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Abstract ─ Dielectric filters can provide compact 

solutions for filter design problems. However, 

most dielectrics exhibit uniaxial properties, as 

well as, losses that will undoubtedly affect 

performance if not accounted for. This paper 

derives dispersion relations for lossy uniaxial 

media in dielectric waveguides and also accounts 

for lossy conducting walls. The waveguide 

discontinuity problem in the presence of lossy 

uniaxial media and finite conductivity waveguide 

walls, is calculated by mode matching technique 

and the results are applied to a Ka band filter. The 

design specifications for the proposed filter are a 

32.5 GHz center frequency with 6%. Good 

agreement between simulated and measured 

results are shown. 
 

Index Terms ─ Band-Pass Filter (BPF), 

Computer-Aided Design (CAD), dielectric 

waveguide filters, microwave filters, Mode-

Matching Technique (MMT) and uniaxial media. 
 

I. INTRODUCTION 
Waveguide filters offer far superior 

performance to microstrip filters and dielectric 

filled waveguide filters significantly reduce 

waveguide filter size without sacrificing filter 

performance [1]. In addition to high performance, 

low manufacturing cost and small size, dielectric 

waveguide filters allow for flip-chip bonding; 

which makes for easy integration in millimeter-

wave systems [2-3]. At millimeter-wave 

frequencies, dielectric waveguide filters also 

circumvent radiation loss; which is common in 

planar filters [4]. Recently, [5-6] use mode 

matching/hybrid method in the analysis of 

waveguide class filter problems. Wexler [7] first 

mentioned the advantages of choosing the Mode 

Matching Technique (MMT) versus all other 

methods when solving a class of waveguide 

problems. In [8-10], the MMT is applied to 

analyze dielectric waveguide and SIW filters as 

well as couplers. However, the MMT has never 

been applied to a lossy uniaxial dielectric 

waveguide filter with non-PEC walls. This paper 

will use the MMT to design and simulate a 

dielectric waveguide filter that is manufactured 

on a lossy uniaxial media with finite conductivity 

in the waveguide walls. The filter is designed in 

the Ka band, due to interest expressed by the 

manufacturing company that graciously 

manufactured and measured the filter free of 

charge. 

 

II. DISPERSION RELATION IN LOSSY 

UNIAXIAL MEDIA 
In order to account for a lossy dielectric in the 

MMT dispersion relations, Maxwell’s equations 

must be modified. From [11], one finds 

Maxwell’s equations for a conducting media. In 

this paper, it is assumed the relative permittivity 

tensor 𝜀�̿� takes the form of: 

 𝜀�̿� = [
𝜀 0 0
0 𝜀𝑦 0

0 0 𝜀

]. (1) 
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Replacing the relative permittivity tensor in (1) 

with that of the relative permittivity tensor for a 

lossy uniaxial media: 

 𝜀𝑐𝑑̿̿ ̿̿ = [

𝜀 − 𝑗𝜏𝜀 0 0
0 𝜀𝑦 − 𝑗𝜏𝜀𝑦 0

0 0 𝜀 − 𝑗𝜏𝜀
]. (2) 

Putting (2) into Maxwell’s equation, multiplying 

by the dot product of (𝜀�̿�𝑑
−1)

−1
 and then taking the 

curl, we obtain: 

 ∇  ×  (𝜀�̿�𝑑
−1 ∙ (∇  ×  𝐻)) = 𝑗𝜔𝜀0(∇ ×  𝐸). (3) 

Substituting the ∇  ×  𝐸 term of Maxwell’s 

equation into (3) gives: 

 ∇  ×  (�̿�𝑐𝑑 ∙ (∇  ×  𝐻)) = 𝑗𝜔𝜀0(−𝑗ω𝜇0𝐻), (4) 

where �̿�𝑐𝑑 =  𝜀�̿�𝑑
−1. Assuming propagation is in 

the �̂� direction and solving for the kz of the 𝐻z 

components provide the dispersion relation. After 

some tedious but straight forward calculations, 

the �̂�-components of (4) are given by: 

(𝛼22
𝜕2

𝜕𝑥𝜕𝑧
− 𝛼23

𝜕2

𝜕𝑥𝜕𝑦
− 𝛼12

𝜕2

𝜕𝑦𝜕𝑧
+ 𝛼13

𝜕2

𝜕𝑦2) 𝐻𝑥 +

(−𝛼12
𝜕2

𝜕𝑥𝜕𝑧
+ 𝛼23

𝜕2

𝜕𝑥2 + 𝛼11
𝜕2

𝜕𝑦𝜕𝑧
− 𝛼13

𝜕2

𝜕𝑥𝜕𝑦
) 𝐻𝑦  

+ ( 𝛼12
𝜕2

𝜕𝑥𝜕𝑦
− 𝛼22

𝜕2

𝜕𝑥2 − 𝛼11
𝜕2

𝜕𝑦2 + 𝛼12
𝜕2

𝜕𝑥𝜕𝑦
) 𝐻𝑧   

=𝑘𝑜
2𝐻𝑧 . (5) 

It can be seen that the coupling effect of Hx and 

Hy makes the calculation of kz difficult for 

uniaxial media. Later in this paper, MMT is 

carried out to analyze the TE10 mode. This 

assumption enforces the conditions on (5) such 

that 𝐻𝑦 = 𝐸𝑥 = ky = 0. Under these conditions, 

using Gauss’s law and knowing from calculations 

that 𝛼23 = 𝛼12 =  𝛼12 = 0, simplifies (5) to: 

 −𝛼22
𝜕2

𝜕𝑧2 𝐻𝑧 − 𝛼22
𝜕2

𝜕𝑥2 𝐻𝑧 − 𝛼11
𝜕2

𝜕𝑦2 𝐻𝑧= 𝑘𝑜
2𝐻𝑧 . (6) 

Under the assumption in a waveguide, Hz is 

of the form  cos( 𝑘𝑥𝑥) cos(𝑘𝑦𝑦) 𝑒−𝑗𝑘𝑧𝑧, solving 

for kz in (6) provides the dispersion relation for 

lossy media: 

𝑘𝑧 = 𝑗√𝑘𝑥
2 −

𝑘0
2

𝛼22
⁄ = 𝑗√𝑘𝑥

2 − (𝜀𝑦 − 𝑗𝜏𝜀𝑦)𝑘0
2, (7) 

where 𝑘𝑥=𝑚𝜋 𝑎⁄  and a is the x dimension of the 

dielectric waveguide in Fig. 1. 

 

 
 

Fig. 1. Rectangular waveguide dimension 

reference. 

 

III. LOSS IN CONDUCTOR WALLS 
Most MMT calculations of the dielectric 

waveguides assume perfect conducting walls. In 

practice however, metallic walls exhibit a finite 

conductivity, 𝜎𝑐 and therefore cause attenuation 

of the signal. Under the assumption of TE10 mode 

of propagation, Kong’s [12] perturbation method 

is used to calculate the attenuation for the 

waveguide wall dimensions that are defined in 

Fig. 1: 

 𝛼𝑐 =
𝑃𝑤

2𝑃𝑓
, (8) 

where 𝑃𝑤 represents the time-average power loss 

in the walls and 𝑃𝑓 is the time-average power 

flowing through a cross section of the waveguide. 

𝑃𝑓 and 𝑃𝑤 are defined as: 

 𝑃𝑓 =
1

2
𝑅𝑒{∬ 𝑬 ×  𝑯∗ 𝑑𝑥 𝑑𝑦}, (9) 

 𝑃𝑤 = 2𝑃𝑤,𝑥=0 + 2𝑃𝑤,𝑦=0, (10) 

where 𝑃𝑤,𝑥=0 and 𝑃𝑤,𝑦=0 is the power loss on the 

conducting walls at x=0 and y=0, respectively. 

The factor of two arises because all four walls 

must be considered. 𝑃𝑤,𝑥=0 and 𝑃𝑤,𝑦=0 are 

calculated by integrating the square of the current 

density on the waveguide wall multiplied by the 

surface resistance over the length of the wall, 

namely: 

 𝑃𝑤,𝑥=0 = ∫ 𝐽𝑠(𝑥 = 0) ∙ 𝐽𝑠
∗(𝑥 = 0)𝑅𝑠 𝑑𝑦

𝑏

0
, (11) 

 𝑃𝑤,𝑦=0 = ∫ 𝐽𝑠(𝑦 = 0) ∙ 𝐽𝑠
∗(𝑦 = 0)𝑅𝑠 𝑑𝑥

𝑎

0
, (12) 

where 𝐽𝑠 = �̂�  ×  𝐻 and 

 𝑅𝑠 = √
𝜔𝜇0

2𝜎𝑐
. (13) 
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The assumption of only TE10 of mode 

propagation states only the existence of: 

 𝐸𝑦 = 𝐸0 sin
𝜋𝑥

𝑎
𝑒−𝑗𝑘𝑧𝑧, (14) 

 𝐻𝑥 = 𝑌0𝐸0 sin
𝜋𝑥

𝑎
𝑒−𝑗𝑘𝑧𝑧, (15) 

 𝐻𝑧 = 𝑌0𝐸0 cos
𝜋𝑥

𝑎
𝑒−𝑗𝑘𝑧𝑧, (16) 

in the waveguide, where E0 is a wave amplitude 

coefficient and Y0 is the admittance that relates 

the H-field amplitude to the E-field amplitude. 

Using (14)-(16) in (9) and (10) provides the 

attenuation constant, due to finite conductivity in 

the waveguide walls as: 

 𝛼𝑐 =
4𝑌0𝑅𝑠(𝑎+𝑏)

𝑎𝑏
. (17) 

It is important to note again that this 

attenuation constant is only valid for dominant 

TE10 mode analysis. 

 

IV. MODE MATCHING 

FORMULATION 
Figure 2 shows a waveguide step 

discontinuity. Assuming only TEm0 modes 

propagating in the waveguide, one can express 

the electric and magnetic fields in region A as a 

sum of the incident and reflected waves from the 

junction at z=0: 

 𝐸𝑦
𝐴 = ∑ 𝐴𝑚

+𝑀
𝑚=1 sin

𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑎𝑚𝑧 

+𝐴𝑚
− sin

𝑚𝜋𝑥

𝑎
𝑒𝛾𝑎𝑚𝑧, (18) 

 𝐻𝑥
𝐴 = ∑ 𝑌𝑎𝑚𝐴𝑚

− sin
𝑚𝜋𝑥

𝑎
𝑒𝛾𝑎𝑚𝑧𝑀

𝑚=1  

−𝑌𝑎𝑚𝐴𝑚
+ sin

𝑚𝜋𝑥

𝑎
𝑒−𝛾𝑎𝑚𝑧. (19) 

In region B, the fields are expressed as: 

 𝐸𝑦
𝐵 = ∑ 𝐵𝑛

+𝐾
𝑛=1 sin

𝑛𝜋𝑥

𝑐
𝑒−𝛾𝑏𝑛𝑧 

+𝐵𝑛
− sin

𝑛𝜋𝑥

𝑐
𝑒𝛾𝑏𝑛𝑧, (20) 

 𝐻𝑥
𝐵 = ∑ 𝑌𝑏𝑛𝐵𝑛

−𝐾
𝑛=1 sin

𝑛𝜋𝑥

𝑐
𝑒𝛾𝑏𝑛𝑧 

−𝑌𝑏𝑛𝐵𝑛
+ sin

𝑛𝜋𝑥

𝑐
𝑒−𝛾𝑏𝑛𝑧, (21) 

where in Fig. 2, 𝐴𝑚
+ , 𝐵𝑚

−    are unknown incident 

wave amplitude coefficients and 𝐴𝑚
− ,𝐵𝑚

+ are the 

reflected wave amplitudes in their respective 

region. In (14)-(16), the propagation constant for 

a respective region is: 

 𝛾𝑧 = 𝛼𝑐 + 𝑗𝑘𝑧, (22) 

where 𝛼𝑐 and  𝑘𝑧 are defined by (17) and (7), 

respectively, and 

 𝑌𝑖 =  
𝑘𝑧

𝑗𝜔𝜇0
. (23) 

The propagation constant (𝑘𝑧) and 

admittance (𝑌𝑖) are the two calculated values used 

in determining the unknown wave amplitude 

coefficients of the TE10 mode, because the MMT 

equations are only valid at z=0 and 0 ≤ x ≤ c, they 

account for dielectric and conductor loss of wave 

amplitudes at this finite location. The propagation 

constant of (22) is also used later on to account 

for losses in the connecting sections of 

waveguides for the TE10 mode as well. Setting the 

tangential fields at z=0 equal to each other, 

assuming TE10 excitation and making use of 

mode orthonogality, one can calculate the 

transmission coefficients: 

 𝑆21 = (∑ (∑ (
2

𝑎
𝑌𝑎𝑚𝐻𝑚𝑣𝐻𝑚𝑝)𝑀

𝑚=1
𝐾
𝑣=1  

+𝑌𝑏𝑣
𝑐

2
𝛿𝑣𝑝))

−1

(2𝑌𝑎1𝐻1𝑣) 𝑓𝑜𝑟 𝑝 = 1,2, … 𝐾. (24) 

The reflection coefficients are given by: 

 𝑆11 =
2

𝑎
∑ (𝐻𝑚𝑝𝑆21)𝐾

𝑝=1 − 𝛿𝑚1 

 for m = 1,2,…M, (25) 

where 

 𝐻𝑖𝑗 = ∫ sin
𝑖𝜋𝑥

𝑎
sin

𝑗𝜋𝑥

𝑐
𝑑𝑥

𝑐

0
, (26) 

where S21 are the transmission coefficients of the 

discontinuity, S11 are the reflection coefficients of 

the discontinuity, M are the number of modes in 

region A and K are the number of modes in region 

B. The reader is invited to explore [13] on MMT, 

in order to gain a full understanding on MMT 

formulation. 

 

 
 

Fig. 2. Waveguide step discontinuity between 

region A and Region B. 

 

V. FILTER DESIGN 
A three pole filter with 6% bandwidth in the 

Ka band is designed using a dielectric with ε=67 

and εy=61, due to expressed interest from the 

filter manufacturer. The filter is designed using 

Hong and Lancaster’s [14] method to calculate 

filter coupling coefficients (kij) from g values. 
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This method provides coupling coefficients 

k12=k23=0.107. Using the resonant peak method 

of [14], coupling coefficients are then calculated 

and compared with ideal coupling coefficients to 

provide initial filter dimensions. Typically, the 

inductive coupling irises between resonators are 

kept thin with respect to waveguide dimensions, 

as shown by [15]. Bearing this in mind, Fig. 3 

shows calculated coupling coefficients assuming 

the thickness (d) of the coupling irises is set to the 

minimum that manufacturing tolerances allow. 

One can see from Fig. 3, that if the dielectric is 

not treated as uniaxial, the coupling coefficients 

vary drastically. Using the results of Fig. 3 as a 

starting point and S-parameter theory to cascade 

the discontinuities with respective connecting 

waveguide sections, the filter dimensions are 

given in Fig. 4 after the first and third resonator 

lengths were optimized for return loss. 

 

 
 

Fig. 3. Coupling coefficients for isotropic and 

uniaxial media for varying ratios of c/a and 

d=0.127 mm. Insert displays the junction and 

coordinate system under analysis. 
 

 
 

Fig. 4. Dimensions of initial filter. 
 

VI. RESULTS 
A narrowband waveguide filter is designed 

and simulated at 32.5 GHz. The dielectric is 

assumed to have a thickness of 0.254 mm, 𝜏 = 3e-

4 and σc=3.5e7. The waveguide is excited with a 

TE10 mode using an optimized microstrip-to-

waveguide transition, as was done in [16]. The 

exact dimensions of the transition are omitted at 

the request of the manufacture. The post-

optimization results provided by the MMT are in 

Fig. 5, with measured filter performance in solid 

circles and results from a commercial FEM solver 

are also given for comparison (solid blue). The 

measured results of Fig. 5 show a VSWR of 2:1 

or better from 31.6-33.8 GHz, with a center 

frequency of 32.68 GHz. The insertion loss is 6 

dB or better in this band, with the passband ripple 

better than 1 dB peak-to-peak. It should be noted 

that according to the manufacturer 6 dB of 

insertion loss is acceptable. Figure 6 shows the 

manufactured filter above the word liberty on a 

US penny for size comparison. One can see good 

agreement between MMT and measured results. 

After analysis, it was discovered that the 

dimensions of the filter varied slightly from those 

in Fig. 4. These dimensional changes are noted in 

Fig. 6. It was also discovered that the donated 

substrate had higher dielectric loss and lower 

conductivity than initially estimated. However, 

when the adjusted losses and dimensional 

differences are accounted for in the MMT 

analysis, one can notice that there is now 

excellent agreement in Fig. 7 between the MMT 

and measured results. 

 

 
 

Fig. 5. Measured filter performance vs. simulated 

performance in black triangles. 
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Fig. 6. Manufactured filter next to the word 

LIBERTY on a US penny for size comparison. 

 

 
 

Fig. 7. Measured filter performance (solid circles) 

vs. simulated performance with adjusted 

dimension and loss numbers (black triangles). 

 

VII. CONCLUSION 
Derivations are presented for the propagation 

constant of a dielectric waveguide when the 

dielectric is assumed to exhibit uniaxial 

properties. Using this propagation constant with 

the MMT, a filter is designed, analyzed and 

manufactured. The MMT accounts for dielectric 

losses and conductor wall losses. It is shown that 

accounting for uniaxial media and losses in the 

analysis of dielectric filters using the MMT 

allows for accurate prediction of filter 

performance. The manufactured dielectric filter 

shows excellent agreement with simulated 

results. 
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