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Abstract ─ An axisymmetric chiral radome has 
been analyzed numerically by using the method of 
moments. The chiral body is illuminated by a 
plane wave and the surface equivalence principle 
is used to replace the body by equivalent electric 
and magnetic surface currents. The effect of 
adding chirality to a dielectric radome of 
revolution is investigated throughout numerical 
results obtained for bodies of different shapes and 
material parameters. Chiral materials can be used 
to design anti-reflective structures to control 
scattering cross section patterns of bodies. A 
computer program is developed for the chiral 
radome of revolution and examples of numerical 
calculations are given for a chiral spherical 
radome, a chiral cylindrical radome, and a chiral 
Von Karman radome. Numerical results for the 
chiral spherical radome are in excellent agreement 
with the exact ones obtained by the eigenfunction 
solution. Moreover, the numerical results of the 
chiral Von Karman radome are in excellent 
agreement with the published results.  

  
Index Terms - Axisymmetric radome, chiral 
radome, method of moments, and surface 
equivalence theorem.  

 
I. INTRODUCTION 

An axisymmetric chiral radome has been 
analyzed numerically by using Method of 
Moments (MoM) with the surface equivalence 
principle. Scattering and radiation from radomes 
and antenna systems with radomes have been 

studied in the last couple decades by using 
different methods, such as the ray tracing 
technique [1-3], the plane wave spectrum-surface 
integral technique [4], the MoM [5-8], the physical 
optics (PO) method and dielectric physical optics 
(DPO) technique [9], the finite element method 
(FEM) [10], the method of regularization (MoR) 
[11], the hybrid PO-MoM technique [12], the 
transmission-line modeling method [13], the 
adaptive integral method [14], the dyadic Green’s 
function (DGF) technique [15-16], the fast Fourier 
transform (FFT) [17] and precorrected fast Fourier 
transform methods (P-FFT) [18], body of 
revolution (BOR) formulations of MoM [19-26], 
and the finite difference time domain (FDTD) 
method [27].  

Arbitrary dielectric bodies, 3-D arbitrary lossy 
dielectric bodies, arbitrary conducting bodies, 
dielectric bodies of revolution, conducting bodies 
of revolution with and without apertures, dielectric 
radomes of revolution, chiral and/or metal coated 
dielectric bodies, a 2-D chiral radome of arbitrary 
shape, and dielectric radomes with antenna 
systems were investigated in [1–35] by using the 
methods mentioned above. 

We have not found any work that uses MoM 
to analyze an axisymmetric 3-D chiral radome and 
calculates the internal fields and scattering from it. 
Here, we consider different shapes of 
axisymmetric chiral radomes to find out the effects 
of sizes and shapes on the internal fields and 
scattered fields outside by using MoM with BOR 
formulations. This work is a continuation of our 
previous work [36]. 

178 ACES JOURNAL, VOL. 28, NO. 3, MARCH 2013

1054-4887 © 2013 ACES

Submitted On: March 18, 2012
Accepted  On: Dec. 16, 2012



II. ANALYSIS 
A plane wave is incident on the homogeneous 

chiral shell of permittivity ε2, permeability µ2, and 
chirality ξ2, shown in Fig. 1, where the η’s are 
intrinsic impedances. A homogeneous region 
characterized by the medium parameters ε1 = ε0 
and µ1 = µ0 surrounds the shell. (Ei, Hi) represents 
the incident field produced by external sources in 
the absence of the shell. S1 and S2 represent the 
outer and inner surfaces of the shell, respectively. 
The field (E, H) in the region bounded by S2 and 
the scattered field external to S1 are of interest in 
this paper.  

 
Fig. 1. A chiral radome illuminated by a plane 
wave. 
 

A. Surface equivalence of the problem 
Using the equivalence principle, the problem 

of Fig. 1 can be reduced to three simpler and 
equivalent problems shown in Figs. 2, 3, and 4. In 
the external equivalence, electric surface current J1 
and magnetic surface current M1 have been placed 
on S1. These surface currents are radiating in an 
unbounded medium of (ε1, µ1) with the same 
incident field of Fig. 1. The total field at any point 
in the external region bounded by S1 in Fig. 2 is 
the same as the total field at the same point of Fig. 
1, while the total field at any point in the internal 
region bounded by S1 in Fig. 2 is zero. 

 1tan 1 1 tan( , ) i E J M E  on S1
– (1) 

 1 tan 1 1 tan( , ) i H J M H  on S1
–, (2) 

 1 1 out
 J n H , (3) 

 1 1,out
 M E n  (4) 

where the superscript “–“ on S1 indicates the side 
of S1 opposite the region into which n1 points. 
E1(J1, M1) and H1(J1, M1), respectively, denote 
the electric and magnetic fields produced by the 

surface currents J1 and M1 when they radiate in 
the unbounded medium of (ε1, µ1). n1 denotes the 
unit outward vector on S1 and ( , )out out

 E H are the 
total fields just outside S1 in Fig. 1. 

 
Fig. 2. External equivalence of the problem shown 
in Fig. 1. 
 

In the internal equivalence for the region 
bounded by S1 and S2, surface currents –J1, –J2, –
M1, and –M2 are placed on S1 and S2 where they 
radiate in the unbounded medium of (ε2, µ2, ξ2). 
They produce the correct total fields (E, H) at any 
point in the region bounded by S1 and S2 and 
produce zero fields at any point outside the region 
bounded by S1 and S2. 

 2 tan 1 1 2 2( , , , ) 0E J M J M  on S1
+  (5) 

 2 tan 1 1 2 2( , , , ) 0E J M J M  on S2
+ , (6) 

 2 tan 1 1 2 2( , , , ) 0H J M J M  on S1
+ , (7) 

 2 tan 1 1 2 2( , , , ) 0H J M J M  on S2
+ , (8) 

 2 2 in
 J n H , (9) 

 2 2,in
 M E n  (10) 

where S1
+ and S2

+ denote the sides of the surfaces 
S1 and S2 facing the regions into which the unit 
vectors n1 and n2 point, and E2(J1, M1, J2, M2) and 
H2(J1, M1, J2, M2), respectively, denote the 
electric and magnetic fields produced by the 
equivalent surface currents when they radiate in 
the unbounded medium of (ε2, µ2, ξ2). n1 and n2 
denote the unit vectors on S1 and S2, respectively 

and ( , )in in
 E H  are the total fields on S2

–
 as shown 

in Fig. 1. 
In the internal equivalence for the region 

bounded by S2, surface currents J2, and M2 are 
placed on S2 where they radiate in the unbounded 
medium of (ε1, µ1). They produce the correct total 
fields (E, H) at any point in the region bounded by 
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S2 and produce zero fields at any point outside the 
region bounded by S2, 

 

 1 tan 2 2( , ) 0E J M  on S2
–  (11) 

 1tan 2 2( , ) 0H J M  on S2
–.  (12) 

 

 
 

Fig. 3. Internal equivalence for the region bounded 
by S1 and S2 of the problem shown in Fig. 1. 

 

 
Fig. 4. Internal equivalence for the region bounded 
by S2 of the problem shown in Fig. 1. 
 

B. Formulation of the integral equations 
Equations (1), (2), (5) - (8), (11), and (12) 

represent eight coupled integral equations for the 
four unknown surface currents J1, J2, M1, and M2. 
The combined field formulation reduces these 
eight equations to four by adding equations (1) to 
(5), (6) to (11), (2) to (7), and (8) to (12). These 
four coupled integral equations are solved 
numerically by using the method of moments. 

 

 
1 1

1tan 1 1 2 tan 1 1 2 2 tan( , ) ( , , , )
S S i
 

  E J M E J M J M E  (13) 

 
2 2

1tan 2 2 2 tan 1 1 2 2( , ) ( , , , ) 0
S S 

  E J M E J M J M , (14) 

 
1 1

1tan 1 1 2 tan 1 1 2 2 tan( , ) ( , , , )
S S i
 

  H J M H J M J M H , (15) 

2 2
1tan 2 2 2 tan 1 1 2 2( , ) ( , , , ) 0.

S S 

  H J M H J M J M  (16) 
 

The electric and magnetic fields produced by J 
and M in an unbounded chiral medium are given 
by [37, (1.2.4) and (1.2.5)]. 

C. Expansion functions and testing 
Let the electric and magnetic surface currents 

J1, J2, M1, and M2 be expanded as, 

 
 1

1 1 1 1 1
1

N
t t
nj nj nj nj

n j

I I 


 
  J J J   (17) 

 
 2

2 2 2 2 2
1

N
t t
nj nj nj nj

n j

I I 


 
  J J J , (18) 

 
 1

1 1 1 1 1 1
1

N
t t
nj nj nj nj

n j

V V  


 
  M J J , (19) 

 
 2

2 1 2 2 2 2
1

N
t t
nj nj nj nj

n j

V V  


 
  M J J . (20) 

1
t
njI , 1njI , 2

t
njI , 2njI , 1

t
njV , 1njV  , 2

t
njV , and 2njV   are 

coefficients to be determined. 1
t
njJ , 1nj

J , 2
t

njJ , and 

2nj
J  are given below, 

 1 1 ( )t jn
nj t jf t e J u  (21) 

 11 ( ) jn
jnj f t e 


J u , (22) 

 2 2 ( )t jn
nj t jf t e J u , (23) 

 22 ( ) jn
jnj f t e 


J u , (24) 

 
1 1,2 1

1
( ) ( )j jf t T t t

   


, (25) 

 
2 2,2 1

1
( ) ( )j jf t T t t

   


, (26) 

 
1 1,2 1

1
( ) ( )i if t T t t

   , (27) 

 
2 2,2 1

1
( ) ( )i if t T t t

   , (28) 

  

4

(1,2)2 1 (1,2) 4 4 (1,2) 2 2
1

( )   ( ),i p i p i
p

T t t T t t    


    (29) 

where ( )t  is the unit impulse function. The 
right-hand side of equation (29) is the four impulse 
approximation to a triangle function shown in Fig. 
5. Also, t is the arc length along the generating 
curve of either S1 or S2,  is the angle of the line 
from the origin to a specified point in the xy-plane 
with respect to the x-axis, ρ is the distance from 
the z-axis, and ut and u are the unit vectors in the 
t- and - directions, respectively. And dropping 
the subscripts 1 and 2 in equations (21) - (29), 

 

2
2 1

4 3
2 1 22( )

i
i

i i

d
T

d d








 (30) 

180 ACES JOURNAL, VOL. 28, NO. 3, MARCH 2013



 

2 1 2 2

4 2
2 1 2

1
( )

2i i i

i
i i

d d d
T

d d










, (31) 

 

2 2 2 1 2 1

4 1
2 1 2 2

1
( )

2i i i

i
i i

d d d
T

d d

  


 





, (32) 

 

2
2 2

4
2 1 2 22( )

i
i

i i

d
T

d d


 



. (33) 

An odd number greater than or equal to 5 of 
consecutive points  at ( , ),  1,  2,  ...,i i it z i P   on 
the generating curves of the surfaces of revolution 
are defined. The generating curves are 
approximated by drawing straight lines between 
the points ( , ),  1,  2,  ...,i iz i P   and we define 

 

    2 2

1 1 .i i i i id z z       (34) 

 

 
 
Fig. 5. Triangle function 2 1( )iT t t  and four 
impulse approximation. 
 

The quantities in equations (30) - (34) need to 
be specified to either the generating curve of S1 or 
the generating curve of S2. If both h and g are 
vector functions on S1 or if both h and g are vector 
functions on S2, then the symmetric product of g 
with h is , h g defined as 

 
,  ,

S

dS   h g h g  (35) 

where S is S1 if both g and h  are on S1 and S is S2 
if both g and h  are on S2.  

By taking the symmetric products of equations 

(13) and (15) with 1
t

niJ  and 1ni

J , i = 1,2,…, N1, 

and taking the symmetric products of equations 

(14) and (16) with 2
t

niJ  and 2ni

J , i = 1,2,…, N2, 

we obtain a matrix equation for the unknown 
coefficients. An incident plane wave whose 
propagation vector is in the xz-plane is considered. 

 

D. Scattered field far from the scatterer and 
scattering cross section 

The scattered field far from the scatterer is 
obtained by using the reciprocity theorem [38, 
Section 3-8]. For p =  or , the p-component of 
the scattered field at the location recr  of the 
receiver  is found after some calculations to be 
[37, 4.6.3] 

 
1  

 1  ,       , ,  ,
4  

rec
rec

jk r N
scat p q jn
pq n nrec

n N

j e
E R T e p q

r


 





     (36) 

where 
recr  is the distance from the origin in the 

vicinity of the scatterer to recr . The extra subscript 

q in scat
pqE  is θ for the θ-polarized incident electric 

field and  for the -polarized incident electric 
field. In equation (36), the ith element of q

nT  is the 

coefficient that multiplies the ith of the ejn-
dependent expansion functions for the equivalent 
electric and magnetic currents in the expressions 
for the equivalent electric and magnetic currents 
that radiate the far field. The contribution of the ith 
element of p

nR  to the far field is the right-hand 
side of equation (36) with the summation with 
respect to n replaced by the product of the three 
quantities which are the ith element of p

nR , the ith 

element of q
nT  and 

recjne  . 

The scattering cross section pq  is the area by 

which the power per unit area of the incident plane 
wave whose electric field is q-polarized must be 
multiplied to obtain, by isotropic radiation, the 
power per unit area of the p-component scat

pqE  of 

the scattered electric field. Because the isotropic 
radiator of power P produces the power per unit 

area   2
  4  recrP   at the distance recr  where a 

receiver is located, this isotropic radiator will 

produce the power per unit area 
2

1
scat
pqE   of the p-

component of the scattered electric field at the 
distance recr  if 

 
 

2

2
1

,
4  

scat
pq

rec

EP

r 
  (37) 

where 1  is the intrinsic impedance of the 

medium. Using the definition of pq  to set P equal 

to the product of pq  with the incident power per 
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unit area 
2

1
q E  of the q-polarized incident 

electric field qE , one obtains, after some 
calculations [37, 4.7.5],  

 
2

12 3 1
1

 
2 where .

16

recN
p q jn
n n

pq n N

R T e

k



 
 

 
 

(38) 

 

E. Electromagnetic field inside the radome 
The electromagnetic field inside the region 

bounded by S2 is calculated by using the 
combination of surface currents J2 and M2, 
radiating in all space filled with the homogeneous 
medium (ε1, µ1). The method of moment solutions 
for J2 and M2 are given by equations (18) and 
(20), respectively. 

The electromagnetic field inside the region 
bounded by S2 is calculated by, 

 
2

2 2 2 2
1

( , ) ( , )
NN

t t
i nj i nj inj nj

n N j

I I 

 
  E E J 0 E J 0   

 
 1 2 2 2 2( , ) ( , )t t

nj i nj inj njV V   E 0 J E 0 J   (39) 

 
2

2 2 2 2
1

( , ) ( , )
NN

t t
i nj i nj inj nj

n N j

I I 

 
  H H J 0 H J 0  

 
 1 2 2 2 2( , ) ( , ) ,t t

nj i nj inj njV V   H 0 J H 0 J  (40) 

where the subscript i in Ei and Hi indicates the 
radiation in all space filled with the medium that is 
bounded by S2. The first argument of each of Ei 
and Hi is treated as an electric current and the 
second argument is treated as a magnetic current. 

Using ( , ) ( , )i i E 0 J H J 0  and 
2
1

1
( , ) ( , )i i


H 0 J E J 0  

to reduce all nonzero magnetic current arguments 
in equations (39) and (40) to zeros and then 
suppressing all the zero magnetic current 
arguments, one obtains 

 
2

2 2 2 2
1

( ) ( )
NN

t t
i nj i nj inj nj

n N j

I I 

 
  E E J E J

  

 
 1 2 2 2 2( ) ( )t t

nj i nj inj njV V   H J H J , (41) 

 
2

2 2 2 2
1

( ) ( )
NN

t t
i nj i nj inj nj

n N j

I I 

 
  H H J H J

  

 
 2 2 2 2

1

1
( ) ( ) .t t

nj i nj inj njV V  




  


E J E J  (42) 

Define 

 
2

1

1
( ),    ,  q q

inj nj q t 


  Z E J , (43) 

 2( ),    ,  ,qq
nj i nj q t   Y H J  (44) 

and use equations (43) and (44) in (41) and (42) to 
obtain 

 
 2

1 2 2
1

NN
t t

i nj nj njnj
n N j

I I 
 

   E Z Z  

 
 1 2 2

t t
nj nj njnjV V   Y Y , (45) 

 
 2

2 2
1

NN
t t

i nj nj njnj
n N j

I I 

 
   H Y Y  

 
 2 2 .t t

nj nj njnjV V   Z Z  (46) 

 
III. NUMERICAL RESULTS 

The bodies analyzed in this paper, shown in 
Fig. 6, are illuminated by the  -polarized plane 
waves. For θinc = 180º, the  -polarized plane wave 
travels in the z-direction and its electric field is in 
the –x-direction. For θinc = 0º, the  -polarized 
plane wave travels in the –z-direction and its 
electric field is in the x-direction.  

 
 

Fig. 6. Structures used to verify the method. 
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Numerical solution results for inside fields on 
the z-axis and scattering from a spherical chiral 
radome are presented in Figs. 7 and 8 for relative 
permittivity r =2 and 8 and relative chirality      

r =0.4. The internal field plots are normalized to 
the incident field. The computed results are 
compared with the exact solution results for the 
spherical chiral radome and they match perfectly 
with each other. For r =2 problem, 89 triangles 
on S1 and 79 triangles on S2 are used to solve for 
672 unknowns, which took 6.6 minutes on a 
Core2Duo 2.1GHz computer. For r =8 problem, 
179 triangles on S1 and 159 triangles on S2 are 
used to solve for 1352 unknowns, which took 21 
minutes on the same computer. 

 
 

Fig. 7. Fields on the z-axis of a spherical radome 
for R1 = 1λ1, R2 = 0.9λ1, r  = 1, and θinc = 180º. 

  
 

Fig. 8. σθθ of a spherical radome for R1 = 1λ1,     
R2 = 0.9λ1, r  = 1, and θinc = 180º. 

Figures 9 and 10 show numerical results for a 
cylindrical radome of R1 = 1.05λ1, R2 = 1λ1,      
H1 = 10.1λ1, H2 = 10λ1, r  = 1, and θinc = 0º. For     

r =1.55 problem, 277 triangles on S1 and 273 
triangles on S2 are used to solve for 2212 
unknowns. For r =3 problem, 306 triangles on S1 
and 299 triangles on S2 are used to solve for 2432 
unknowns. 

 
Fig. 9. Fields on the z-axis of a cylindrical radome 
for θinc = 0º. 

 
Fig. 10. σθθ of a cylindrical radome for θinc = 0º. 
 

Results for small Von Karman radomes of 
different sizes and parameters were computed and 
validated against [33] - [35]. In Figs. 11 to 13, we 
show computed numerical results for a Von 
Karman radome of r =4, L1 = 2λ1, L2 = 1.8λ1,  

D1 = 1λ1, D2 = 0.9λ1, r  = 0, r  = 1 where 127 
triangles are used on S1 and 115 triangles are used 
on S2 to solve for 980 unknowns. 
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Fig. 11. Fields on the z-axis of a Von Karman 
radome for θinc = 0º, 50º, and 90º.  

 

 
 

Fig. 12. Fields on the z-axis of a Von Karman 
radome for θinc = 0º, 50º, and 90º. 

 

 
 

Fig. 13. σθθ of a Von Karman radome for θinc = 0º, 
50º, and 90º.  

More results for all these different radome 
structures and comparisons with previously 
published results are available in [37]. 
 

IV. CONCLUSION 
In this paper, MoM analysis of an 

axisymmetric chiral radome using MoM with the 
surface equivalence principle is presented. The 
body is replaced by equivalent electric and 
magnetic surface currents, which produce the 
correct fields inside and out. The application of the 
boundary conditions on the tangential components 
of the total electric and the total magnetic fields 
results in a set of eight equations, which then 
reduces to four coupled equations that needs to be 
solved. Triangular expansion functions are used 
for both t-directed and -directed currents. The 
unknown coefficients of these expansion functions 
are obtained using the method of moments. 

The surface currents, inside fields and the 
scattering cross section are computed. The results 
are generated by a computer code, which produces 
excellent agreement with the exact solution for the 
spherical radome and agreement with available 
published results for other radomes. Increasing the 
number of segments increases the accuracy of the 
solution. The radar cross section (RCS) of the 
radome is useful because it tells how visible the 
radome is from the outside. The field inside the 
radome due to a plane wave incident on the 
radome is more useful because it tells how the 
radome distorts radiation that comes from outside 
the radome. If a receiver is placed inside the 
radome, the field inside the radome tells how the 
radome affects what is received from outside. 
Therefore, calculations of the RCS of the radome 
and fields inside the radome are justified. The field 
radiated outside the radome by a transmitter inside 
the radome is also of interest. This field was not 
computed because of its excitation, which is the 
incident field of the transmitter inside the radome, 
is more complicated than the incident plane wave 
excitation used to compute the field inside the 
radome.   

The presence of the radome affects what is 
transmitted and received by a transceiver placed 
inside the radome. Adding chirality to the radome 
material affects the inside fields and the scattered 
fields significantly for the cases studied in this 
paper. Although the change from no chirality to a 
small chirality causes cross polarized field 
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components to evolve, thereby shifting the 
directions of the scattered field outside the radome 
and the field inside the radome away from the 
direction of the incident field, the effect of the 
chirality cannot be predicted by a simple theory. 
Numerical experimentation is needed. 
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