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Abstract ─ This paper is concerned with the 

mathematical analysis and numerical computation 

of the electromagnetic wave scattering by multiple 

open cavities, which are embedded in an infinite 

two-dimensional ground plane. By introducing a 

new transparent boundary condition on the cavity 

apertures, the scattering problem is reduced to a 

boundary value problem on the two-dimensional 

Helmholtz equation imposed in the separated 

interior domains of the cavities. The existence and 

uniqueness of the weak solution for the model 

problem is studied by using a variational approach. 

A block Gauss-Seidel iterative method is 

introduced to solve the coupled system. Numerical 

examples are presented to show the efficiency and 

accuracy of the proposed method. 

 

Index Terms - Electromagnetic cavity, finite 

element method, Helmholtz equation, variational 

formulation. 
 

I. INTRODUCTION 
A cavity is referred to as a local perturbation 

of the infinite ground plane. Given the cavity 

structure and an incident wave, the scattering 

problem is to predict the electromagnetic field 

scattered by the cavity. It has been extensively 

examined by researchers for the time-harmonic 

analysis of cavity-backed apertures with 

penetrable material filling the cavity interior [14-

16, 18, 28]. Mathematical analysis of the problem 

including overfilled cavities, where the aperture is 

not planar and may protrude the ground plane, can 

be found in [1-4, 17, 19-24, 27]. A lot of work has 

been devoted to solve the problem by various 

numerical methods including finite element, finite 

difference, boundary element, and hybrid methods 

[5, 7, 8, 11, 12, 25, 26, 29, 30]. All the model 

problems have been focused on a single cavity, 

which may limit the application of the problem in 

industry and military. This paper aims to extend 

the single cavity model to a more general multiple 

cavity model, and analyze and develop numerical 

methods for the associated boundary value 

problem. 

In this paper we focus on the Transverse 

Magnetic polarization (TM), where the modeling 

equation is the two-dimensional Helmholtz 

equation. Based on Fourier transform, a nonlocal 

transparent condition is introduced on the aperture, 

which connects the electric field in each individual 

cavity. By using the boundary condition, we 

reduce the multiple cavity problem into a 

boundary value problem imposed in the interiors 

of the cavities. The existence and uniqueness of 

the weak solution for the model problem is studied 

by using a variational approach. A block Gauss-

Seidel iterative method is introduced to solve the 

coupled system, where only a single cavity 

problem needs to be solved at each iteration. Thus, 

it is applicable of any efficient single cavity solver 

to the multiple cavity problem. Numerical 

examples are presented to show the efficiency and 

accuracy of the proposed method. We refer to [9, 

10, 13] for numerical methods to solve a related 

multiple obstacle scattering problem. 
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The paper is outlined as follows. In Section 2, 

a mathematical model for the single cavity 

problem is introduced, the variational formulation 

is presented, and the uniqueness and existence of 

the solution are examined. Section 3 is devoted to 

the study of the solution for the multiple cavity 

problem. The major new ingredient is the 

introduction of a transparent boundary condition. 

Section 4 addresses the numerical implementation 

and examples are shown to illustrate the method. 

The paper is concluded with some general remarks 

and directions for future research in Section 5. 

 

II. SINGLE CAVITY SCATTERING 
In this section, we study a single cavity 

problem, which is intended to serve as a basis for 

the multiple cavity problem. 

 

A. Model problem 

We focus on a two-dimensional geometry. The 

medium is assumed to be non-magnetic and has a 

constant magnetic permeability; i.e., 
0  , where 

0 is the magnetic permeability of vacuum. The 

medium is characterized by the dielectric 

permittivity  . 

As shown in Fig. 1, an open cavity   

enclosed by the aperture  and the wall S , is 

placed on a perfectly conducting ground plane c . 

Above the flat surface ,}0{ cy   the medium 

is assumed to be homogeneous with a positive 

dielectric permittivity 
0 . The medium inside the 

cavity is inhomogeneous with a variable dielectric 

permittivity ),( yx . Assume further that: 

 0Im ,0Re ),(    L . 

For the TM polarization, the magnetic field is 

transverse to the invariant direction. The time-

harmonic Maxwell equations can be reduced to the 

two-dimensional Helmholtz equation: 

 22  in 0  Ruu  . (1) 

The total field satisfies the boundary condition: 

 Su c   on 0 , (2) 

where 
0

22   is the wavenumber and   is the 

angular frequency. 

Let an incoming plane wave )cossin(0  yxii eu


  

be incident on the cavity from above, where   is 

the incident angle with respect to the positive 

y axis, and 
000    is the wavenumber of the 

free space. 

Denote the reference field refu  as the solution 

of the homogeneous Helmholtz equation in the 

upper half space: 

 0
2

0  refref uu   in 2

R , (3) 

together with boundary condition: 

 0refu on c . (4) 

It can be shown from (3) and (4) that the reference 

field consists of the incident field and the reflected 

field: 

 riref uuu  , 

where )cossin(0  yxir eu


 . 

The total field is composed of the reference 

field and the scattered field: 
 .sref uuu   

It can be verified from (1) and (3) that the 

scattered field satisfies: 

 02

0  ss uu  in 2

R . (5) 

In addition, the scattered field is required to satisfy 

the radiation condition: 

 |),(|,0)(lim 0 yxui
u s

s














. (6) 

To describe the boundary value problem, we 

need to introduce some functional spaces. For 

)(2  cLu , which is identified with )(2 RL , we 

denote by û  the Fourier transform of u  defined as: 

 

R

ix dxexuu .)()(ˆ   

Using Fourier modes, the norm on the space 

)(2 RL  can be characterized by: 

 .|ˆ|||||||
2

1

2
2

1

2

)(2 
















 

RR

RL
dudxuu   

Denote the Sobolev space: 

 }1||for  ),(:{)( 21  sLuDuH s , 

and the trace functional space: 

 }|ˆ|)1(:)({)( 222

 
R

ss duRLuRH  , 

whose norm is defined by: 

 
2

1

22

)(
|ˆ|)1(|||| 








 

R

s

RH
duu s  . 

By taking the Fourier transform of (5) with 

respect to x , we obtain: 

 .0,0),(ˆ)(
),(ˆ 22

02

2





yyu

y

yus


  (7) 

Since the solution of (7) satisfies the radiation 

condition (6), we deduce that: 

 ( )ˆ ˆ( , ) ( ,0)s s i yu y u e    , (8) 
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where 

 














.||for  )(

,||for  )(
)(

0
2

1

2

0

2

0
2

1

22

0






i

 

Taking the inverse Fourier transform of (8), we 

find that: 

 



R

xiyiss deeuyxu   )()0,(ˆ),(  in .2

R  

Taking the normal derivative on c , which 

is the partial derivative with respect to y , and 

evaluating at 0y  yield: 

 


 
R

xi

y

s

y deuiyxu .)0,(ˆ)(|),( 0    (9) 

For given u on c , define the boundary 

operator T : 

 



R

xi deuiTu ,)0,(ˆ)(    (10) 

which leads to the transparent boundary condition 

for the scattered field on c : 
 ).()( refref

y uuTuu   

Equivalently we have a transparent boundary 

condition for the total field: 

 gTuuy  on c , (11) 

where 
 .cos2

sin

0
0  xirefref

y eiTuug   

It can be shown that the boundary operator is 

continuous from )(2

1

RH to )(2

1

RH  . Furthermore, it 

has the following properties which ensures the 

uniqueness of the solution of the single cavity 

problem. 

 

Lemma 1. Let )(2

1

RHu . It holds that 0,Re uTu  

and 0,Im uTu . Furthermore, if û  is an 

analytical function with respect to , 0,Re uTu  

or 0,Im uTu  implies 0u . 

To derive a transparent boundary condition for 

the total field on the aperture  , we need to make 

the zero extension as follows: for any given u on 

 , define 

 










.,0

,,
)(~

cx

xu
xu  

The zero extension is consistent with the problem 

since the ground plane is a perfectly electrical 

conductor. Based on the extension and the 

transparent boundary condition (11), we have the 

transparent boundary condition for the total field 

on the aperture: 

 guTuy  ~ on  . (12) 

 

 
 

Fig. 1. The problem geometry of a single cavity. 

 

B. Well-posedness 

Define a trace functional space: 

 )},(~:{)(
~

2

1

2

1

RHuuH   

whose norm is defined as the )(2

1

RH  norm for its 

extension; i.e., 
 .~

)()(
~ 2

1

2

1

RHH
uu


 

Define a dual paring: 
 ., 




 vuvu  

This dual paring for u and v is equivalent to the 

scalar product in )(2 RL for their extensions; i.e., 

 .~,~, vuvu 


 

Denote by )(2

1




H the dual space of )(
~

2

1

H ; i.e., 

))'(
~

()( 2

1

2

1




HH . The norm on this space is 

characterized by: 

 .~

~,~
sup

)()(~

)(
2

1

2

1
2

1

RHRHv

H v

vu
u






 

Introduce a space: 
 }, on 0:)({)( 11 SuHuHS   

which is a Hilbert space with the usual norm. 

Multiplying a test function v  on both sides of 

(1) and using the boundary conditions (2) and (12), 

we may deduce a variational problem: find u such 

that 

 ),( allfor  ,),( 1 
 SHvvgvua  (13) 

where the sesquilinear form is: 

 




 .,~)(),( 2 vuTvuvuvua   (14) 

 

Theorem 1. The variational problem (13) has a 

unique weak solution in )(1 SH  and the solution 
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satisfies the estimate: 

 1

1 2( ) ( )H H
u C g 

 
 , 

where C  is a positive constant. 

Proof: Decompose the sesquilinear form (14) 

into 
21 aaa  , where 

 



 vuTvuvua ~,~),(1
, 

and 
 .),( 2

2 


 vuvua   

We conclude that from Lemma 1 and Poincare 

inequality that 
1a is coercive from: 

 

                ).( allfor                      

||~,~Re||),(Re

12

)(

2
2

1

1 









SH
HuuC

uvuTuuua
 

Next we prove the compactness of .2a  Define 

an operator )()(: 12  HLK  by: 

 ),( allfor  ),(),( 1

21  SHvvuavKua  

which explicitly gives that for all )(1  SHv , 

 
 
 

 .~,~ 2 vuvuTKvKu   

Using the coercivity of 
1a  and the Lax-Milgram 

lemma, it follows that: 

 .
)()( 21 


LH

uCKu  (15) 

Thus, K  is bounded from )(2 L  to )(1 H  and 

)(1 H  is compactly imbedded into )(2 L . Hence, 

)()(: 22  LLK  is a compact operator. 

Define a function )(2  Lw  by requiring 

)(1  SHw  and satisfying: 

 ).( allfor  ,),( 1

1 
 SHvvgvwa  

It follows from the Lax-Milgram lemma again that: 

 1

1 2( ) ( )H H
w C g 

 
 . (16) 

Using the operator K , we  can see that the 

variational problem (13) is equivalent to find 

)(2  Lu  such that: 

 .)( wuKI   (17) 

It follows from the uniqueness result and the 

Fredholm alternative that the operator KI   has a 

bounded inverse. We then have the estimate: 
 .

)()( 22 


LL
wCu  

Combining (15)-(17), we deduce that: 

 

,             

             

)()(

)()(

)()()(

2

1

1

12

111













HH

HL

HHH

gCwC

wuC

wKuu

 

which completes the proof. 

 

III. MULTIPLE CAVITY SCATTERING 

As shown in Fig. 2, we consider a situation of 

n  cavities, where the multiple open cavities 

n ,,1   enclosed by the apertures 
n ,,1   and the 

walls 
nSS ,,1   are placed on c . Above the flat 

surface c

ny  1}0{ , the medium is 

assumed to be homogeneous with a positive 

dielectric permittivity 
0 . The medium inside the 

cavity 
j  is inhomogeneous with a variable 

dielectric permittivity ),( yxj , which satisfies 

)( Lj , 0Re j , 0Im j  for .,,1 nj   

We consider the two-dimensional Helmholtz 

equation for the total field: 

 , in ,0 2

1

2

 Ruu n  (18) 

together with the boundary condition: 

 . on ,0 1

c

nSSu    (19) 

Let the plane wave iu  be incident on the cavities 

from above. The total field u  is consisted of the 

incident field iu , the reflected field ru , and the 

scattered field su , where the scattered field is 

required to satisfy the radiation condition (6). 

To reduce the problem into the bounded 

domains ,,,1, njj   we need to derive a 

transparent boundary condition on 
j . Rewrite 

(18)-(19) into n  single cavity scattering problem: 

 
, on 0              

, in 02

jj

jjjj

Su

uu



   (20) 

where 
0

22  jj  . If u  is the solution of (18)-(19) 

and 
ju  is the solution of (20), respectively, then we 

have 
j

uu j  | for .,,1 nj   

For )0,(xu j
, define its zero extension: 

 










.\for  0

,for  )0,(
)0,(~

j

jj

j Rx

xxu
xu  

For the total field u , define its extension: 

 










.for  0

,for  )0,(
)0,(~

c

jj

x

xxu
xu  

It follows from the definition of the extensions that 

we have: 

 



n

j

c

njuu
1

1 . on ~~   

Repeating the same steps as those for the single 

cavity problem, we have the following transparent 
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boundary condition for the extended field: 

 , on ~~
1

c

ny guTu    (21) 

which gives the transparent boundary for 
ju : 

 



n

jii

jijjy guTuTu
,1

. on ~~  (22) 

As we can see from (22), the boundary condition 

for nju j ,,1,   is coupled with each other, which 

is the major difference between the single cavity 

problem and the multiple cavity problem. 

Next we present a variational formulation for 

the multiple cavity problem. Denote 

n 1
,

n 1
 and 

nSSS  1
. 

Define a trace functional space: 

 ).(
~

)(
~

)(
~

2

1

1
2

1

2

1

nHHH    

Its norm is characterized by: 

 .

2

)(
~1

2

)(
~

2

1
2

1

jH

n

j

j
H

uu


  

Denote )()()( 2

1

1
2

1

2

1

nHHH 


 , which is 

the dual space of )(
~

2

1

H . The norm on the space is 

characterized by: 

 .

2

)(1

2

)(
2

1
2

1

jH

n

j

j
H

uu
 


  

Introduce the space: 

 
1

1 1 1

1( ) ( ) ( )
nS S S nH H H      , 

which is a Hilbert space with norm characterized 

by: 

 .

2

)(1

2

)(
1

1

jH

n

j

jH
uu


   

Similarly, we may obtain the variational 

formulation for the multiple cavity problem: find 

)(1  SHu with 
j

uu j  | such that 

 ),( allfor  ,),( 1

1




 S

n

j

j Hvvgvua
j

 (23) 

where the sesquilinear form is: 

   
   


n

j

n

j

n

i

jijjjjj

j

vuTvuvuvua
1 1 1

2 .~,~)(),(   

We have the following well-posedness result. 

The proof is similar in nature as that of the single 

cavity problem and is omitted here for brevity. 

 

Theorem 2. The variational problem (23) has a 

unique weak solution in and the solution satisfies 

the estimate: 

 1

1 2( ) ( )H H
u C g 

 
 , 

where C is a positive constant. 

 

 
 

Fig. 2. The problem geometry for multiple cavities. 

 

IV. NUMERICAL EXPERIMENTS 
In this section, we discuss the computational 

aspects and present some examples for the 

multiple cavity problem. 

 

A. Finite element formulation 

Let 
jM  be a regular conforming triangulation 

of 
j  and )(1

jSj j
HV   be the conforming linear 

finite element space over 
jM . Denote 

nVVV  1
. The finite element approximation to 

the multiple cavity problem is to find hu  with 

j

h Vu   such that 

 , allfor  ,),(
1

Vvvgvua h
n

j

h

j

hh

j






 (24) 

where the sesquilinear form 

   
   


n

j

n

j

n

i

h

j

h

j

h

j

h

jj

h

j

h

j

hh

j

vuTvuvuvua
1 1 1

2 .~,~)(),(   

For any nj 1 , we denote by 
jP  the set of 

vertices of 
jM , which are not on the cavity wall 

jS , 

and let 
jj Vr )(  be the nodal basis function 

belonging to vertex 
jPr . Using the basis 

functions, the solution of (24) is represented as: 
 .)()(




jPr

jj

h

j rruu   

The discrete problem (24) is equivalent to the 

following system of algebraic equations: 

 ,GAU   (25) 

where 

 
,

,,2,1

2,2,222.1

1,1,21,11



























nnnnn

n

n

BABB

BBAB

BBBA

A








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.),,,(

,),,,(

21

21

T

n

T

n

gggG

uuuU







  

Hence, each 
ju  is an unknown vector whose 

entries are )()( ruru h

jj   for all 
jPr , 

jA  is the 

stiffness matrix for the discrete problem and its 

entries are defined by: 

 ,)]'()()'()([)',( 2






j

rrrrrrA jjjjjj   

for all 
jPrr ', . The entries of 

ijB ,
 are defined by: 

 
, ( , ') ,  for all , 'j i i j j jB r r T r r P    , 

and the entries of each vector 
jg  are given by: 

 . allfor  )(,)( jjjj Prrgrg
j




  

A block Gauss-Seidel method is adopted to 

solve (25). Given )0(U , define 1,)( kU k  by the 

solution of the following system of equations: 

 

.1 ,                                

)(

1

)1(

,

1

1

)(

,

)(

,

njuB

uBguBA

n

ji

k

iij

j

i

k

iijj

k

jjjj















  (26) 

The block Gauss-Seidel iteration (26) is equivalent 

to apply the finite element method to solve the 

following problem: let 0)0( ju , define )(k

ju  for 

1k  by the solutions of the decoupled equations 
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for nj ,,1 . Therefore, we only need to solve a 

single cavity problem (27) at each iteration. 

 

B. Transparent boundary condition 

The transparent boundary conditions (11) and 

(22) are not convenient to be implemented 

numerically. We take an alternative and equivalent 

transparent boundary condition [7]. 

Let 

 )]()([
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0  HH
i

rrG   

be the Green function of the two-dimensional 

Helmholtz equation in the upper half space, where 
)1(

0H  is the Hankel function of the first kind with 

order zero; |'||,'|),','('),,( rrrryxryxr   , 

and )','(' yxr   is the image of 'r  with respect to 

the real axis. By the Green’s theorem and the 

radiation condition, we obtain: 
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where )1(

1H  is the Hankel function of the first kind 

with order one. Hence, the alternative boundary 

condition is: 

 , on  gTuuy
 (28) 

where the boundary operator T  is defined as: 
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Here the integral is understood in the sense of 

Hadamard finite-part. For multiple cavities with 

apertures 
n 1

, the boundary operator is 

defined as: 
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The boundary operator (29) can be approximated 

by: 
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where 
xh  is the step size of the partition for the 

cavity aperture  , 
1Y  and 

1J  are Bessel functions 

of the second and first kind with order one, 

respectively. Therefore, the boundary integral 

vTu,  in the weak formulation for the cavity 

problem can be approximated by any numerical 

quadratures. 

 

C. Numerical examples 

The physical parameter of interest is the Radar 

Cross Section (RCS), which is defined by: 

 .|)(|
4 2

0




 P  
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Here   is the observation angle and P  is the far-

field coefficient given by: 

 



 .)0,(sin
2

)(
cos0 0 dxexuP

xi 


  

When the incident and observation directions are 

the same,   is called the backscatter RCS, which 

is defined by: 

 dB.)(log10)(r RCSBackscatte 10    

 

Example 1. Consider a plane wave scattering from 

a rectangular cavity with 1 meter wide and 0.25 

meters deep at normal incidence; i.e., 0 . Two 

different cases are considered: an empty cavity 

with 
0   and a cavity filled with a 

homogeneous medium with )4(2

0

2 i . These 

two cases have been considered as standard test 

problems in [14]. The Rectangular domain 

]0.0 ,25.0[]5.0 ,5.0[   is first divided into 40160  

small equal rectangles and then each small 

rectangle is subdivided into two equal triangles. 

Numerical results are obtained by using a linear 

finite element over triangles at the wavenumber 

 20  . Figures 3 and 4 show the magnitude and 

the phase of the total field on the aperture at the 

normal incidence, the backscatter RCS for the 

empty cavity and the filled cavity, respectively. 

We observe the coincidence of the numerical 

results obtained in [19] (circled) and our numerical 

method (solid line). 
 

 

 
 

Fig. 3. The magnitude, phase, and backscatter 

RCS of the total field for Example 1 of the empty 

cavity. 

 

 
 

Fig. 4. The magnitude, phase, and backscatter 

RCS of the total field for Example 1 of the filled 

cavity. 

 

Example 2. Consider the normal incidence of a 

plane wave onto two identical rectangular cavities. 

Each cavity is 1 meter wide and 0.25 meters deep; 

they are 1 meter distance away from each other. 

The two rectangular domains are given as follows: 

 cavity one: ],0.0 ,25.0[]5.0 ,5.1[   

 cavity two: ].0.0 ,25.0[]5.1 ,5.0[   

Each rectangular domain is divided into 40160  

small equal rectangles and then each small 

rectangle is subdivided into two equal triangles. 

Three types of cavities are considered: (type one) 

two empty cavities with 
021   ; (type two) 

two filled cavities with )4(2

0

2

2

2

1 i  ; (type 

three) one empty cavity with 
01   and one filled 

cavity with )4(2

0

2

2 i . Figures 5, 6 and 7 show 

the magnitude and the phase of the total field on 

the apertures at the normal incidence and the 

backscatter RCS for the type one, type two and 

type three cavities, respectively. These numerical 

results are obtained by the block Gauss-Seidel 

iterative method. To show the convergence of the 

iterative method, we define the error between two 

consecutive approximations: 

 ,max
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)1()(
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2
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k

j

k

j
kj

k uue
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where k  is the number of iteration. Figure 8 shows 

the error 
ke of two consecutive approximations 

against the number of iterations for all three types 

of cavities. It can be seen from Fig. 8, that more 
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number of iterations are needed for the type one 

cavities to reach the same level accuracy as the 

other two types of cavities. The reason is that the 

cavity for either type two or type three is filled 

with complex medium, which accounts for the 

absorption of the energy, and thus, the damping of 

the amplitude of the field. 

 

 

 
 

Fig. 5. The magnitude, phase, and backscatterer 

RCS for Example 2 of the type one cavity. 

 

 

 
 

Fig. 6. The magnitude, phase, and backscatterer 

RCS for Example 2 of the type two cavity. 

 

 

 
 

Fig. 7. The magnitude, phase, and backscatterer 

RCS for Example 2 of the type three cavity. 

 

 
 

Fig 8. Convergence of the Gauss-Seidel iteration 

for Example 2. 

 

Example 3. Consider the scattering of a triple 

cavity model. Let a plane wave be incident onto 

three identical rectangular cavities at the normal 

direction. Each cavity is 1 meter wide and 0.25 

meters deep; there are 1 meter distance away from 

each other. The three rectangular domains are 

given as follows: 

 cavity one: ],0.0 ,25.0[]5.1 ,5.2[   

 cavity two: ],0.0 ,25.0[]5.0 ,5.0[   

 cavity three: [1.5,  2.5] [ 0.25, 0.0]  . 

Again, each rectangular domain is divided into 

40160  small equal rectangles and then each small 

rectangle is subdivided into two equal triangles. 
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Cavities one and three are filled with the same 

homogeneous medium with )4(2

0

2

3

2

1 i   and 

cavity two is an empty cavity with 
0  . Figure 9 

shows the magnitude and the phase of the total 

field on the apertures at the normal incidence and 

the backscatter RCS. 

 

 

 
 

Fig 9. The magnitude, phase, and backscatter RCS 

of the total field for Example 3. 

 

V. CONCLUSION 
We studied the problem of electromagnetic 

scattering by multiple cavities embedded in the 

infinite two-dimensional ground plane. The 

scattering problem was reduced into a boundary 

value problem by introducing a transparent 

boundary condition. Based on the variational 

formulation, we proved the uniqueness and 

existence of the weak solution for the model 

problem. We employed a block Gauss-Seidel 

iterative method to decouple the coupled system 

arising from the multiple interaction among 

cavities. At each step of iteration, it required to 

solve only a single cavity problem. Three 

numerical examples were considered, a single 

cavity, two cavities and three cavities, with and/or 

without filling. The results show the convergence 

of the block Gauss-Seidel iterative method for the 

examples. We point out some future directions 

along the line of our present work. The first is to 

analyze the convergence of the Gauss-Seidel 

iterative method and investigate the parameters, 

such as separation distance among cavities, 

wavenumber and cavity size, which requires 

further mathematical analysis of the stability of the 

cavity scattering problem [6]. Another project is to 

study the multiple overfilled cavity problem and 

the model problem of three-dimensional Maxwell 

equations. 
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