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Abstract ─ Although Spectral Element Method 

(SEM) has been applied in the modeling of 

boundary value problems of electromagnetics, its 

usage is not as common as the Finite Element or 

Finite Difference approaches in this area. It is 

well-known that the Perfectly Matched Layer 

(PML) approach is a mesh/grid truncation method 

in scattering or radiation applications where the 

spatial domain is unbounded. In this paper, the 

PML approach in the SEM context is investigated 

in two-dimensional, frequency-domain scattering 

problems. The main aim of this paper is to provide 

the PML parameters for obtaining an optimum 

amount of attenuation in the scattered field per 

wavelength in the PML region for Legendre-

Gauss-Lobatto grids. This approach is extended to 

the analysis of SEM accuracy in scattering by 

electrically large objects by taking the free space 

Green’s function as the building block of the 

scattered field. Numerical results presented in this 

work demonstrate the ability of achieving a high 

degree of accuracy of SEM as compared to other 

finite methods, as well as the successful 

applicability of the PML in electromagnetic 

scattering problems in terms of the optimum 

attenuation factors provided in this work. 

 

Index Terms ─ Attenuation, electromagnetic 

scattering, Green’s function, Legendre 

polynomials, perfectly matched layer, spectral 

element method. 
 

I. INTRODUCTION 
The well-known Perfectly Matched Layer 

(PML) approach, (with its possible realizations; 

the split-field formulation [1], the anisotropic 

realization [2], and the bianisotropic realization 

[3]), showed superiority over Absorbing Boundary 

Conditions (ABCs) when imposed to truncate 

computational domains in the numerical modeling 

of electromagnetic radiation and/or scattering 

problems [4]. The most commonly used numerical 

methods, namely Finite Element Method (FEM) 

and Finite Difference Method (FDM), have been 

extensively applied and investigated in 

electromagnetic scattering problems where PML is 

utilized for mesh truncation. Spectral Element 

Method (SEM) on the other hand, has not been 

used in this field as much as finite element or 

finite difference methods. 

SEM can be considered as a generalization of 

FEM with special choice of nodal points and 

quadrature integration points. It is the high degree 

of accuracy, the lower CPU time and memory 

requirement, when compared with other numerical 

methods, that makes it worthy to use SEM in 

electromagnetic scattering [5,6,7,8]. These 

attractive features of SEM are the outcomes of 

introducing higher degree basis functions that 

results in having the minimal number of 
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unknowns; and consequently, the computational 

cost is much reduced at the same accuracy. 

The main goal of this paper is the 

investigation of the optimal choice of the PML 

attenuation factor in two-dimensional scattering 

problems governed by Helmholtz equation. This 

formulation yields a mathematical model for 

electromagnetic (transverse electric or magnetic) 

and acoustic scattering problems. In FEM or FDM 

approaches, the PML may include several 

elements/grid points. In this case, the choice of the 

attenuation factor depends on the thickness of the 

PML, as well as the density of the nodes/grid 

points in the layer. Numerical experiments have 

demonstrated that the PML thickness must be 

about one wavelength, and the number of 

nodes/grid points in the longitudinal direction 

must be 15 to 20 to represent the exponential 

decay adequately. In the context of SEM, no such 

analysis has been carried out in the literature. The 

interest for such an analysis arises from two facts; 

first, the distribution of grid points in SEM is 

standard (consider Legendre-Gauss-Lobatto grids), 

while in FEM or FDM is not. The regularity in the 

elements corresponding to PML region is another 

important point. In this paper, the PML region is 

constructed as a single layer of SEM elements 

with dimensions equal to a wavelength. Under this 

restriction, the optimal choice of the attenuation 

factor is carried out via numerical experiments. 

Next, the chosen values of the attenuation factor 

are used to study the accuracy of SEM when 

applied in scattering problems by large objects. 

The paper is arranged as follows: in Section II, 

the formulation of PML approach in 2D frequency 

domain scattering problems is presented. In 

Section III, the approximation of Helmholtz 

equation by SEM with PML, is given. Section IV 

demonstrates the numerical results, and finally 

some conclusions are presented in Section V. 

 

II. PML FORMULATION IN 2D 

SCATTERING PROBLEMS 
In the following, y axis (i.e.: x=0) is taken as 

the interface between Ω and ΩPML, which stand for 

free space and PML regions, respectively, as 

depicted in Fig. 1. Ω={(x,y)|x<0}, ΩPML={(x,y)|x>0}. 

A plane wave (with suppressed time dependence 

exp( j t )) incident to the interface can be 

expressed as: 

 
jk(cos x sin y)u(x, y) ,e     (1) 

in which u(x,y) is the scalar field at the point (x,y), 

θ is the incident angle (angle between the direction 

of propagation of the plane wave and x-axis), and 

k is defined as: 

 
2

k ,



  (2) 

which is called the wave number, with   being 

the wavelength. As pointed out in [4], in order to 

provide the attenuation required in domain 

truncation, one needs to multiply the wave in the 

PML region by a function f(x) satisfying two 

properties: f(0)=1, and f(x) decreases monotonically 

for x>0. For instance, f(x) can be chosen as: 

 
cos xf(x) .e    (3) 

The scalar field in ΩPML then takes the form: 

 
jk(acos x sin y)u(x, y) e    , (4) 

where 

 a 1 ,
jk


   (5) 

and   is a positive real constant (called the 

attenuation factor). By direct differentiation, we 

obtain the following partial differential equation 

satisfied by the field: 

 

2 2
2

2 2 2

1 u u
k u 0.

a x y

 
  

 
 (6) 

It is obvious that from the first property of 

f(x), the continuity condition at the interface holds: 

 
0 0

u u .
 
  (7) 

The second condition can be directly derived from 

(1) and (4) as: 

 
0 0

u 1 u
.

ax x 

 


 
 (8) 

While applying integration by parts, the 

second condition is automatically satisfied if 

Helmholtz equation in PML region is rewritten as: 

 

2 2
2

2 2

1 u u
a a k u 0.

a x y

 
  

 
 (9) 

It can easily be shown that for a horizontal 

interface (i.e.: y=0) the following equation is 

obtained (while keeping PML thickness the same; 

i.e., the same attenuation factor, ): 

 

2 2
2

2 2 2

u 1 u
k u 0.

ax y

 
  

 
 (10) 
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Fig. 1. The interface between Ω and ΩPML. 

 

And finally for a corner region, which is the 

intersection of vertical and horizontal PML 

regions, the attenuation is applied in both 

directions [4], and the following partial differential 

equation is obtained (see Fig. 2): 

 

2 2
2

2 2 2 2

1 u 1 u
k u 0,

a ax y

 
  

 
 (11) 

or: 

 

2 2
2 2

2 2

u u
a k u 0.

x y

 
  

 
 (12) 

 

 
 

Fig. 2. The corner interface between Ω and ΩPML. 

 

Ideally, the attenuation factor ( ) must be 

infinitely large to make sure that the field 

magnitude is immediately forced to zero in the 

PML region. However, in numerical applications, 

the PML must be terminated by an outer boundary 

and one must search for the optimum PML 

thickness, discretization (i.e.: mesh/grid density 

especially in the longitudinal direction), and  , in 

order to represent the field decay as smoothly as 

possible without causing “numerical” reflections. 

In other words, there is a tradeoff in the choice of 

the attenuation factor in having almost zero 

Dirichlet boundary condition on the outer PML 

boundary and providing the adequate rate of 

attenuation within PML for a specific mesh/grid. 

 

III. SEM FORMULATION OF 

HELMHOLTZ EQUATION 
In scattering problems governed by Helmholtz 

equation, Sommerfeld radiation condition is 

satisfied: 

 
u

lim ( jku) 0,
nr

r



 


 (13) 

where r is the radiation direction. However, it is 

hard to apply this condition in SEM. Therefore, we 

use PML to truncate the computational domain. 

Based on the PML formulation given in Section II, 

and as seen from Fig. 4, the problem is defined as: 

 
2

u+ ak u 0,   (14a) 

for 
2(x, y)  x  subject to the boundary 

conditions: 

 
D N

n
u f , u g,

 
   (14b) 

on the boundary D N    .  is a tensor 

defined as: 

 
11

22

0
,

0
 

 
 

 
 (14c) 

where 

  11 22

1
a

a

 
    

 
 for x-decay, 

  11 22

1
a

a

 
    

 
 for y-decay, 

  11 22

1 1

a a

 
    

 
 for a corner region, 

and a 1  for FS . 

SEM formulation involves two function 

spaces, namely, test and trial spaces. An 

approximate solution to (14) is sought in the trial 

space: 

  
D N

n
U u H | u f , u g .

 
     (15) 

The residual resulting from the substitution of the 

approximate solution from the trial space into (14) 

vanishes in the process of projection onto the test 

space: 

 V {v H v 0}.
D

    (16) 

The projection is performed by using the weighted 

inner product operation: 
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  v,u v u d





  x , (17) 

in the Hilbert space H where overbar denotes 

complex conjugation. The projection procedure: 

 
2(v, u a k u) 0   , (18) 

leads to the variational (weak) form: 

2( v) u dx a k v u dx 
 

     v g dx

N




 ,(19) 

after integration by parts that introduces the 

boundary integrals. The trial function is then 

decomposed as follows: 

 
D

h b hu u u where u 0,


  
D

band u f,


  (20) 

resulting in: 

 
2

h h( v) u d ak v u dx 
 

     x  

2

b b( ) u dx ak v u dx v g dx,

N

v  
  

      (21) 

after substitution into (19). The boundary 

conditions are now in place in the variational form 

with the introduction of the particular solution 

bu satisfying the nonhomogeneous Dirichlet 

boundary condition. Adapting the formulation to 

arbitrary domain geometry is achieved in two 

steps. The first step involves partitioning of the 

domain into mutually disjoint elements: 

 
M

1 e M e

e=1

... ... .      (22) 

A typical integral in the variational form then 

becomes: 

 
e

M

h h

e 1

v u d v u d , 
 

 x x  (23) 

due to the linearity of integration operation. The 

second step is the introduction of the standard 

square element: 

  std 2( , ) | 1 1, 1 1            , (24) 

that will standardize and facilitate the integral 

operations over a general quadrilateral element 
e  with curved sides through mapping: 

 
e e

1 2x ( , ), y ( , ).        (25) 

The operations can then be converted using the 

rules: 

 

e e
1 1

e e
2 2

dx d

dy d

 

 

 

 





 

 

 

 

    
    
     

J

, 

 

e e
2 1

e e
2 1

x 1

y

-
,

-

 

  

 


 

  
  

  
 

 

    
      
      

J
 (26) 

where J  is the determinant of the Jacobian J . 

Numerical implementation of the procedure 

requires introduction of a spatial discretization that 

will facilitate the numerical evaluation of the 

derivatives and the integrals. This is equivalent to 

taking the trial and test spaces as finite 

dimensional spaces for which space of 

polynomials is the convenient choice. Jacobi 

polynomials as eigenfunctions of singular Sturm-

Liouville differential operator provide a good basis 

for this space [8]. Numerically stable interpolation 

and highly accurate quadrature integration 

approximation techniques are provided by nodes 

and weights associated with Jacobi polynomials. 

In particular, Legendre polynomials are the 

convenient choice in that they are orthogonal 

under the weighted inner product with unity 

weight 1  . The associated roots m  as nodes 

provide the stable form of interpolation: 

 
N

m m

m 0

u( ) u( )L ( ),  


  (27) 

where L denotes respective Lagrange interpolants 

with the typical form 

 
k

N
( )

k ( )

0
k

L ( ) ,
 

 









  (28) 

satisfying the cardinality property k kL ( )  . 

This in turn provides the means for evaluating the 

derivatives, say: 

k

km

N N

d
m m k m m kd

m 0 m 0
D

u( ) u( )L ( ) u( ) L ( ),
 

    
 

     (29) 

where kmD  is referred to as the differentiation 

matrix. It also provides Gauss-Legendre-Lobatto 

(GLL) quadrature: 

 

1 N

k k

k 01

u( )d u( ),   


  (30) 
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which is exact for the integrand a polynomial of 

degree 2N 1  . These can easily be extended to 

two dimensions over the tensor grid k( , )   with 

the mapping functions i ( , )    constructed using 

the linear blending function approach [9,10]. 

 

IV. NUMERICAL RESULTS 

A. Optimum attenuation factor 

For the numerical experiments, it is assumed 

that u  is known (analytical expression is 

available). In Fig. 3, on 1  and 2 , u  is 

imposed as a Dirichlet boundary condition (this is 

referred as “Case-a”). In  , u satisfies the 

homogenous Helmholtz equation. The numerical 

solution by SEM is then found. In Fig. 4, where 

the computational domain FS PML    , u  is 

imposed on 1  only, and on 2  zero Dirichlet 

boundary condition is simply imposed. This case 

is referred as “Case-b”, in which both the 

homogenous Helmholtz equation (governing the 

free space region, FS ), and the PML partial 

differential equations (governing the PML region, 

PML ) are satisfied. In this way, the SEM error 

without the PML (Case-a) and the SEM error with 

the utilization of the PML can be observed. 

 

 
 

Fig. 3. The computational domain definition 

without the PML. 

 

 
 

Fig. 4. The computational domain definition with 

the PML. 

For sake of determining the optimum value of 

 in SEM at a fixed number of points per 

wavelength in PML region, several problems have 

been carefully studied. First, we considered the 

two-dimensional Green’s function that has 

Helmholtz equation as the governing PDE: 

 
2 2

+ ku u (r),    (31) 

where the solution is given in terms of Hankel 

function of the second kind of order zero as 
(2)

0u(r) (j/ 4)H (k r ) . To avoid singularity 

arising from the radiating point source being at the 

origin, we truncate the domain around the origin, 

and impose the Dirichlet boundary condition in 

terms of the field u(r)  over the boundary ∂Ω1 as 

shown in Fig. 5 (a). Then, to have a bounded 

domain, truncation by PML is applied. By 

utilizing the symmetry, only one-fourth of the 

computational domain is studied. Zero Dirichlet 

boundary is imposed on outer boundary of the 

PML region (i.e.: ∂Ω2) and zero Neumann 

symmetry condition is imposed on the boundary 

∂ΩN. The computational domain is subdivided into 

eight elements as shown in Fig. 5 (b), with 

dimensions of    and resolution of N×N for 

each element. It is worth to point that the 

maximum incident angle (the angle between the 

ray and the normal to the free space-PML 

interface) in this problem is 45o in terms of a ray 

approximation. 

 

 
 

Fig. 5. The problem of the 2D Green’s function: 

(a) the problem definition, and (b) elements in 

SEM. 

 

Throughout of this paper, the error measure is 

defined as: 
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i

i,exact i,SEM

i,exact

max
u - u

Err
u

 , (32) 

where 
i,exactu  and 

i,SEMu  are the exact solution and 

the SEM solution, respectively, at the ith node 

corresponding to the free space region, ΩFS. 

Table 1 shows the value of the attenuation 

factor (α), and the corresponding maximum 

relative error for each resolution (N). The values 

of α were well calibrated for each number of 

points per wavelength (N), such that the minimum 

possible error is obtained in each case. For 

instance, at N=11, the variation of against vs. α is 

presented in Fig. 6. 

 

Table 1: Maximum relative errors obtained by 

SEM for the problem in Fig. 5 

N α Err 

7 4.40 4.5e-3 

8 5.25 4.1746e-4 

9 6.40 4.6100e-5 

10 7.18 4.6486e-06 

11 8.41 5.8466e-07 

12 9.10 8.0365e-08 

13 10.40 7.9952e-09 

14 11.16 1.4402e-09 

15 12.33 1.3769e-10 

16 13.18 2.6012e-11 

17 14.22 3.2078e-12 

18 15.20 4.4765e-13 

 

 
 

Fig. 6. Variation of SEM error vs. α at N=11. 

 

It is important to check the accuracy of SEM 

when it is used to solve the 2D Green’s function 

problem again, but this time, on a different 

computational domain in which the inner 

boundary is defined to be circular. Because of 

symmetry (i.e.: when the point source is placed at 

the origin), only two adjacent quadrants are 

studied as shown in Fig. 7 (a). Here, the field u(r)  

is imposed over the inner boundary ∂Ω1, zero 

Dirichlet boundary condition and Neumann 

boundary condition are imposed on ∂Ω2 and ∂ΩN, 

respectively (Case-b). The chosen elements in 

SEM are shown in Fig. 7 (b) for convenience. 

In “Case-a”, simply the domain corresponding 

to the PML region is considered as free space 

satisfying the homogenous Helmholtz equation, 

and the field u(r)  is imposed over both the inner 

boundary, ∂Ω1 and the outer boundary, ∂Ω2. The 

errors are calculated for the following dimensions: 

λ=1, rc=b=0.5, d=c=1, and presented in Table 2 for 

both Case-a and Case-b. It is worth to point that 

the errors are larger than the ones presented in 

Table 1. This is due to the fact that we have 

deformed elements in this problem. 

 

 
 

Fig. 7. The problem of the 2D Green’s function 

having a circular inner boundary: (a) the problem 

definition, and (b) elements in SEM. 
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Table 2: Maximum relative errors obtained by 

SEM for the 2D Green’s function problem with 

circular inner boundary 

N α Err (Case-a) Err (Case-b) 

7 4.40 0.003559 0.001994 

8 5.25 0.000382 0.000342 

9 6.40 5.24E-05 6.03E-05 

10 7.18 6.92E-06 7.77E-06 

11 8.41 8.50E-07 9.72E-07 

12 9.10 1.06E-07 1.30E-07 

13 10.40 1.29E-08 1.50E-08 

14 11.16 1.32E-09 1.60E-09 

15 12.33 2.44E-10 7.89E-10 

16 13.18 6.37E-11 4.65E-10 

17 14.22 1.71E-11 3.63E-10 

18 15.20 4.62E-12 2.75E-10 
 

B. Scattering cylinder 

Next, we have studied scattering by a circular 

cylinder and considered the following incident 

plane wave on an infinitely long, circular 

conducting cylinder of radius rc (see Fig. 8) of the 

form
i - jkx

0u = u e . 

 

 
 

Fig. 8. An incident plane wave to an infinitely-

long, circular conducting cylinder. 

 

Because of symmetry in z direction, the 

problem is a two-dimensional one, and because of 

symmetry in 2D, only one half of the plane is 

considered. The scattered field is given 

analytically in terms of Bessel and Hankel 

functions as: 

 

(2) jn
s n c n

0 (2)

n c

J (kr )H (k )e
u = -u ( j) .

H (kr )

n

n





  (33) 

Here, for Case-a, the scattered field given in 

(33) is imposed on ∂Ω1 and ∂Ω2, and for Case-b, 

the scattered field given in (33) is imposed on ∂Ω1 

only, and zero Dirichlet boundary condition is 

imposed on ∂Ω2. Error results are presented in 

Table 3. As seen from the table, although we have 

deformed elements, the values of α still give the 

best accuracy when compared with the accuracy 

obtained for Case-a. The magnitude of the solution 

is shown in Fig. 9 at N=10. 

 

Table 3: Maximum relative errors as obtained by 

SEM for scattering cylinder 

N α Err (Case-a) Err (Case-b) 
7 4.40 0.010563 0.00305 

8 5.25 0.000817 0.00044 

9 6.40 7.74E-05 8.02E-05 

10 7.18 1.48E-05 1.63E-05 

11 8.41 4.46E-06 4.51E-06 

12 9.10 1.18E-06 1.18E-06 

13 10.40 3.74E-07 3.80E-07 

14 11.16 1.24E-07 1.27E-07 

15 12.33 3.92E-08 4.78E-08 

16 13.18 1.22E-08 3.22E-08 

17 14.22 3.78E-09 2.64E-08 

18 15.20 1.17E-09 2.21E-08 

 

 

 

Fig. 9. Magnitude of the scattered field by the 

cylinder (i.e.: |u|) at N=10. 

 

C. Scattering by large objects 

To investigate SEM accuracy using the 

obtained values of α when scattering by large 

objects is encountered, we considered a square 

region 6λ×6λ (standing for the dimensions of the 

object) whose boundary is ∂Ω1 (where the field 

u(r)  is imposed) as shown in Fig. 10. Each of the 

free space region ΩFS, and the PML region ΩPML, 
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has a width of λ. The computational domain is 

subdivided into 64 elements so that each element 

is of λ×λ (λ=1) and has a resolution of N×N. The 

point source is chosen to be placed in 21 positions 

as seen from the right side of Fig. 10. Here, we 

note that because of symmetry, the average 

relative error of these selected positions is the 

same as if 121 positions were chosen and 

distributed uniformly over the object. In each 

position, the problem (zero Dirichlet bc. is 

imposed over ∂Ω2) is solved and the SEM relative 

error is calculated (i.e.: Case-b). The magnitude of 

the field when the point source is at position-16 is 

shown in Fig. 11 at N=7. It should be noted that 

the maximum incident angle ranges from 45o (for 

position-1) to 77o (for position-16). 

 

 

 

Fig. 10. Scattering by large objects: the 

computational domain (on the left), selected 

positions for the point source (on the right). 

 

 

 

Fig. 11. Plot of |u| for position-16 at N=7. 

 

Although the solutions are obtained by 

changing the position of the point source whose 

field is governed by (31), taking the average of the 

maximum relative errors of all position will give 

an estimate of the accuracy when a dielectric 

object is involved. This is due to the fact that the 

error in our work is normalized with the field, and 

the solution when a dielectric object exists can be 

expressed as a linear combination of Hankel 

function of the second kind of order zero. In Table 

4, the average of the errors obtained for the 21 

positions are presented. 

 

Table 4: The average of relative errors of the 21 

positions 

N α Average Err 

7 4.40 0.006971 

8 5.25 0.001451 

9 6.40 3.44E-04 

10 7.18 1.32E-04 

11 8.41 2.91E-05 

12 9.10 1.23E-05 

13 10.40 2.36E-06 

14 11.16 8.71E-07 

15 12.33 1.78E-07 

16 13.18 7.91E-08 

17 14.22 2.68E-08 

 

D. One-dimensional problem 

Finally, we considered Helmholtz equation in 

one dimension over x [ 1 ,1 ]     , where   

is a real number chosen as 0.001 to avoid 

singularity (i.e.: to have the solution: 

u = exp( jkx) ). The domain is divided into two 

elements each has N points and a length of 1  . 

In the first element ( x [ 1 ,0]   ), the 

homogeneous Helmholtz equation is satisfied and 

in the second element (PML), the 

nonhomogeneous Helmholtz equation is satisfied: 

 

2
2

2 2

1 u
k u 0, for x [0,1 ].

a x



   


 (34) 

The boundary conditions are 

u( 1 ) = exp( jk( 1 ))       and u(1 ) = 0 . 

The maximum relative errors corresponding to the 

first element are presented in Table 5 for unity 

wavelength. The imaginary parts of the exact and 

SEM solution are shown in Fig. 12 at N=18. 
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Table 5: The maximum relative error of the one-

dimensional problem 

N α Err 

7 4.40 0.0065 

8 5.25 5.1111e-04 

9 6.40 6.0577e-05 

10 7.18 6.0067e-06 

11 8.41 7.4124e-07 

12 9.10 7.1254e-08 

13 10.40 8.7009e-09 

14 11.16 6.5970e-10 

15 12.33 1.0664e-10 

16 13.18 8.8274e-12 

17 14.22 1.6588e-12 

18 15.20 2.3845e-13 
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Fig. 12. Imaginary part of the exact and SEM 

solutions at N=18. 

 

V. CONCLUSION 
We have presented in this work the PML 

formulation for 2D frequency-domain problems 

and the corresponding SEM formulation taking 

into account the interface conditions. Based on the 

numerical results discussed in this paper for 

different geometries, it is obvious that only one 

PML layer is required to truncate the 

computational domain when SEM is used. It is 

also observed that the provided attenuation factor 

gives the best accuracy and has almost a linear 

relationship with the number of points per 

wavelength (slope 0.95 ). In addition, the 

accuracy of scattering by large objects is 

estimated. Finally, the optimum values of the 

attenuation factors are used to check the accuracy 

of SEM for a one-dimensional problem. In 

conclusion, the applicability of PML in 

electromagnetic scattering problems by using 

SEM is very successful in terms of the attenuation 

factors provided in this work. 
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