, preemptively obtained at normal 
incidence and stored in a database of shapes, can 
be used for computing the response of generic FSS 
configurations with no additional computation 
effort. Let us now briefly analyze separately the 
effect of these degree of freedom. 

Cell periodicity 
If all FSS element geometrical dimensions are 

simply rescaled with a certain scaling factor, a 
shift of the resonance frequencies is obtained. 
Starting from a given periodicity (e.g.: 10 mm), 
the frequency behavior of the scaled FSS can be 
obtained by rescaling all the inductance and 
capacitance values. Clearly, this stretch of the unit 
cell leads to the modification of the elements 

lengths as well. For this reason it is more 
convenient to think FSS element dimensions not 
as an absolute value but referred to the element 
periodicity. 

Dielectric effects 
The resonant frequency of an FSS in presence 

of a thick dielectric substrates on both sides is 
reduced by a factor equal to r� , and by a factor 

# $1 2r� �  when the dielectric is present only on 
one side of the FSS [51]. However, fixing the 
relative permittivity of the substrate, the decrease 
of its thickness leads to a gradual shift of the FSS 
resonance towards higher frequencies. 

The presence of thin dielectric substrates 
involves a relevant number of Floquet modes [62], 
and given the complexity of the problem, a closed 
formula which relates the capacitance to the 
dielectric thickness and permittivity is hard to find.
A good solution can be the derivation of a simple 
interpolating formula which exactly matches the 
variation of the effective permittivity as a function 
of the dielectric thickness. To this aim, the 
variation of capacitance as a function of thickness 
and dielectric constant of the substrate is analyzed 
for a patch array embedded within two dielectric 
substrates. The optimal capacitance values 
obtained with the retrieving procedure are 
normalized to the freestanding values to obtain a 
thickness dependent effective permittivity. An 
expression that fits very well, the effective 
permittivity reads [58]: 

# $ # $
11

exp
av av

eff r r N x
� � �

( )�
� � � * +

, -
, (5) 

where x=10*d/D, # $ # $1 1 2 2 1 2
av
r r rd d d d� � �� � �

and N is an exponential factor that takes into 
account the slope of the curve. This parameter can 
vary for different cell shapes depending on the unit 
cell filling factor [58]. The effective permittivity 
as a function of the dielectric thickness obtained 
by using MoM simulations and the interpolating 
relation is shown in Fig. 4. 
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Fig. 4. Effective permittivity as a function of 
substrate thickness computed by iterative MoM 
simulations. Parameters are: D=10 mm, w=2.5 
mm. The fitting of numerical values has been
obtained by means of the formula (5). 

Incidence angle 
When an oblique electromagnetic wave strikes 

the FSS, the impedance of the periodic structure 
should be expressed in a matrix form. The mutual 
terms due to the coupling between the modes and 
the dependence on azimuthal angle ., can be 
considered negligible for symmetric unit cells. In 
this case, the expression of the FSS impedance for 
oblique incidence becomes a two terms matrix 
valid for TE and TM polarizations. In order to get 
some insight in the angular variation of the FSS 
impedance, the expressions derived for patch 
arrays by using the averaged approach [62] can 
help. These expressions include the first order 
tangential derivative, and therefore are valid for 
normal and oblique incidence when the grid is 
reasonably homogeneous (D<%/2). According to 
this formulation, the patch array capacitance for 
TE polarization is angle dependent [51]. The same 
expression can be used as an interpolating function 
for all elements by just replacing the number 2
with a parameter α, which in our case, would 
depend from the chosen element: 

# $22
0 0

2

sin
1TE TE

eff

kC C
k

& &
�

� �
� �� �� �

� �
, (6) 

where 0
TEC is the capacitance computed at normal 

incidence, and the other quantities have been 
already defined. 

The dependence of the FSS capacitance on the 
incident angle is analyzed by the MoM iterative 

procedure for different elements (Fig. 5). The 
variations of patch and ring capacitance are in 
agreement with the relation (6) when the 
parameter α is suitably chosen. The angular 

dependence of the TE capacitance is weak in the 
case of a cross element. The angular dependence 
of the TM capacitance can be neglected for 
capacitive elements. 

Fig. 5. Dependence of lumped capacitance on the 
incidence angle for different shapes. 

C. Multi-mode approach
The generalized analysis presented in Section 

III is valid in the resonance region of the FSS, 
since frequency response of FSSs above the 
visible range involve non-linear behaviors due to 
the onset of higher order Floquet modes. In this 
region, the energy is not reflected or transmitted 
only in the direction stated by the Snell law, but 
also in other directions according to Rayleigh 
theory [5]. 

In order to describe the behavior of frequency 
selective surfaces in the frequency region between 
resonant zone and the grating lobe propagation 
zone as well as after the propagation of the grating 
lobes, a number of additional elements are 
necessary in the circuit model. To this purpose, 
two additional impedances can be connected in 
series with the lumped circuit comprising 
inductances and capacitances to take into account 
resonant phenomena due to the lattice [63]. The 
improved circuit model is reported in Fig. 6. The 
two impedances, which take into account the TE 
and TM high-order Floquet modes, read [63]: 

# $ # $,
1

,
TEN

TE in
L h TE h

h
Z A Z� �

�

�/  (7) 
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# $ # $,
1

,
TMN

TM in
C g TM g

g
Z A Z� �

�

� /  (8) 

where Ah and Ag account the degree of excitation 
of the harmonics, the indices h and g are referred 
to a particular couple of (m,n) pair. The excitation 
factors, in general, depend on the frequency, but if 
the current on the FSS element does not 
significantly vary, they can be reasonably 
hypothesized frequency independent [63]. This 
hypothesis is verified when the element does not 
resonate in the second FSS region of Fig. 1, that is, 
the size of the element is much smaller than FSS 
periodicity. in

TEZ  and in
TMZ  represent the shunt 

connection between the impedances seen from the 
left and from the right of the FSS [74]: 

# $,
, , , ,

1 1in
TE h left right

v TE h v TE h

Z
Z Z

�
� �

� �� �� �
� �

, (9) 

# $,
, , , ,

1 1in
TM g left right

v TM g v TM g

Z
Z Z

�
� �

� �� �� �
� �

. (10) 

Left and right impedances are derived, for any 
considered mode (m,n), by using the conventional 
transmission line relation recursively for every 
substrate: 

# $
# $

, ,
, 1 ,/ , / , / ,

, , ,
, 1 ,

tan

tan

TE TM TE TM
v c c z c cTE TM right left h g TE TM

v c c TE TM TE TM
c v c z c c

Z Z k d
Z Z

Z Z k d
�

�

( )�, -�
( )�, -

.(11) 

In (11) c stands for the cth dielectric layer. 
,TE TM

cZ represents the modal characteristic 
impedance of every dielectric slab and is 
calculated as follows: 

# $ 0
,

,

TE
c mn

z mn

Z
k
��� � , (12) 

# $ ,
,

0

z mnTM
c mn

r

k
Z �

�� �
� , (13) 

where 2 2 2
, 0z mn r x yk k k k�� � �  is the normal 

component of the wavenumber. The transverse 
wavenumbers are: 

# $

# $

, 0 ,

, , 0

 
sin 2 ;  2

 
2 ;  sin 2  .

x m x y n y

x m x y n y

TE polarization
k k m D k n D

TM polarization
k m D k k n D

& 	 	

	 & 	

� � �

� � � (14) 
The values of the excitation coefficients and the L
and C parameters can be calculated after a run of a 

full-wave simulation in a sufficient number of 
frequency points. In [63], it is suggested to choose 
a couple of frequency points in the low frequency 
range and one frequency point just before the 
onset of every considered high-order mode, but 
when the number of harmonic increases the 
procedure is not always stable. The introduction of 
many high-order modes allows to describe a
highly non-linear frequency response of FSSs 
within the grating lobe zone provided that the 
element does not resonate. As the element 
becomes resonant within the zero-order harmonic 
frequency range, the current distribution cannot be 
anymore assumed as frequency independent. As a 
consequence, the harmonic excitation coefficients 
A in (7) and (8), may become frequency dependent 
leading to a reduction of accuracy of the method 
within the grating lobe zone. As remarked in [63], 
the multi-mode approach is a matching procedure 
mainly aimed to understand the physical 
mechanisms which lead to nonlinearities in the 
frequency response of FSSs. 

It has been finally pointed out, that the 
described multi-mode approach is also helpful to 
improve the accuracy of the first order retrieving 
method between the resonant zone up to the 
propagation of the first grating lobe. To this aim, it 
is sufficient to include the first high order mode 
(TE-1,0 for TE excitation, and TM0,-1 for TM 
excitation) by computing its excitation coefficient. 

Fig. 6. Equivalent circuit of a single resonant FSS 
with high-order impedances. 

IV. CALCULATION OF THE 
FREQUENCY RESPONSE OF A 

GENERIC FSS SYSTEM 
Once derived the equivalent circuit 

parameters, the approximate reflection and 
transmission coefficients ( 11 21,  s s ) of the FSS are 
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computed by using conventional transmission line 
theory [76]: 

2
0 0 0

11 2
0 0 0

,  AZ B CZ DZs
AZ B CZ DZ

� � �
�

� � �
 (15) 

0
21 2

0 0 0

2 ,Zs
AZ B CZ DZ

�
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 (16) 

where A, B, C, D represents the terms of the 
ABCD matrix of the system comprising the FSS 
and a generic number N of dielectrics: 

0 1 0 1 0 1 0 1 0 11 1

  
... ... .

 n FSS n N

A B
M M M M M

C D �

( )
� � � � � � �* +

, -
 (17) 

In equation (17), the subscript n stands for the nth

dielectric substrate and M represents the scattering 
matrix of every layer: 

0 1
# $ # $
# $ # $

0 1

cos   sin
     sin

 cos  

1           0
,

1 /   1 

zn n n zn n

n zn n
zn n

n

FSS
FSS

k d jZ k d
M k d

j k d
Z

M
Z

( )
* +� * +
* +, -

( )
� * +
, -

 (18) 

where ZFSS is the approximate FSS impedance 
computed with the retrieved LC parameters, 

# $0
TE
n r znZ k�� ��  and # $0

TM
n zn rZ k �� ��  are the 

characteristic impedances of the slab for TE and 
TM polarization, 2 2

0zn r tk k k�� �  is the normal 
component of the wavenumber, # $0 sintk k &�  is 
the transverse component of the wavenumber with 
&  representing the incidence angle of the 
incoming wave with respect to the normal and k0

the free space propagation constant. The quantities 
0 0,  ,  ,  r r� � � �  represent the free space and the 

relative dielectric permittivity and magnetic 
permeability. Since the FSS is a passive reciprocal 
system, the transmission coefficient of the 
structure is identical independently of the 
incidence side. If the analyzed configuration is 
symmetrical (same dielectrics on both side of the 
FSS) also, the reflection coefficients computed on
the two sides of the FSS coincide (symmetric 
scattering matrix). 

V. FSS ELEMENTS AND RESULTS 
The choice of the suitable element is of 

outmost importance in the design of a frequency 
selective surface. An almost infinite set of 

geometries can be adopted as unit cell of a 
periodic screen. Some of these geometries are 
more popular than others and are also simple to 
control. We propose in Table 1 a classification of 
the most popular geometries on the basis of 
resonant properties and equivalent circuits. The 
number of lumped elements is directly 
proportional to the number of resonances. It can be 
demonstrated that the expression of the FSS 
reactance satisfies the Foster theorem [75], that is, 
it possesses the same pole-zero analytical 
properties as a passive LC network. 

Table 1: Classification of FSS elements on the 
basis of resonant properties (symbol // means 
shunt connection and multiplication means series 
connection) 
Element Type Element Shape Equivalent 

Circuit
Non-resonant 
elements

Strip, patch, wire 
grid C

Single-
resonant

Loop, dipole, 
cross, tripole, 
dogbone

(LC)

Double-
resonant

Double cross,
double loop, 
Jerusalem cross, 
etc.

(LC)//(LC) 
or 
(LC)(L//C)

Multi-resonant
(geometrical)

Concentric loops, 
fractal elements

(LC)//(LC)// 
(LC)….

Multi-resonant
(current 
distribution)

Quadrifilar spiral, 
meandered dipole
or loop, 
genetically 
optimized

Not physical

In the following paragraphs some numerical 
results about some popular FSS elements are 
shown with the aim to demonstrate the validity 
regions of the presented equivalent circuits. 

Non-resonant elements-patch arrays 
The first analyzed configuration is a simple 

patch array. For this element, it is possible to 
compare the first-order retrieving model with the 
analytical averaged model. Even if a purely 
analytical approach should not be compared with a 
semi-analytical one, this comparison serves to 
show that the inclusion of the inductance in the 
equivalent circuit allows going beyond the limits 
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of effective grid parameters. The patch is 
characterized by a periodicity of 10 mm, which 
leads to the onset of grating lobes for normal 
incidence at 30  GHz. Figure 7 reports the 
reflection coefficients obtained by employing 
approximate impedances for two different values 
of the patch gap. For large gaps, the retrieving 
method agrees very well with the MoM code up to 
the propagation of the grating lobes, while the 
averaged model loses its validity when the cell 
repetition period exceeds an half wavelength. For 
small gaps, the averaged model is instead 
applicable closer to the frequency where grating 
lobes emerge. The capacitances obtained by using 
averaged relations and by using the retrieving 
approach are summarized in Table 2. The values 
computed by the retrieving approach are 
systematically lower than those computed by using 
averaged relations, since the employed circuit 
model considers also the inductive component of 
the impedance. 

Fig. 7. Reflection coefficients obtained with 
different models. Parameters: D=10 mm and 
different w.

Table 2: Capacitance and inductance values 
computed by using averaged relations and by 
using the retrieving method (patch array with 
periodicity, D=10 mm) 

C0

Averaged 
[fF]

C0

Retrieved 
[fF]

L0

Retrieved 
[nH]

w=12/16*D 54.12 43.76 0.729
w=14/16*D 90.28 81.04 0.352
w=15/16*D 130.9 117.35 0.24

Single-resonant elements 
A couple of popular resonant FSS elements 

are the loop and the cross type. The resonance of 
the loop occurs when the length approaches to one 
wavelength while the cross element resonates 
when its length equals half wavelength. Figures 8 
and 9 report the impedance and the reflection 
coefficient for a cross shaped FSS. The 
approximated responses are computed both by 
using the retrieving method and the multimode 
approach. The multimode approach includes just 
the first high-order mode in order to limit the 
complexity of the equivalent circuit. 

It is evident that the resonant behavior of the 
element is caught by the LC circuit while the 
effects due to the lattice (Wood’s anomaly) are 

well approximated only by including at least one 
high order mode. The geometrical parameters of 
the simulated cross are reported in Table 3 
together to the values of the lumped elements 
employed in the transmission line model to 
retrieve the FSS response. In Fig. 10, the reflection 
coefficient for a loop shaped FSS is also reported. 
Also in this case, the introduction of the first HO 
harmonic allows to correctly match the reflection 
behavior up to the onset of the grating lobes. Table 
4 reports the geometrical parameter of the 
simulated loop element together to the values of 
the lumped elements employed in the circuit 
model to retrieve the FSS response. 

Fig. 8. Impedance of a freestanding cross FSS 
obtained through MoM approach, the retrieving 
method and the multi-mode approach with one 
high-order mode (TE01). Geometrical parameters: 
D=10 mm, w=2/16*D, g=2/16*D. 
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Fig. 9. Reflection coefficient of a freestanding 
cross FSS obtained by using MoM code, the 
retrieving method and the multi-mode approach 
including only 1 high-order mode (TE01). 
Geometrical parameters: D=10 mm, w=2/16*D, 
g=2/16*D. 

Table 3: Geometrical parameters and values of the 
electrical parameters in the lumped circuits of the 
simulated cross element 
Physical 
Parameters

Retrieving 
Method

Multi-mode Circuit 
(1 HO mode)

D 10 mm Cs 20.00 fF Cs 19.91 fF
G 2/16*D Ls 4.37 nH Ls 1.29 nH
W 2/16*D A1TE 2.49

Fig. 10. Reflection coefficient of a freestanding 
loop shaped FSS obtained by using MoM code, 
the retrieving method and the multi-mode 
approach including only 1 high-order mode. 
Geometrical parameters: D=10 mm, w=2/16*D, 
g=1/16*D. 

Table 4: Geometrical parameters and values of the 
electrical parameters in the lumped circuits of the 
simulated loop element 
Physical 
Parameters

Retrieving 
Method

Multi-mode Circuit 
(1 HO mode)

D 10 mm Cs 72.34 fF Cs 72.39 fF
g 1/16*D Ls 3.45 nH Ls 0.61 nH
w 2/16*D A1TE 2.67

Multi-resonant elements 
There is often the necessity of employing 

more complex FSS elements in the design of 
narrow band, multi-band filters or even in multi-
resonant High-Impedance Surfaces (HIS) [77],
[78]. Some FSS elements can generate a double 
resonant, or more in general, a multi-resonant 
behavior in the zero-order Floquet propagating 
zone. These structures can be analyzed by 
introducing additional lumped elements in the 
resonant circuit. A common FSS shape is the so 
called Jerusalem Cross. This element is basically a 
cross with loading ends which enhance the 
capacitance value. An additional series LC circuit
in parallel with the original one in the equivalent 
circuit is needed, since the electric field couples 
also with the two end-loading dipoles. A layout of 
the geometry of the double resonant unit cell and 
its corresponding equivalent circuit is shown in 
Fig. 11. 

(a) (b) 

Fig. 11. Jerusalem cross element: (a) with its 
equivalent circuit and cross-frame element and (b) 
with its equivalent circuit. 

The impedance of the circuit reads: 
# $# $

# $

2 2
1 1 2 2

// 2
1 2 1 2 1 2

1 1
.s s s s

LC LC
s s s s s s

L C L C
Z

j C C C C L L

� �

� �

� �
�

( )� � �, -
 (19) 

The values of the unknown capacitance and 
inductances can be computed by solving by 
running an iterative matching procedure. The 
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procedure starts from the computation of the three 
resonance frequencies ωz1, ωz2 and ωp2, by 
detecting the nulls of the derivative function of the 
actual FSS impedance. The following relations 
between the lumped components of the LC//LC 
circuit hold: 

# $ # $
# $

1 1

2
2

2 2
2 2

2
2

2
2

1 22 2
1 2

1
1 1

2

1

1 1; ;

.
1
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z z

p

z
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s z s z

s s

s

s
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L L
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 (20) 

The value of the inductance Ls1 is obtained by an 
iterative procedure that minimizes the Euclidean 
distance between the impedance computed by the 
MoM approach and the one obtained by the 
equivalent circuit model. The first pole ωp1 falls at 
ω=0 since the FSS is capacitive. Figure 12 shows 
the comparison between the reflection coefficients 
obtained by a MoM analysis and by the circuital 
approach for the two analyzed FSS configuration. 
The lumped components are summarized in Table 
5, where the values of the geometrical parameters 
are also specified. The value of the capacitance Cs1

is higher than that of the simple cross, since the 
end loading improves the capacitive coupling 
between the neighboring crosses. The additional 
capacitor, due to the capacitive effect introduced 
by the two end loading strips aligned with the 
electric field is lower than the main effect, due to 
the central cross as expected. 

Fig. 12. Reflection coefficient of a freestanding 
Jerusalem cross array obtained by a periodic MoM 
approach and by the retrieving method. 

Table 5: Lumped parameters of the simulated 
Jcross (the geometrical parameters are: D=10 mm, 
w=D/8, g=D/16, p=3/8D) 

Jerusalem Cross Array
Cs1 37.93 fF Cs2 10.70 fF
Ls1 5.15 nH Ls2 2.71 nH

The surface current on the Jerusalem cross and 
the electric field distribution on the same plane are 
reported at the two resonances with unitary 
reflection (i.e.: 11 GHz and 29 GHz) in Fig. 13. As 
it is evident from the color plot, the central cross is 
mostly excited in correspondence of the former 
resonance, while the end loading dipole 
represented by the second LC series circuit 
determines the position of the latter resonance (its 
length is equal to an half wavelength in 
correspondence of the second unitary reflection 
resonance). FSS elements characterized by a 
higher number of resonances within the 
fundamental Floquet harmonic zone can still be 
modeled by extending the aforementioned 
equivalent circuits to nth order resonant circuits 
[78]. 

Fig. 13. Surface current and electric field 
distribution on the plane of the Jerusalem cross 
array at the two reflection resonances. 

A multi-resonant element useful for 
understanding the limitations of the equivalent 
circuit approach is the spiral cross array. The 
matching of the reflection coefficient of the 
investigated spiral structure can be obtained by 
using the same equivalent circuit of Jcross as
reported in Fig. 14. However, in this case the 
equivalent circuit does not catch the physical 
behavior of the structure. Indeed, differently from 
the previous multi-resonant element, where the 
resonances were due to the element geometry, this 
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element resonates because of the high-order modes 
of the current distribution. As it is evident from 
Fig. 15, the fundamental resonance occurs when 
the length of the spiral approaches at half 
wavelength, while the second resonance occurs 
when the length of the arms is equal to 3/2λ. Other 

more complex and more compact element 
configurations are also possible [79], [80] and 
their behavior can still be matched by using a 
pole-zero matching procedure [75]. 

Fig. 14. Reflection coefficient of a freestanding 
spiral cross array obtained by MoM approach and 
by the retrieving method. The geometrical 
parameters are: D=10 mm, w=3/16D, g=D/16. 

Fig. 15. Surface current on the plane of the spiral 
cross array at the two reflection resonances. 

VI. DISCUSSION ON LUMPED 
ELEMENTS VALUES 

Simple electrostatic relationships can be 
exploited to qualitatively understand the reason 
why certain shapes determine specific values of 
capacitance and inductance. As it is well known, 
the static capacitance of an ideal parallel plate 
capacitor is directly proportional to the plate area 

A and inversely proportional to the plate 
separation d ( 0 rC A d� �� ). The capacitance value 
of the cross element is the lowest one, since the 
parallel plate capacitor formed by the two adjacent 
crosses has a small area. For the same reason, the 
patch capacitance is comparable than the loop one. 

In Fig. 16, the capacitance values for different 
unit cell elements are reported as a function of the 
element over periodicity. It is clear the capacitive 
coupling increases exponentially by reducing the 
gap between adjacent elements. The inductance 
values can be explained by resorting to the 
expression of the inductance of two parallel wires 
with length l, radius a and distance d
( # $lnL l d a	� ). As the distance between the 
parallel wires decreases, the inductance decreases
as well. In the case of the patch element, we can 
infer that the inductance value is very low because 
the plate is very large and in the previous formula 
corresponds, unwrapping the wire, to enhance the 
value of the wire radius. Cross and loop elements 
are characterized by higher inductances because of 
the narrow strips composing the single element. 
By observing the calculated optimal values of the 
inductances in Tables 3 and 4, it is evident the 
inductance values drop as the first TE high order 
mode is included in the multi-mode model. This is 
due to the fact that the impedance of the first TE 
harmonic is inductive. As a consequence, the 
inductive component of the element is now shared 
between the inductor and the first TE harmonic. 

Fig. 16. Capacitance values of 4 different elements 
as a function of the element size with respect to 
the lattice periodicity. The element width (g) is 
fixed to D/16. 
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VII. CONCLUSION 
A comprehensive overview of FSS circuit 

modeling has been presented. Different models 
based on fully analytical or semi-analytical 
formulations are described with the aim to clarify 
their range of validity and their accuracy. Fully 
analytical models based on averaged expressions 
are accurate for dense periodic arrays (quasi-static 
region), while a simple semi-analytical approach 
can be employed also in the resonant region of 
FSSs. The latter approach can be applied to 
generic FSS elements and it can be generalized 
with simple relations. Finally, an efficient multi-
mode approach which allows to match the 
complex response of the FSS screens within non-
linear grating lobes region has also been discussed. 
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