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Abstract ─ The Error Cross-Section (ECS) is 
introduced to quantify the error associated with the 
numerical solution of electromagnetic scattering 
problems. The ECS accounts for different 
approximations and inaccuracies in the object 
discretization and numerical computations. The 
ECS definition is based on the power conservation 
principle and is visualized by comparing it to the 
radar cross-section of a thin wire for two-
dimensional (2-D) problems or a small sphere for 
three-dimensional (3-D) problems. The proposed 
ECS method is independent of the adopted 
numerical technique and therefore can be used to 
give confidence in the obtained solution using 
several methods, such as the Method of Moments 
(MoM) and the Finite-Difference Frequency-
Domain (FDFD) method. Application of the ECS 
to the optimization of certain parameters for some 
numerical formulations, such as the Combined-
Field Integral Equation (CFIE) is also presented. 

Index Terms – CFIE, numerical error, radar cross-
section. 

I. INTRODUCTION 
Numerical treatment of Maxwell’s equations 

has steadily advanced for decades and a variety of 
computational methods have been devised to solve 
electromagnetic problems, especially problems 
involving scattering from arbitrarily shaped 
objects [1]-[4]. Such problems require using 
geometrical discretization methods to model the 
objects in a manner amenable to computers, 
followed by approximations of the equations 
associated with the used formulation and finally 
adopting a numerical routine to evaluate such 
approximate forms. 

As yet, there have been quite a few works on 
the quantification of the error associated with the 
above procedure in computational electro-
magnetics [5]-[8]. Commercial software packages 
do not provide a confidence level to the user in the 
accuracy of the produced results. Verifying the 
boundary conditions (frequently used to guarantee 
that the solution satisfies them) typically uses the 
same operator equation, which has been 
approximated and thus suffers from complications 
related to singularities, mesh inaccuracy etc. and is 
specific to the adopted method. 

This work proposes an error quantification 
approach, which is not only independent of the 
adopted numerical method but also visualizes the 
error by the so-called Error Cross-Section (ECS). 
In section II, the numerical error in solving a 
general electromagnetic scattering problem is 
discussed. In the same section, the definition of the 
ECS is presented and its relation to the Radar 
Cross-Section (RCS) of a thin conducting wire is 
investigated. Also, the correlation between the 
proposed error measure and the actual error is 
studied. In section III, the ECS is computed for 
various scattering problems using different 
numerical methods, such as the MoM and the 
FDFD, with an application to the optimization of 
the mixing factors in the MoM combined-field 
formulation. Conclusions and discussions are 
given in section IV. 

II. PROBLEM FORMULATION 
A. Residual error in scattering problems 

Figure 1 shows an arbitrary object illuminated 
by a uniform plane wave. The total fields in the 
region enclosing the scatterer are given by: 
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, (1)
. (2)

Typically, the scattered fields are determined 
using a numerical technique for arbitrarily shaped 
objects. The inaccuracies associated with the 
adopted technique result in an error in the total 
fields, i.e.:

, (3)
. (4)

Estimation of the residual error and
requires obtaining the exact solution and

, which is usually unknown for non 
canonical problems. Conventionally, numerical 
methods adopt certain convergence criteria to the 
solution by increasing the number of unknowns till 
the difference between the current and the previous 
solutions becomes acceptable. This, however, 
neither gives an indication about the error in the 
current solution with respect to the exact one, nor 
provides a physical insight into the quantified error. 
In this work, the goal is to define a new quantity, 
conveniently referred to as the Error Cross-Section 
(ECS), which is correlated with the actual residual 
error in a way that is independent of the adopted 
numerical technique. Unlike most error estimates 
[5]-[8], only few have a physical meaning like the 
Sobolev norm [9]. The ECS has this advantage and 
can be used to visualize the quantified error by 
comparing its definition to the RCS. Furthermore, 
the highest solution accuracy that can be achieved 
on a specific machine can be deduced by finding 
the lower limit of the ECS.

Fig. 1. Geometry of a general scattering problem. 

B. Definition of the ECS
In electromagnetic scattering problems, the 

power conservation principle [10] requires that the 
total exiting power must vanish if the media 
bounded by were lossless, i.e.:

, (5)
where is the outward normal to the surface .
Ideally, (5) should be satisfied; however, due to the 
errors in the scattered fields computation, the 
integral in (5) yields a residual value, viz.

(6)

Thus, the ECS is defined as follows:
, (7)

where is the 
incident power density.

For 2-D problems, the Error Width (EW) is 
used instead of the more general term ECS and the 
integral in (6) is performed on a contour rather 
than on a surface . This is similar to using the 
scattering width in 2-D problems, instead of the 
radar cross-section used in 3-D problems.

A fundamental lower limit to the EW is 
attributed to the error in the numerical evaluation of 
(6) in the absence of the scatterer, i.e.:

, (8)

where 
Although there could be different combinations 

of and , which satisfy the power 
conservation principle, only one of them is correct 
in light of the uniqueness theorem [10]. Therefore, 
before finding the ECS, the boundary conditions 
should be verified to guarantee that the solution 
under consideration is actually the correct one. It is 
important to underline that the goal behind using 
any error estimate is not to decide whether the 
solution is correct or not, but to find out how 
accurate a correct solution is and to establish a 
confidence level in it. In light of this, error 
estimates can be employed for many purposes, i.e.:
to minimize the computational effort using a 
specific numerical method by determining the 
optimum number of unknowns and to find the 
highest obtainable accuracy. Also, they can be used 
to compare the accuracy of different methods for a
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given problem and to provide a physical meaning 
for the error. 
 
C. Physical meaning of the ECS 

To visualize the quantified error and to have a 
feeling about how much this error is for a specific 
problem, the definition of the ECS is compared to 
the RCS or the scattering width (SW) in case of 2-D 
problems, which is defined as [10]: 

. (9) 

This can give an estimate of the error 
associated with the solution as a residual field  
and , due to scattering from a fictitious thin 
wire, as compared to the original problem of 
scattering from the actual object. Figure 2 shows 
the SW of a thin conducting wire of radius . The 
ordinate of Fig. 2 will be used to access the EW of 
the solution to determine the radius of the 
corresponding thin wire. 
 

 
 
Fig. 2. Scattering width of a conducting wire with 
radius  normalized to the wavelength . The 
arrow shows how the figure is used to visualize 
the error width. 
 
D. Correlation between the EW and the actual 
residual error 

The correlation between the EW and the actual 
residual error  for the problem of TMz plane 
wave scattering from a 2-D circular PEC cylinder 
having a radius , is studied (see Fig. 3). In 
this example, the EFIE formulation of the moment 
method is adopted and the effect of varying the 
number of basis functions per wavelength  is 

investigated. Invoking (6), the total exiting power is 
computed on a circular contour of radius 

. The exact solution  for this problem 
can be found analytically using [10]: 

, 
 

(10) 

where  and  are the Bessel function of the 
first kind and the Hankel function of the second 
kind, respectively and  is the free-space 
wavenumber. The residual error  is computed 
by averaging its values on the circular contour C. 
Results as shown in Fig. 4, indicate that the EW and 

 have the same asymptotic convergence rate. 
 

 
 
Fig. 3. TMz plane wave scattering from a 2-D 
circular (approximated as an octagon) PEC 
cylinder. 
 

 
 
Fig. 4. Correlation between the EW and the actual 
residual error  for the MoM solution of the 
problem shown in Fig. 3. 
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III. RESULTS 
A. Method of moments 

The proposed method is applied to selected 
numerical methods such as the MoM and the 
FDFD techniques. First, the example shown in 
Fig. 5 is considered to compare the EW for the 
problem of plane wave scattering from a 2-D PEC 
cylinder with equilateral triangular cross-section 
using different formulations. The scatterer is 
enclosed by a cylinder of radius . Figure 6
(a) shows the computed EW for the case of 
electric (EFIE) and magnetic field integral 
equation (MFIE) for TMz illumination. It can be 
inferred from Fig. 6, that for this problem the 
EFIE has superior performance compared to the 
MFIE and that triangular basis functions give
lower EW as compared to the pulses. Figure 6 (b) 
also shows that the EW is almost independent of ,
for . This critical value depends on the 
accuracy of the numerical routine used to evaluate 
the integrals. Increasing this, accuracy results in a 
higher and vice versa. To explain that, the 
scattered field intensity is noticed to be proportional 
to in 2-D problems and therefore the error in 
calculating and is also proportional to .
At the same time, when increases, the integration 
contour is enlarged with and the 
associated error increases with the same 
proportionality, provided that the accuracy is high
enough. Therefore, the reduction in the error when 
calculating the scattered fields compensates the 
increase in the error due to the numerical evaluation 
of the integrals. This is true up to a critical value,

after which the error in evaluating the
integrals, i.e.: is not linear anymore with ,
as shown in Fig. 6 (c).

Fig. 5. TMz plane wave scattering from a 2-D
equilateral triangular PEC cylinder. 

(a)

(b)

(c)

Fig. 6. (a) EW versus , (b) EW versus and (c) 
for the MoM solution of the problem 

shown in Fig. 5.

275 ACES JOURNAL, Vol. 29, No. 4, APRIL 2014



An interesting observation regarding the MoM 
solution is that when the electrical size of the 
problem greatly increases, the number of unknowns 
increases likewise. There is a critical value for the 
number of unknowns at which the MoM matrix 
becomes ill-conditioned and the error in finding its 
inverse affects the overall accuracy. This critical 
value can be determined using the EW. To manifest 
this phenomenon, the example of Fig. 3 is 
considered again but the radius of the PEC cylinder 
is now made electrically huge, i.e.: . 
Using the MoM-EFIE formulation,  and 
the corresponding  are shown in Fig. 7. 
Based on the EW/SW analogy and referring to Fig. 
2, the thin wire radius corresponding to the error at 

 is 1000. 
 

 
 
Fig. 7. The error width of the MoM solution using 
EFIE formulation for the problem shown in Fig. 3. 
 
B. Finite-difference frequency-domain 

Considering another numerical method, the 
error in the FDFD solution of plane wave scattering 
from a 2-D rectangular dielectric cylinder with a 
side length  and a dielectric constant  is 
investigated. Due to the rectangular grid employed 
by the FDFD in defining the geometry and field 
points, it is more convenient for the integration 
contour to be rectangular with a side length L, as 
shown in Fig. 8. For ,  and , the 
EW is depicted in Fig. 9. 

 
 
Fig. 8. Plane wave scattering from a 2-D 
rectangular PEC cylinder. 
 

 
 
Fig. 9. The error width of the FDFD solution for the 
problem shown in Fig. 8 under TMz illumination. 
 
C. Optimization of the mixing factors in the 
MoM-CFIE 

An interesting application to the proposed error 
estimate is to determine the best choice of the 
mixing factors used in the CFIE, commonly 
adopted in the MoM solution to remedy the internal 
resonance problem. The CFIE formulation is 
typically obtained as a weighted sum of the EFIE 
and MFIE with orthogonal weights [11], i.e.: 

, (11) 
where CFIE, EFIE and MFIE are either the matrix 
of unknowns or the excitation vector and  is the 
intrinsic impedance of free-space. In [12], the 
choice of the factors  and  was random. The EW 
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concept can be employed to study the effect of this 
choice on the solution accuracy.

This is done by determining the combination 
that results in a minimum EW at each number of 
unknowns. In light of this, it was found that having 
a phase difference between the mixing factors 
and keeping constant for the given problem, the 
value of is a very sensitive function of , i.e.:

(12)

The example in Fig. 5 is investigated again 
using the proposed formula in (12) and pulse basis 
functions. The variation of the EW with for 
different values of , is shown in Fig. 10. Results 
manifest that for each there exists a certain value 
of , which results in a minimum EW; hence, leads 
to a significant improvement in the solution 
accuracy compared to the EFIE or MFIE 
formulations.

Fig. 10. MoM-CFIE solution using the formula in 
(12) for the scatterer shown in Fig. 5. The error 
width is plotted versus coefficient for different 
values of .

IV. CONCLUSION
A general method based on power 

conservation and independent of the adopted 
technique is proposed to quantify the error. The 
definition of the ECS is introduced to compare the 
solution accuracy for different numerical 
techniques. For 2-D problems, the EW is used 
instead of the more general term ECS. The 

proposed method is applied to the MoM and 
FDFD solutions of plane wave scattering from 2-D 
objects. This approach can also be applied to 3-D
objects in a straightforward manner. A comparison 
between the ECS and the RCS of a thin wire for 2-
D problems or small sphere for 3-D problems is 
introduced to visualize the amount of error. An 
interesting application for the proposed ECS 
method is finding the critical value for the matrix 
size in MoM solution after which the accuracy 
starts to degrade. Another application is to 
estimate the accuracy of different formulations, as
illustrated with the CFIE and to optimize the 
choice of the mixing factors. Moreover, 
incorporating the proposed method with the results 
obtained using commercial software packages as a 
post-processing step, is on-going with the goal of 
providing a unified benchmark for the error of 
these packages. 
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