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Abstract — An integral equation is formulated for
the current distribution on slotted cylinder placed
in a cylindrical capped corner reflector. The
moment method is used to obtain the current
distribution on the antenna conducting surfaces.
The radiation pattern of the antenna is then
calculated for different corner angles. Interesting
results are obtained for different corner angle. The
advantage of this geometry over the traditional
corner reflector antenna is that it can be part of a
ship or aircraft, in which the slotted cylinder is
embedded in a conducting corner.

Index Terms - Corner reflector antenna, integral
equation formulation and slotted cylinder.

I. INTRODUCTION

Radiation from axial slot on a circular
conducing cylinder is the subject of considerable
investigations, for its numerous applications in the
communication and airspace industry. The residue
series and the geometrical optics representation
[1], the Green’s function formulation [2] and the
Fourier integral representation [3] have been
employed for analytical treatment of different slots
on a circular conducting cylinder. The dielectric
coated cylindrical antennas were also investigated
using similar methods [4-5]. The concentric case
of a dielectric coated slotted conducting cylinder
in a ground plane has been also tackled in [6].
Further, radiation from a dielectric coated slotted
elliptic cylinder has been also the subject of many
investigations [7]-[12]. In all of the previous work,
the effect of mounting the antenna on any
communication system has not been considered.
The present work is generalizing the problem by
considering the metallic slotted cylinder embedded
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in a caped conducting corner. This arrangement
can be used to enhance the antenna characteristics
and to optimize its radiation pattern. The ground
plane can be used to support the slotted conducting
circular cylindrical antenna. This plane could be
the body of an air craft, a ship or any other mobile
system. The integral equation formulation along
with the moment method is employed here to
obtain the radiation pattern of this antenna. It
should be mentioned that an exact solution to this
problem has been published by the first author
[13]. The difference is in the exact solution the
reflector is considered infinitely long, while in the
present numerical solution a finite reflector is
considered, which is more practical.

II. INTEGRAL EQUATION
FORMULATION
A two dimensional cross section of the
geometry of the problem is illustrated in Fig. 1. A
slotted conducting cylinder of radius “a” is
embedded in a cylindrical capped corner reflector

of corner angle O extending from ¢=0/2 to
¢=-06/2 and cap radius “»”. The conducting
corner planes have finite length “R”. The axial slot
is centered at ¢ = ¢, and has an angular width

equals to 2o .

To formulate an integral equation for electric
and magnetic current distribution on the surface of
the antenna, Green’s second identity is employed,

1.e.:
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The wave equation can be written as:
Vi (F)+ky (7)=0. )
It is assumed that there is no variation of (7)

along z-direction. Therefore, only one is
concerned with a two dimensional Laplcian
operator and a two dimensional space (x-y) plane.

|

Fig. 1. Geometry of the problem.

The wave equation of an infinite line source of
unit density in terms of the Green’s function is:

VGF, 7+ k*GF, 7)) =8 -7). (3)
Multiplying equation (2) by G and equation (3) by
y(7) and subtract then using it in (1), consider the
two dimensional contour in Fig. 2, it results in:

v =$u )LL) g

Fig. 2. Contour of a conducting surface.
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The scalar function for TM case is associated with
the £ component of the field, i.e.:

H, = la_wt tangential H . (6)
oy on

These field components may then be related to the
equivalent surface current by:

M=Exn, (7
J=nxH. ®)
Using (5) and (6) in (7) and (8), one obtains:
V=y(F)i, ©)
J = =j ov(r) 5 (10)
o on

Upon substituting these definitions into the

boundary integral equation (4), we obtain:
E (r)_qSM( )aG(V ) 4
on .(11)
— joud T(F)G(F,F)d!’
C

Equation (11) is the general integral equation
for the field component £, due to equivalent

magnetic and electric current sources. On the
perfectly conducting surface the total tangential

field £, must vanish. Upon applying this
boundary condition, one may get:

IE( )OG(r r)df'—
(\)]:]t;
jou gS TG, 7)de" (12)
on shots
E_(¢) onslots
:{0 otherwise
where
G(F,?’):%jHO(H?—F'D. (13)

Equation (12) can be manipulated for the
geometry illustrated in Fig. 1, to obtain:
—LIEZ(V) a—rcos(p—¢@")
47 o \/r2 +a’>—2racos(p— @)
— ) . . (14
HP (k|7 -7 )dl' = jou (14)
E.(9)

0 otherwise

on slots

gS J_(F')G(F,F)d€’+{

except
on slot
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To solve for the current densityJ(7"), the
conducting surface denoted by the arc length C is
divided into N segments AC, and the current

density J(7') may then be represented by:
N
=S a ., (15)
n=1

where f, is the basis function defined by:

1 over AC,
£, = {0

otherwise
In this case, equation (14) can be re-written as:
_ a—rcos(dp—¢’
k. J‘ E.(7) (9-9"
J ot \/r +a’ —2racos(dp—¢")
op .(16)

H®(k|F

3 H E lot
Zjan 52)(k;7—,7’1’)dg/”+{ (d) onslots
n=l AC 0

In order to calculate the unknown coefficients
o, in the above equation, one may discrete the

e, =

otherwise

above equation on the conducting surface, i.e. for
the m" segment:

o Z [o, P (k |7, -7,
n=l AC,
il [ ()2t cos(¢, —9) (17
47 o \/rm2 +a’ —2r,acos(d, —9¢)
HE (k| 7, 7',
where m in equation (17) can take values from 1 to

N (on the conducting surface only). Equation (17)
can be written as:

z,, Jo,1=1G,]1. (18)

where
Lmn = _jn()ACn
HP (kyf(x,, =) + (v, = ¥)*)

and for n=m

L, =-jn,AC, {1 - jg(Y + 1n(AC”kjﬂ , (20)
i 4e

and M is the number of segments on the slot
M a-r,cos(dp, —
GmZZEZ(d)I) - m (d)m d)[)
=1 \/rm +a”—2r,acos(, —d,) 21
Hlm(k ‘ Fm _’71 DAC}

Upon solving the matrix equation (18), one
can obtain the current distribution on the

. (19

conducting surface and radiation pattern can then
be obtained from (11) as:

=k a—r, cos@, -9
Ez( ):7. Ez( ) “ =
7 J s;[, ' \/ r.) +a’ —2r acos@®, —¢)

H1(2) (k | fm — |)df’—%l . (22)

fIG HY k|7, ~F D,

except

slot
The far field Hankel function can be replaced by
its asymptotic expression for large argument, i.e.:

H(Z) (X) — jn i e—j(x—n/4) .
! V mx

Also, the approximation
|F=F'|=r—r'cos(¢—¢’) can be used. This
gives:
-, —cos(p—¢'
E(r)——jE( ) 9-¢)
i \/1+ ~24cos(p—¢)

Jg/—krz _,|e‘jk‘;‘”ej”/4d£' 3)
K|V —r

J( ) 7j/(\777'\ejn/4d€r
4 except | |

slot

Since r >>a, the term a/rmay be neglected.
Employing this approximation one can get:

k|2
E (r)=—,—
(") 4\ nkr

ejn/4e—jkr

[E.(7)cos(b— ) er o> 24

slot

—, j;J(F') e/’kr'cos(¢—¢')\d€/

except
slot

which can be written as:

E(F)= |——e e 1(9).  (29)
8nr
where

f(9)= z E_(¢,)cos(¢—¢,) e
- . (26)

N
Jkr, cos(¢—=,, )|
AC,-m,> a,e™ AC,
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The electric field on the slot may be assumed [6]
as:

Ez(¢1)=Eocos( (b, - "’)j @7)

The circular waveguide can be excited by a
probe such that it will propagate the mode, which
produces field distribution on the slot given in
27).

III. NUMERICAL RESULTS
To check the accuracy of our computation,
comparison between radiation patterns using the
numerical solution is presented here and the exact
solution in [13] will be presented. Throughout all
examples, the slot angle is taken as 2ot=10"
centered at ¢, =0 . The geometrical parameters

for the following two examples are a=0.5A,
b=0.6\ and R =3A\.

In Fig. 3, the radiation patterns corresponding
to the numerical and the exact solutions for corner
angle ©=180° is presented. It is clear that they
are in good agreement. The discrepancy after

[d[>65°,

solution the reflector surface is considered finite
while in the exact solution it is considered infinite.

is due to the fact that in numerical

9 60 30 0 30 60 90
¢ (Degree)

Fig. 3. Comparison between radiation pattern
using numerical and exact solutions for corner

angle =180

Another example is illustrated in Fig. 4 for the
same geometrical parameters of Fig. 3, except that

the corner angle here is 0=90°. Comparison
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between numerical and exact solutions is also
excellent, except for |¢p[|>40°, due to finite

reflector length considered in the numerical
solution.

e s 1
T

-45 -30 -15 0 15 30 45
¢ (degree)

Fig. 4. Comparison between radiation pattern
using numerical and exact solutions for corner

angle 6 =90

Figure 5 shows the radiation patterns for

corner angle O =180 and geometrical parameters

b=08\. and R =3\ at different values of
slotted cylinder radius.

180 120 60 0 60 120 180
¢ (Degree)

Fig. 5. Radiation patterns for corner angle
0 =180° and different slotted cylinder radius.

As can be seen from Fig. 5, the change in
radiation pattern is minimal, but as one decreases

the corner angle to ©=120° for the same
geometrical parameters, the radiation pattern gets
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narrower as the slotted cylinder radius gets
smaller. This is shown in Fig. 6.

-180 -120 -60 60 120 180

0
¢ (Degree)

Fig. 6. Radiation patterns for corner angle
0 =120° and different slotted cylinder radius.

The radiation patterns corresponding to
different slotted cylinder radii, are illustrated in
Fig. 7 with the same geometrical parameters as
presented earlier, but the corner angle is reduced

to 6=90°. As one can see from Fig. 7, the
smaller the radius of the slotted cylinder, the
narrower the radiation pattern is. The deviation
between radiation patterns in this case
corresponding to lower and upper slotted cylinder
radii is the largest in this case.

Fig. 7. Radiation patterns for corner angle
0 =90" and different slotted cylinder radius.

In the next example shown in Fig. 8, the
corner angle is considered as 6 =60". Radiation

patterns corresponding to different slotted cylinder
radii are considered. As shown in this figure, the
deviation in radiation patterns in this case is
minimal. Accordingly, the above results show that

for corner angles between 120° and 90°, the
radiation pattern gets narrower as the slotted
cylinder radius gets smaller.

180 120 60 0 60 120 180
¢ (Degree)

Fig. 8. Radiation patterns for corner angle
0 =60 and different slotted cylinder radius.

The final example is for the geometrical

parameters a =0.45A, b=0.81 and 0=90°.
The radiation patterns corresponding to different
reflector length are shown in Fig. 9. The radiation
pattern in this case is the same for
—30% <¢$ <307, while for larger angles the level

of the radiation gets higher as the reflector length
gets lower.

-180 -120 -60

¢ (Degree)

Fig. 9. Radiation patterns for corner angle
0 =90 and different reflector length.
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CONCLUSION

The axial slot on a conducting circular
cylinder embedded in a capped corner reflector
has been analyzed. Results corresponding to
different geometrical parameters are presented.
The geometry is supporting the antenna instead of
using the mechanical mounting supporting system.
The results show that one can shape the antenna
pattern by changing the slotted cylinder radius or
the reflector angle.
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